Sleep Deprivation and Neurological Disorders

Muhammed Bishir, Abid Bhat, Musthafa Mohamed Essa, Okobi Ekpo, Amadi O Ihunwo, Vishnu Priya Veeraraghavan, Surapaneni Krishna Mohan, Arehally M Mahalakshmi, Bipul Ray, Sunanda Tuladhar, Sulie Chang, Saravana Babu Chidambaram, Meena Kishore Sakharkar, Gilles J Guillemin, M Walid Qoronfleh, David M Ojcius, Muhammed Bishir, Abid Bhat, Musthafa Mohamed Essa, Okobi Ekpo, Amadi O Ihunwo, Vishnu Priya Veeraraghavan, Surapaneni Krishna Mohan, Arehally M Mahalakshmi, Bipul Ray, Sunanda Tuladhar, Sulie Chang, Saravana Babu Chidambaram, Meena Kishore Sakharkar, Gilles J Guillemin, M Walid Qoronfleh, David M Ojcius

Abstract

Sleep plays an important role in maintaining neuronal circuitry, signalling and helps maintain overall health and wellbeing. Sleep deprivation (SD) disturbs the circadian physiology and exerts a negative impact on brain and behavioural functions. SD impairs the cellular clearance of misfolded neurotoxin proteins like α-synuclein, amyloid-β, and tau which are involved in major neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. In addition, SD is also shown to affect the glymphatic system, a glial-dependent metabolic waste clearance pathway, causing accumulation of misfolded faulty proteins in synaptic compartments resulting in cognitive decline. Also, SD affects the immunological and redox system resulting in neuroinflammation and oxidative stress. Hence, it is important to understand the molecular and biochemical alterations that are the causative factors leading to these pathophysiological effects on the neuronal system. This review is an attempt in this direction. It provides up-to-date information on the alterations in the key processes, pathways, and proteins that are negatively affected by SD and become reasons for neurological disorders over a prolonged period of time, if left unattended.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2020 Muhammed Bishir et al.

Figures

Figure 1
Figure 1
(a) Brain structures involved in REM sleep. PPT/LDT initiates firing during REM sleep and helps in switching between NREM and REM sleep. GABAergic neurons in the hypothalamus promote REM sleep by inactivating vlPAG/dDpMe REM-off GABAergic neurons. SLD consists of projections to glycinergic neuron Raphe magnus, ventral and alpha gigantocellular nuclei, lateral paragigantocellular nucleus, and also spinal, facial, trigeminal neurons and thereby produce muscle atonia during REM sleep. (b) Brain structures involved in NREM sleep. Ventrolateral preoptic area and median preoptic nucleus contain GABAergic neurons that release galanin which inhibit cholinergic neurons in regions like locus coeruleus, Basal Forebrain, TMN, and orexin neurons, thereby inhibiting arousal. The basal forebrain consists of GABAergic neurons that inhibit cortical activation and somatostatin inhibits wake active neurons in the basal forebrain. Parafacial zone releases GABA onto parabrachial neurons which in turn release glutamate onto cortically projecting neurons of the BF, hence promoting SWS. Cortical nitric oxide synthase neurons release GABA and promote SWS.
Figure 2
Figure 2
Sleep deprivation-induced alteration in various pathways leading to AD pathology. SD increases neuronal firing, upregulates BACE 1 proteins, and aggravates neuroinflammation and oxidative stress. Alterations in these pathways impair clearance of the toxic metabolites and leading to the accumulation of Aβ and tau proteins. SD has a negative impact on the cholinergic neurons, and this attributes to cognitive dysfunction and impaired memory in AD patients.
Figure 3
Figure 3
Sleep is a vital phenomenon and an indicator of overall health. Normal sleep is very essential for memory and brain health since various neural circuits in the brain are involved in sleep. Sleep deprivation has evolved as a major threat in modern society. SD impairs LTP and molecules associated with memory and leads to cognitive dysfunction. SD also impairs the clearance of toxic metabolites produced in the brain and contributes to the pathophysiology of neurological disorders like AD, PD, and cerebral stroke. SD also causes an imbalance in the immune system and aggravates the pathophysiology of MS and glioma. It can be concluded that SD adversely affects various proteins, genes, and molecular cascades in neurodegenerative disorders.

References

    1. Graves L., Pack A., Abel T. Sleep and memory: a molecular perspective. Trends in Neurosciences. 2001;24(4):237–243. doi: 10.1016/s0166-2236(00)01744-6.
