Expansion of CD4 T Lymphocytes Expressing Interleukin 17 and Tumor Necrosis Factor in Patients with Major Depressive Disorder

Miguel Angel Alvarez-Mon, Ana Maria Gómez-Lahoz, Arancha Orozco, Guillermo Lahera, David Diaz, Miguel A Ortega, Agustin Albillos, Javier Quintero, Enrique Aubá, Jorge Monserrat, Melchor Alvarez-Mon, Miguel Angel Alvarez-Mon, Ana Maria Gómez-Lahoz, Arancha Orozco, Guillermo Lahera, David Diaz, Miguel A Ortega, Agustin Albillos, Javier Quintero, Enrique Aubá, Jorge Monserrat, Melchor Alvarez-Mon

Abstract

Background: We have investigated the distribution of the Th1, Th2 and Th17 subsets in circulating CD4+ T lymphocytes and their naïve (TN), effector (TE), central (TCM) and effector memory (TEM) activation/differentiation stages in patients with major depressive disorder (MDD).

Methods: Thirty MDD patients and 30 healthy controls were studied. The counts of circulating CD4+ T lymphocytes and their distribution on the TN, TE, TCM and TEM activation/differentiation stages were analyzed by polychromatic flow cytometry. The intracytoplasmic interferon gamma (IFNγ), interleukin (IL)-4, IL-17A and tumor necrosis factor alpha (TNF-alpha) and membrane CD28 expression were also measured. The serum IFNγ, IL-4, Il-17A and TNF-alpha were measured by Luminex, respectively.

Results: MDD patients had normal counts of CD4+ T lymphocytes and of their TN, TCM and TEM subsets but increased number and percentage of TE CD4+ subset. CD4+ T lymphocytes had significantly enhanced percentage of cells that express IL-17 and TNF-alpha explained by the expansions found in the TN, TCM and, TEM and TCM, TEM and TE activation/differentiation stages, respectively. A selective increase in the percentages of TCM and TEM expressing IFNγ was also observed. We found a significant correlation between the percentages of CD4+ T lymphocytes expressing IFNγ and TNF-alpha in these patients. MDD patients showed increased serum levels of IL-17 and TNF-alpha, but normal IFNγ and IL-4 concentration.

Limitations: the cross-sectional nature of the study could be considered a limitation.

Conclusions: MDD patients have abnormal circulating CD4+ T lymphocytes with expansion of the IL-17 and TNF-alpha expressing cells as well as increased levels of circulating IL-17 and TNF-alpha.

Keywords: CD4+ T lymphocytes; clinical research; cytokines; interferon gamma; major depressive disorder; personalized medicine; precision medicine; translational research; tumor necrosis factor.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Dot plots represent the flow cytometry gating strategy and histograms of the intracellular interleukin (IL)-17A, interferon (IFN)γ, tumor necrosis factor alpha (TNF-alpha) and IL-4 expression by total circulating CD4+ T lymphocytes and TN, TCM, TEM and TE subsets in a representative case of MDD. The first row of dot plots represents the selected gates and percentages to obtain the total CD4+ T lymphocytes and TN, TCM, TEM and TE subsets in the presence of PMA (50 ng/mL) stimulation for 4 h. Histograms represent the percentages of IL-17A, IFNγ, TNF-alpha and IL-4 producing cells in the indicated CD4+ T lymphocytes subsets. Gating strategy: (A) Selection of lymphocytes by size (FSC) and complexity (SSC). (B) Exclusion of doublets. (C) Exclusion of dead cells. (D) Negative selection of CD4+ T lymphocytes using CD3+CD8- cells. (E) Expression of IFNγ and IL-17A in total CD4+ T lymphocytes. (F) Analysis of the activation/differentiation states of CD4+ T lymphocytes. (GJ) Expression of IFNγ and IL-17A in TN, TCM, TEM and TE lymphocytes.
Figure 2
Figure 2
Percentage of IL-17A, IFNγ, TNF-alpha and IL-4 expression by total circulating CD4+ T lymphocytes and TN, TCM, TEM and TE subsets in MDD patients and healthy controls after stimulation with PMA. Percentage of cells (y axis) that express the indicated cytokine by total CD4+ T lymphocytes and their TN, TCM, TEM and TE subsets (x axis) in MDD patients (black rectangles plots) and HCs (gray rectangles plots). * Significant difference between MDD and HCs for the indicated variable.
Figure 3
Figure 3
Circulating CD4+ T lymphocytes and TN, TCM, TEM and TE subsets that are able to express IL-17A, IFNγ, TNF-alpha, and IL-4 in MDD patients and HCs. Absolute number (cells/μL) (y axis that are able to express the indicated cytokine by total CD4+ T lymphocytes and their TN, TCM, TEM and TE subsets (x axis)) in MDD patients (black rectangles plots) and HCs (gray rectangles plots). * Significant difference between MDD and HCs for the indicated variable.
Figure 4
Figure 4
Correlations between the percentages of IFNγ and TNF-alpha expression by CD4+ T lymphocytes in MDD patients. Pearson correlation coefficient between percentages of expression of IFNγ and TNF-alpha was 0.562 (p < 0.0001).
Figure 5
Figure 5
Circulating serum levels of IL-17A, IFNγ, TNF-alpha and IL-4 in MDD patients (black rectangles plots) and HCs (gray rectangles plots). Serum concentrations (pg/μL) (y axis) of IFNγ, IL-17A, IL-4 and TNF-alpha. * Significant difference between MDD and HCs for the indicated variable.