    1. Killick R., Banks S., Liu P. Y. Implications of sleep restriction and recovery on metabolic outcomes. The Journal of Clinical Endocrinology & Metabolism. 2012;97(11):3876–3890. doi: 10.1210/jc.2012-1845.
    1. Kleitman N. Sleep and Wakefulness. University of Chicago Press; 1963.
    1. Deboer T. Sleep homeostasis and the circadian clock: do the circadian pacemaker and the sleep homeostat influence each other’s functioning? Neurobiology of Sleep and Circadian Rhythms. 2018;5:68–77. doi: 10.1016/j.nbscr.2018.02.003.
    1. Santhi N., Thorne H. C., van der Veen D. R., et al. The spectral composition of evening light and individual differences in the suppression of melatonin and delay of sleep in humans. Journal of Pineal Research. 2012;53(1):47–59. doi: 10.1111/j.1600-079X.2011.00970.x.
    1. Aldabal L., Bahammam A. S. Metabolic, endocrine, and immune consequences of sleep deprivation. The Open Respiratory Medicine Journal. 2011;5(1):31–43. doi: 10.2174/1874306401105010031.
    1. Harding E. C., Franks N. P., Wisden W. The temperature dependence of sleep. Frontiers in Neuroscience. 2019;13 doi: 10.3389/fnins.2019.00336.
    1. Ribeiro D. C., Hampton S. M., Morgan L., Deacon S., Arendt J. Altered postprandial hormone and metabolic responses in a simulated shift work environment. Journal of Endocrinology. 1998;158(3):305–310. doi: 10.1677/joe.0.1580305.
    1. Krause A. J., Simon E. B., Mander B. A., et al. The sleep-deprived human brain. Nature Reviews Neuroscience. 2017;18(7):404–418. doi: 10.1038/nrn.2017.55.
    1. Hublin C., Kaprio J., Partinen M., Koskenvuo M. Insufficient sleep—a population-based study in adults. Sleep. 2001;24(4):392–400. doi: 10.1093/sleep/24.4.392.
    1. Spiegel K., Leproult R., L’hermite-Balériaux M., Copinschi G., Penev P. D., Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. The Journal of Clinical Endocrinology & Metabolism. 2004;89(11):5762–5771. doi: 10.1210/jc.2004-1003.
    1. Sushmita B. S., Sunanda T., Prathibha K. M., et al. Sleep and gonadotrophin hormones. International Journal of Nutrition. Pharmacology, Neurological Diseases. 2020 doi: 10.4103/ijnpnd.ijnpnd_97_20.
    1. Hurtado-Alvarado G., Pavón L., Castillo-García S. A., et al. Sleep loss as a factor to induce cellular and molecular inflammatory variations. Clinical and Developmental Immunology. 2013;2013:14. doi: 10.1155/2013/801341.801341
    1. Pardo G. V. E., Goularte J. F., Hoefel A. L., et al. Effects of sleep restriction during pregnancy on the mother and fetuses in rats. Physiology & Behavior. 2016;155:66–76. doi: 10.1016/j.physbeh.2015.11.037.
    1. Mirmiran M., Scholtens J., van de Poll N. E., Uylings H. B., van der Gugten J., Boer G. J. Effects of experimental suppression of active (REM) sleep during early development upon adult brain and behavior in the rat. Developmental Brain Research. 1983;7(2–3):277–286. doi: 10.1016/0165-3806(83)90184-0.
    1. Halász P. How sleep activates epileptic networks? Epilepsy Res Treat. 2013;2013, article 425697:1–19. doi: 10.1155/2013/425697.
    1. Shokri-Kojori E., Wang G.-J., Wiers C. E., et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proceedings of the National Academy of Sciences. 2018;115(17):4483–4488. doi: 10.1073/pnas.1721694115.
    1. Eban-Rothschild A., Appelbaum L., de Lecea L. Neuronal mechanisms for sleep/wake regulation and modulatory drive. Neuropsychopharmacology. 2018;43(5):937–952. doi: 10.1038/npp.2017.294.
    1. Peplow M. Structure: the anatomy of sleep. Nature. 2013;497(7450):S2–S3. doi: 10.1038/497S2a.
    1. Hastings M. H., Maywood E. S., Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nature Reviews Neuroscience. 2018;19(8):453–469. doi: 10.1038/s41583-018-0026-z.
    1. van der Helm E., Yao J., Dutt S., Rao V., Saletin J. M., Walker M. P. REM sleep depotentiates amygdala activity to previous emotional experiences. Current Biology. 2011;21(23):2029–2032. doi: 10.1016/j.cub.2011.10.052.
    1. Brown R. E., Basheer R., McKenna J. T., Strecker R. E., McCarley R. W. Control of sleep and wakefulness. Physiological Reviews. 2012;92(3):1087–1187. doi: 10.1152/physrev.00032.2011.
    1. Schiff N. D., Giacino J. T., Kalmar K., et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007;448(7153):600–603. doi: 10.1038/nature06041.
    1. Ribeiro J. A., Sebastião A. M. Caffeine and adenosine. Journal of Alzheimer's Disease. 2010;20(Suppl 1):S3–S15. doi: 10.3233/JAD-2010-1379.
    1. Moruzzi G., Magoun H. W. Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology. 1949;1(1-4):455–473. doi: 10.1016/0013-4694(49)90219-9.
    1. McGinty D. J., Sterman M. B. Sleep suppression after basal forebrain lesions in the cat. Science. 1968;160(3833):1253–1255. doi: 10.1126/science.160.3833.1253.
    1. Szymusiak R., McGinty D. Sleep-related neuronal discharge in the basal forebrain of cats. Brain Research. 1986;370(1):82–92. doi: 10.1016/0006-8993(86)91107-8.
    1. Alam M. A., Kumar S., McGinty D., Alam M. N., Szymusiak R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. Journal of Neurophysiology. 2014;111(2):287–299. doi: 10.1152/jn.00504.2013.
    1. Lu J., Greco M. A., Shiromani P., Saper C. B. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. The Journal of Neuroscience. 2000;20(10):3830–3842. doi: 10.1523/JNEUROSCI.20-10-03830.2000.
    1. Uschakov A., Gong H., McGinty D., Szymusiak R. Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience. 2007;150(1):104–120. doi: 10.1016/j.neuroscience.2007.05.055.
    1. Hassani O. K., Lee M. G., Henny P., Jones B. E. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. The Journal of Neuroscience. 2009;29(38):11828–11840. doi: 10.1523/JNEUROSCI.1259-09.2009.
    1. Xu M., Chung S., Zhang S., et al. Basal forebrain circuit for sleep-wake control. Nature Neuroscience. 2015;18(11):1641–1647. doi: 10.1038/nn.4143.
    1. Kim T., Thankachan S., McKenna J. T., et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proceedings of the National Academy of Sciences. 2015;112(11):3535–3540. doi: 10.1073/pnas.1413625112.
    1. Modirrousta M., Mainville L., Jones B. E. Dynamic changes in GABAA receptors on basal forebrain cholinergic neurons following sleep deprivation and recovery. BMC Neuroscience. 2007;8(1):p. 15. doi: 10.1186/1471-2202-8-15.
    1. Batini C., Moruzzi G., Palestini M., Rossi G. F., Zanchetti A. Persistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science. 1958;128(3314):30–32. doi: 10.1126/science.128.3314.30-a.
    1. Anaclet C., Ferrari L., Arrigoni E., et al. The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nature Neuroscience. 2014;17(9):1217–1224. doi: 10.1038/nn.3789.
    1. Erickson E. T. M., Ferrari L. L., Gompf H. S., Anaclet C. Differential role of pontomedullary glutamatergic neuronal populations in sleep-wake control. Frontiers in Neuroscience. 2019;13 doi: 10.3389/fnins.2019.00755.
    1. Morairty S. R., Dittrich L., Pasumarthi R. K., et al. A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proceedings of the National Academy of Sciences. 2013;110(50):20272–20277. doi: 10.1073/pnas.1314762110.
    1. Gerashchenko D., Wisor J. P., Burns D., et al. Identification of a population of sleep-active cerebral cortex neurons. Proceedings of the National Academy of Sciences. 2008;105(29):10227–10232. doi: 10.1073/pnas.0803125105.
    1. Kubin L. Carbachol models of REM sleep: recent developments and new directions. Archives Italiennes de Biologie. 2001;139(1–2):147–168.
    1. Van Dort C. J., Zachs D. P., Kenny J. D., et al. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proceedings of the National Academy of Sciences. 2015;112(2):584–589. doi: 10.1073/pnas.1423136112.