References

    1. Mathers C.D., Loncar D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006;3:e442. doi: 10.1371/journal.pmed.0030442.
    1. Malhi G.S., Mann J.J. Depression. [(accessed on 24 November 2018)];Lancet. Available online: .
    1. Niemegeers P., De Boer P., Schuermans J., Dumont G.J., Coppens V., Spittaels K., Claes S., Sabbe B.G., Morrens M. Digging deeper in the differential effects of inflammatory and psychosocial stressors in remitted depression: Effects on cognitive functioning. J. Affect. Disord. 2019;245:356–363. doi: 10.1016/j.jad.2018.11.020.
    1. Kappelmann N., Lewis G., Dantzer R., Jones P.B., Khandaker G.M. Antidepressant activity of anti-cytokine treatment: A systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. [(accessed on 17 November 2020)];Mol. Psychiatry. 2018 23:335–343. doi: 10.1038/mp.2016.167. Available online: .
    1. Okada R., Kondo T., Matsuki F., Takata H., Takiguchi M. Phenotypic classification of human CD4+ T cell subsets and their differentiation. Int. Immunol. 2008;20:1189–1199. doi: 10.1093/intimm/dxn075.
    1. Sallusto F., Lenig D., Förster R., Lipp M., Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. [(accessed on 17 November 2020)];Nature. 1999 401:708–712. doi: 10.1038/44385. Available online: .
    1. Sallusto F., Monticelli S. The many faces of CD4 T cells: Roles in immunity and disease. Semin. Immunol. 2013;25:249–251. doi: 10.1016/j.smim.2013.11.001.
    1. Schmitt N., Ueno H. Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 2015;34:130–136. doi: 10.1016/j.coi.2015.03.007.
    1. Vahedi G., Takahashi H., Nakayamada S., Sun H.-W., Sartorelli V., Kanno Y., O’Shea J.J. STATs Shape the Active Enhancer Landscape of T Cell Populations. Cell. 2012;151:981–993. doi: 10.1016/j.cell.2012.09.044.
    1. Maecker H.T., McCoy J.P., Nussenblatt R.B. Standardizing immunophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 2012;12:191–200. doi: 10.1038/nri3158.
    1. Kaech S.M., Wherry E.J., Ahmed R. Effector and memory T-cell differentiation: Implications for vaccine development. Nat. Rev. Immunol. 2002;2:251–262. doi: 10.1038/nri778.
    1. Sallusto F., Geginat J., Lanzavecchia A. Central memory and effector memory T cell subsets: Function, generation, and maintenance. [(accessed on 17 November 2020)];Annu. Rev. Immunol. 2004 22:745–763. doi: 10.1146/annurev.immunol.22.012703.104702. Available online: .
    1. Taylor J.J., Jenkins M.K. CD4+ memory T cell survival. Curr. Opin. Immunol. 2011;23:319–323. doi: 10.1016/j.coi.2011.03.010.
    1. Sallusto F., Lanzavecchia A. Heterogeneity of CD4+ memory T cells: Functional modules for tailored immunity. Eur. J. Immunol. 2009;39:2076–2082. doi: 10.1002/eji.200939722.
    1. Köhler C.A., Freitas T.H., Maes M., De Andrade N.Q., Liu C.S., Fernandes B.S., Stubbs B., Solmi M., Veronese N., Herrmann N., et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand. 2017;135:373–387. doi: 10.1111/acps.12698.
    1. Liu J.J., Bin Wei Y., Strawbridge R., Bao Y., Chang S., Shi L., Que J., Gadad B.S., Trivedi M.H., Kelsoe J.R., et al. Peripheral cytokine levels and response to antidepressant treatment in depression: A systematic review and meta-analysis. Mol. Psychiatry. 2019;25:339–350. doi: 10.1038/s41380-019-0474-5.
    1. Ghosh R., Kumar P.K., Mitra P., Purohit P., Nebhinani N., Sharma P. Circulating T helper 17 and IFN-γ positive Th17 cells in Major Depressive Disorder. Behav. Brain Res. 2020;394:112811. doi: 10.1016/j.bbr.2020.112811.