    1. Verret L., Goutagny R., Fort P., et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neuroscience. 2003;4(1):p. 19. doi: 10.1186/1471-2202-4-19.
    1. Jego S., Salvert D., Renouard L., et al. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM) sleep homeostasis. PloS One. 2012;7(12, article e52525) doi: 10.1371/journal.pone.0052525.
    1. Tsunematsu T., Ueno T., Tabuchi S., et al. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. Journal of Neuroscience. 2014;34(20):6896–6909. doi: 10.1523/JNEUROSCI.5344-13.2014.
    1. Clement O., Sapin E., Libourel P. A., et al. The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. Journal of Neuroscience. 2012;32(47):16763–16774. doi: 10.1523/JNEUROSCI.1885-12.2012.
    1. Lu J., Sherman D., Devor M., Saper C. B. A putative flip–flop switch for control of REM sleep. Nature. 2006;441(7093):589–594. doi: 10.1038/nature04767.
    1. Clément O., Sapin E., Bérod A., Fort P., Luppi P.-H. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep. 2011;34(4):419–423. doi: 10.1093/sleep/34.4.419.
    1. Holstege J. C., Bongers C. M. A glycinergic projection from the ventromedial lower brainstem to spinal motoneurons. An ultrastructural double labeling study in rat. Brain Research. 1991;566(1–2):308–315. doi: 10.1016/0006-8993(91)91715-d.
    1. Boissard R., Gervasoni D., Schmidt M. H., Barbagli B., Fort P., Luppi P.-H. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. European Journal of Neuroscience. 2002;16(10):1959–1973. doi: 10.1046/j.1460-9568.2002.02257.x.
    1. Chase M. H., Enomoto S., Hiraba K., et al. Role of medullary reticular neurons in the inhibition of trigeminal motoneurons during active sleep. Experimental Neurology. 1984;84(2):364–373. doi: 10.1016/0014-4886(84)90233-4.
    1. Schenkel E., Siegel J. M. REM sleep without atonia after lesions of the medial medulla. Neuroscience Letters. 1989;98(2):159–165. doi: 10.1016/0304-3940(89)90503-x.
    1. Krenzer M., Anaclet C., Vetrivelan R., et al. Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS ONE. 2011;6(10, article e24998) doi: 10.1371/journal.pone.0024998.
    1. Goutagny R., Luppi P.-H., Salvert D., Lapray D., Gervasoni D., Fort P. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience. 2008;152(3):849–857. doi: 10.1016/j.neuroscience.2007.12.014.
    1. Weber F., Chung S., Beier K. T., Xu M., Luo L., Dan Y. Control of REM sleep by ventral medulla GABAergic neurons. Nature. 2015;526(7573):435–438. doi: 10.1038/nature14979.
    1. Igaz L. M., Bekinschtein P., Vianna M. M. R., Izquierdo I., Medina J. H. Gene expression during memory formation. Neurotoxicity Research. 2004;6(3):189–203. doi: 10.1007/bf03033221.
    1. Igaz L. M., Vianna M. R. M., Medina J. H., Izquierdo I. Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning. The Journal of Neuroscience. 2002;22(15):6781–6789.
    1. McDermott C. M., LaHoste G. J., Chen C., Musto A., Bazan N. G., Magee J. C. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. The Journal of Neuroscience. 2003;23(29):9687–9695. doi: 10.1523/JNEUROSCI.23-29-09687.2003.
    1. Ruskin D. N., Liu C., Dunn K. E., Bazan N. G., LaHoste G. J. Sleep deprivation impairs hippocampus-mediated contextual learning but not amygdala-mediated cued learning in rats. European Journal of Neuroscience. 2004;19(11):3121–3124. doi: 10.1111/j.0953-816X.2004.03426.x.
    1. Havekes R., Vecsey C. G., Abel T. The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cellular Signalling. 2012;24(6):1251–1260. doi: 10.1016/j.cellsig.2012.02.010.
    1. Vecsey C. G., Peixoto L., Choi J. H. K., et al. Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiological Genomics. 2012;44(20):981–991. doi: 10.1152/physiolgenomics.00084.2012.
    1. Binder L. I., Guillozet-Bongaarts A. L., Garcia-Sierra F., Berry R. W. Tau, tangles, and Alzheimer’s disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2005;1739(2-3):216–223. doi: 10.1016/j.bbadis.2004.08.014.