    1. Chen Y., Jiang T., Chen P., Ouyang J., Xu G., Zeng Z., Sun Y. Emerging tendency towards autoimmune process in major depressive patients: A novel insight from Th17 cells. Psychiatry Res. 2011;188:224–230. doi: 10.1016/j.psychres.2010.10.029.
    1. Sheehan D.V., Lecrubier Y., Sheehan K.H., Amorim P., Janavs J., Weiller E., Hergueta T., Baker R., Dunbar G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. [(accessed on 30 October 2019)];J. Clin. Psychiatry. 1998 59(Suppl. 20):22–33. Available online: .
    1. Alvarez-Mon M.A., Gómez A.M., Orozco A., Lahera G., Sosa M.D., Diaz D., Auba E., Albillos A., Monserrat J., Alvarez-Mon M. Abnormal Distribution and Function of Circulating Monocytes and Enhanced Bacterial Translocation in Major Depressive Disorder. Front. Psychiatry. 2019;10 doi: 10.3389/fpsyt.2019.00812.
    1. Snijders G., Schiweck C., Mesman E., Grosse L., De Wit H., Nolen W.A., Drexhage H.A., Hillegers M.H.J. A dynamic course of T cell defects in individuals at risk for mood disorders. Brain Behav. Immun. 2016;58:11–17. doi: 10.1016/j.bbi.2016.05.007.
    1. Kim J.-W., Kim Y.-K., Hwang J.-A., Yoon H.-K., Ko Y.-H., Han C., Lee H.-J., Ham B.-J., Lee H.-S. Plasma Levels of IL-23 and IL-17 before and after Antidepressant Treatment in Patients with Major Depressive Disorder. Psychiatry Investig. 2013;10:294–299. doi: 10.4306/pi.2013.10.3.294.
    1. Davami M.H., Baharlou R., Vasmehjani A.A., Ghanizadeh A., Keshtkar M., Dezhkam I., Atashzar M.R. Elevated IL-17 and TGF-β Serum Levels: A Positive Correlation between T-helper 17 Cell-Related Pro-Inflammatory Responses with Major Depressive Disorder. Basic Clin. Neurosci. J. 2016;7:137–142. doi: 10.15412/J.BCN.03070207.
    1. Zorrilla E.P., Luborsky L., McKay J.R., Rosenthal R., Houldin A., Tax A., McCorkle R., Seligman D.A., Schmidt K. The Relationship of Depression and Stressors to Immunological Assays: A Meta-Analytic Review. [(accessed on 19 November 2020)];Brain Behav. Immun. 2001 15:199–226. doi: 10.1006/brbi.2000.0597. Available online: .
    1. Miller A.H., Raison C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016;16:22–34. doi: 10.1038/nri.2015.5.
    1. Arteaga-Henríquez G., Simon M.S., Burger B., Weidinger E., Wijkhuijs A., Arolt V., Birkenhager T.K., Musil R., Müller N., Drexhage H.A. Low-Grade Inflammation as a Predictor of Antidepressant and Anti-Inflammatory Therapy Response in MDD Patients: A Systematic Review of the Literature in Combination With an Analysis of Experimental Data Collected in the EU-MOODINFLAME Consortium. Front. Psychiatry. 2019;10:458. doi: 10.3389/fpsyt.2019.00458.
    1. Zhang Y., Zhen H., Yao W., Bian F., Mao X., Yang X., Jin S. Antidepressant Drug, Desipramine, Alleviates Allergic Rhinitis by Regulating Treg and Th 17 Cells. Int. J. Immunopathol. Pharmacol. 2013;26:107–115. doi: 10.1177/039463201302600110.
    1. Schiweck C., Valles-Colomer M., Arolt V., Müller N., Raes J., Wijkhuijs A., Claes S., Drexhage H., Vrieze E. Depression and suicidality: A link to premature T helper cell aging and increased Th17 cells. Brain, Behav. Immun. 2020;87:603–609. doi: 10.1016/j.bbi.2020.02.005.
    1. Alvarez-Mon M.A., Gomez-Lahoz A.M., Orozco A., Lahera G., Sosa-Reina M.D., Diaz D., Albillos A., Quintero J., Molero P., Monserrat J., et al. Blunted Expansion of Regulatory T Lymphocytes Is Associated With Increased Bacterial Translocation in Patients With Major Depressive Disorder. Front. Psychiatry. 2021;11 doi: 10.3389/fpsyt.2020.591962.
    1. Accogli T., Bruchard M., Végran F. Modulation of CD4 T Cell Response According to Tumor Cytokine Microenvironment. Cancers. 2021;13:373. doi: 10.3390/cancers13030373.
    1. Haroon E., Daguanno A.W., Woolwine B.J., Goldsmith D.R., Baer W.M., Wommack E.C., Felger J.C., Miller A.H. Antidepressant treatment resistance is associated with increased inflammatory markers in patients with major depressive disorder. Psychoneuroendocrinology. 2018;95:43–49. doi: 10.1016/j.psyneuen.2018.05.026.
    1. Slyepchenko A., Maes M., Köhler C.A., Anderson G., Quevedo J., Alves G.S., Berk M., Fernandes B.S., Carvalho A.F. T helper 17 cells may drive neuroprogression in major depressive disorder: Proposal of an integrative model. Neurosci. Biobehav. Rev. 2016;64:83–100. doi: 10.1016/j.neubiorev.2016.02.002.
    1. Becking K., Haarman B.C., Grosse L., Nolen W.A., Claes S., Arolt V., Schoevers R.A., Drexhage H.A. The circulating levels of CD4+ t helper cells are higher in bipolar disorder as compared to major depressive disorder. J. Neuroimmunol. 2018;319:28–36. doi: 10.1016/j.jneuroim.2018.03.004.
    1. Köhler O., Benros M.E., Nordentoft M., Farkouh M.E., Iyengar R.L., Mors O., Krogh J. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: A systematic review and meta-analysis of randomized clinical trials. [(accessed on 17 November 2020)];JAMA Psychiatry. 2014 71:1381–1391. doi: 10.1001/jamapsychiatry.2014.1611. Available online: .
    1. Lee Y., Subramaniapillai M., Brietzke E., Mansur R.B., Ho R.C., Yim S.J., McIntyre R.S. Anti-cytokine agents for anhedonia: Targeting inflammation and the immune system to treat dimensional disturbances in depression. Ther. Adv. Psychopharmacol. 2018;8:337–348. doi: 10.1177/2045125318791944.
    1. Raison C.L., Rutherford R.E., Woolwine B.J., Shuo C., Schettler P., Drake D.F., Haroon E., Miller A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. [(accessed on 17 November 2020)];JAMA Psychiatry. 2013 70:31–41. doi: 10.1001/2013.jamapsychiatry.4. Available online: .
    1. Jha M.K., Minhajuddin A., Gadad B.S., Greer T.L., Mayes T.L., Trivedi M.H. Interleukin 17 selectively predicts better outcomes with bupropion-SSRI combination: Novel T cell biomarker for antidepressant medication selection. Brain Behav. Immun. 2017;66:103–110. doi: 10.1016/j.bbi.2017.07.005.
    1. Hennings J.M., Uhr M., Klengel T., Weber P., Pütz B., Touma C., Czamara D., Ising M., Holsboer F., Lucae S. RNA expression profiling in depressed patients suggests retinoid-related orphan receptor alpha as a biomarker for antidepressant response. [(accessed on 17 November 2020)];Transl. Psychiatry. 2015 5:e538. doi: 10.1038/tp.2015.9. Available online: .
    1. Monserrat J., Bohórquez C., Lahoz A.M.G., Movasat A., Pérez A., Ruíz L., Díaz D., Chara L., Sánchez A.I., Albarrán F., et al. The Abnormal CD4+T Lymphocyte Subset Distribution and Vbeta Repertoire in New-onset Rheumatoid Arthritis Can Be Modulated by Methotrexate Treament. Cells. 2019;8:871. doi: 10.3390/cells8080871.
    1. Weyand C.M., Yang Z., Goronzy J.J. T-cell aging in rheumatoid arthritis. Curr. Opin. Rheumatol. 2014;26:93–100. doi: 10.1097/BOR.0000000000000011.
    1. Wang L., Wang R., Liu L., Qiao D., Baldwin D.S., Hou R. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: A systematic review and meta-analysis. Brain Behav. Immun. 2019;79:24–38. doi: 10.1016/j.bbi.2019.02.021.
    1. Hernandez M.E., Martinez-Fong D., Perez-Tapia M., Estrada-Garcia I., Estrada-Parra S., Pavón L. Evaluation of the effect of selective serotonin-reuptake inhibitors on lymphocyte subsets in patients with a major depressive disorder. Eur. Neuropsychopharmacol. 2010;20:88–95. doi: 10.1016/j.euroneuro.2009.11.005.

Source: PubMed

3
購読する