    1. Wang C., Holtzman D. M. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology. 2020;45(1):104–120. doi: 10.1038/s41386-019-0478-5.
    1. Ramanathan A., Nelson A. R., Sagare A. P., Zlokovic B. V. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: the role, regulation and restoration of LRP1. Frontiers in Aging Neuroscience. 2015;7 doi: 10.3389/fnagi.2015.00136.
    1. Lucey B. P., Hicks T. J., McLeland J. S., et al. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Annals of Neurology. 2018;83(1):197–204. doi: 10.1002/ana.25117.
    1. Tarasoff-Conway J. M., Carare R. O., Osorio R. S., et al. Clearance systems in the brain-implications for Alzheimer disease. Nature Reviews Neurology. 2015;11(8):457–470. doi: 10.1038/nrneurol.2015.119.
    1. Spira A. P., Gamaldo A. A., An Y., et al. Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurology. 2013;70(12):1537–1543. doi: 10.1001/jamaneurol.2013.4258.
    1. Ooms S., Overeem S., Besse K., Rikkert M. O., Verbeek M., Claassen J. A. H. R. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurology. 2014;71(8):971–977. doi: 10.1001/jamaneurol.2014.1173.
    1. Chen L., Huang J., Yang L., et al. Sleep deprivation accelerates the progression of Alzheimer’s disease by influencing Aβ-related metabolism. Neuroscience Letters. 2017;650:146–152. doi: 10.1016/j.neulet.2017.04.047.
    1. Csernansky J. G., Dong H., Fagan A. M., et al. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. American Journal of Psychiatry. 2006;163(12):2164–2169. doi: 10.1176/ajp.2006.163.12.2164.
    1. Minkel J., Moreta M., Muto J., et al. Sleep deprivation potentiates HPA axis stress reactivity in healthy adults. Health Psychology. 2014;33(11):1430–1434. doi: 10.1037/a0034219.
    1. Carroll J. C., Iba M., Bangasser D. A., et al. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. Journal of Neuroscience. 2011;31(40):14436–14449. doi: 10.1523/JNEUROSCI.3836-11.2011.
    1. Al-Harrasi A., Aravazhi M. S., Al-Sinawi H. Dementia with Lewy bodies: Enigmatic presentation. International Journal of Nutrition, Pharmacology, Neurological Diseases. 2013;3(2):156–159. doi: 10.4103/2231-0738.112847.
    1. Nielsen S., Arnulf Nagelhus E., Amiry-Moghaddam M., Bourque C., Agre P., Petter Ottersen O. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. Journal of Neuroscience. 1997;17(1):171–180. doi: 10.1523/JNEUROSCI.17-01-00171.1997.
    1. Rash J. E., Yasumura T., Hudson C. S., Agre P., Nielsen S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proceedings of the National Academy of Sciences. 1998;95(20):11981–11986. doi: 10.1073/pnas.95.20.11981.
    1. Iliff J. J., Wang M., Liao Y., et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Medicine. 2012;4(147):p. 147ra111. doi: 10.1126/scitranslmed.3003748.
    1. Zeppenfeld D. M., Simon M., Haswell J. D., et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurology. 2017;74(1):91–99. doi: 10.1001/jamaneurol.2016.4370.
    1. for the AIBL Research Group, Rainey-Smith S. R., Mazzucchelli G. N., et al. Genetic variation in aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden. Translational Psychiatry. 2018;8(1):p. 47. doi: 10.1038/s41398-018-0094-x.
    1. Rothman S. M., Herdener N., Frankola K. A., Mughal M. R., Mattson M. P. Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Aβ and pTau in a mouse model of Alzheimer’s disease. Brain Research. 2013;1529:200–208. doi: 10.1016/j.brainres.2013.07.010.
    1. Mahley R. W. Central nervous system lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology. 2016;36(7):1305–1315. doi: 10.1161/ATVBAHA.116.307023.
    1. Ryu S., Atzmon G., Barzilai N., Raghavachari N., Suh Y. Genetic landscape of APOE in human longevity revealed by high-throughput sequencing. Mechanisms of Ageing and Development. 2016;155:7–9. doi: 10.1016/j.mad.2016.02.010.
    1. Lim A. S. P., Yu L., Kowgier M., Schneider J. A., Buchman A. S., Bennett D. A. Modification of the relationship of the apolipoprotein E ε4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep. JAMA Neurology. 2013;70(12):1544–1551. doi: 10.1001/jamaneurol.2013.4215.
    1. Leoni V., Solomon A., Kivipelto M. Links between ApoE, brain cholesterol metabolism, tau and amyloid β-peptide in patients with cognitive impairment. Biochemical Society Transactions. 2010;38(4):1021–1025. doi: 10.1042/BST0381021.
    1. Schwartz J. R. L., Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Current Neuropharmacology. 2008;6(4):367–378. doi: 10.2174/157015908787386050.
    1. Lee M. G., Manns I. D., Alonso A., Jones B. E. Sleep-wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats. Journal of Neurophysiology. 2004;92(2):1182–1198. doi: 10.1152/jn.01003.2003.
    1. Arrigoni E., Chamberlin N. L., Saper C. B., McCarley R. W. Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience. 2006;140(2):403–413. doi: 10.1016/j.neuroscience.2006.02.010.
    1. Foley A. G., Murphy K. J., Hirst W. D., et al. The 5-HT6 receptor antagonist SB-271046 reverses scopolamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats. Neuropsychopharmacology. 2004;29(1):93–100. doi: 10.1038/sj.npp.1300332.
    1. Imperial J. S., Cabang A. B., Song J., et al. A family of excitatory peptide toxins from venomous crassispirine snails: using constellation pharmacology to assess bioactivity. Toxicon. 2014;89:45–54. doi: 10.1016/j.toxicon.2014.06.014.
    1. Wimo A., Jonsson L., Winblad B. An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dementia and Geriatric Cognitive Disorders. 2006;21(3):175–181. doi: 10.1159/000090733.
    1. Abel T., Havekes R., Saletin J. M., Walker M. P. Sleep, plasticity and memory from molecules to whole-brain networks. Current Biology. 2013;23(17):R774–R788. doi: 10.1016/j.cub.2013.07.025.
    1. Ishikawa A., Kanayama Y., Matsumura H., Tsuchimochi H., Ishida Y., Nakamura S. Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus. European Journal of Neuroscience. 2006;24(1):243–248. doi: 10.1111/j.1460-9568.2006.04874.x.
    1. Boonstra T. W., Stins J. F., Daffertshofer A., Beek P. J. Effects of sleep deprivation on neural functioning: an integrative review. Cellular and Molecular Life Sciences. 2007;64(7–8):934–946. doi: 10.1007/s00018-007-6457-8.
    1. Riedel G., Platt B., Micheau J. Glutamate receptor function in learning and memory. Behavioural Brain Research. 2003;140(1–2):1–47. doi: 10.1016/s0166-4328(02)00272-3.
    1. Bleich S., Römer K., Wiltfang J., Kornhuber J. Glutamate and the glutamate receptor system: a target for drug action. International Journal of Geriatric Psychiatry. 2003;18(Suppl 1):S33–S40. doi: 10.1002/gps.933.
    1. Cotman C. W., Monaghan D. T. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annual Review of Neuroscience. 1988;11(1):61–80. doi: 10.1146/annurev.ne.11.030188.000425.
    1. Chidambaram S. B., Rathipriya A. G., Bolla S. R., et al. Dendritic spines: revisiting the physiological role. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2019;92:161–193. doi: 10.1016/j.pnpbp.2019.01.005.
    1. Hardingham G. E. Pro-survival signalling from the NMDA receptor. Biochemical Society Transactions. 2006;34(5):936–938. doi: 10.1042/BST0340936.
    1. Choi D. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988;1(8):623–634. doi: 10.1016/0896-6273(88)90162-6.
    1. Choi D. W. Ionic dependence of glutamate neurotoxicity. The Journal of Neuroscience. 1987;7(2):369–379. doi: 10.1523/JNEUROSCI.07-02-00369.1987.
    1. Tymianski M., Charlton M. P., Carlen P. L., Tator C. H. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. The Journal of Neuroscience. 1993;13(5):2085–2104. doi: 10.1523/JNEUROSCI.13-05-02085.1993.
    1. McDermott C. M., Hardy M. N., Bazan N. G., Magee J. C. Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. The Journal of Physiology. 2006;570(3):553–565. doi: 10.1113/jphysiol.2005.093781.
    1. Hagewoud R., Havekes R., Novati A., Keijser J. N., Van der Zee E. A., Meerlo P. Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation. Journal of Sleep Research. 2010;19(2):280–288. doi: 10.1111/j.1365-2869.2009.00799.x.
    1. Kings Parcog groupMDS Nonmotor study group, Lim E. W., Aarsland D., et al. Amyloid-β and Parkinson’s disease. Journal of Neurology. 2019;266(11):2605–2619. doi: 10.1007/s00415-018-9100-8.
    1. Rayaprolu S., Fujioka S., Traynor S., et al. TARDBP mutations in Parkinson’s disease. Parkinsonism & Related Disorders. 2013;19(3):312–315. doi: 10.1016/j.parkreldis.2012.11.003.
    1. Sathiya S., Ranju V., Kalaivani P., et al. Telmisartan attenuates MPTP induced dopaminergic degeneration and motor dysfunction through regulation of α-synuclein and neurotrophic factors (BDNF and GDNF) expression in C57BL/6J mice. Neuropharmacology. 2013;73:98–110. doi: 10.1016/j.neuropharm.2013.05.025.
    1. Zhang X., Gao F., Wang D., et al. Tau pathology in Parkinson’s disease. Frontiers in Neurology. 2018;9 doi: 10.3389/fneur.2018.00809.
    1. Currie L. J., Bennett J. P., Harrison M. B., Trugman J. M., Wooten G. F. Clinical correlates of sleep benefit in Parkinson’s disease. Neurology. 1997;48(4):1115–1117. doi: 10.1212/wnl.48.4.1115.
    1. Dong H., Wang J., Yang Y.-F., Shen Y., Qu W.-M., Huang Z.-L. Dorsal striatum dopamine levels fluctuate across the sleep–wake cycle and respond to salient stimuli in mice. Frontiers in Neuroscience. 2019;13 doi: 10.3389/fnins.2019.00242.
    1. Bell E. L., Guarente L. The SirT3 divining rod points to oxidative stress. Molecular Cell. 2011;42(5):561–568. doi: 10.1016/j.molcel.2011.05.008.
    1. Zhang J., Zhu Y., Zhan G., et al. Extended wakefulness: compromised metabolics in and degeneration of locus ceruleus neurons. Journal of Neuroscience. 2014;34(12):4418–4431. doi: 10.1523/JNEUROSCI.5025-12.2014.
    1. Volkow N. D., Fowler J. S., Wang G. J., Baler R., Telang F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology. 2009;56(Suppl 1):3–8. doi: 10.1016/j.neuropharm.2008.05.022.
    1. Volkow N. D., Tomasi D., Wang G.-J., et al. Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain. Journal of Neuroscience. 2012;32(19):6711–6717. doi: 10.1523/JNEUROSCI.0045-12.2012.
    1. Targa A. D. S., Noseda A. C. D., Rodrigues L. S., Aurich M. F., Lima M. M. S. REM sleep deprivation and dopaminergic D2 receptors modulation increase recognition memory in an animal model of Parkinson’s disease. Behavioural Brain Research. 2018;339:239–248. doi: 10.1016/j.bbr.2017.11.008.
    1. Shimada H., Hirano S., Shinotoh H., et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology. 2009;73(4):273–278. doi: 10.1212/WNL.0b013e3181ab2b58.
    1. Bohnen N. I., Müller M. L. T. M., Kotagal V., et al. Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. Journal of Cerebral Blood Flow & Metabolism. 2012;32(8):1609–1617. doi: 10.1038/jcbfm.2012.60.
    1. Rudick R. A., Goelz S. E. Beta-interferon for multiple sclerosis. Experimental Cell Research. 2011;317(9):1301–1311. doi: 10.1016/j.yexcr.2011.03.002.
    1. Kaminska M., Kimoff R. J., Schwartzman K., Trojan D. A. Sleep disorders and fatigue in multiple sclerosis: evidence for association and interaction. Journal of the Neurological Sciences. 2011;302(1-2):7–13. doi: 10.1016/j.jns.2010.12.008.
    1. Papantoniou K., Massa J., Devore E., et al. Rotating night shift work and risk of multiple sclerosis in the Nurses’ Health Studies. Occupational and Environmental Medicine. 2019;76(10):733–738. doi: 10.1136/oemed-2019-106016.
    1. Chalah M. A., Ayache S. S. Is there a link between inflammation and fatigue in multiple sclerosis? Journal of Inflammation Research. 2018;Volume 11:253–264. doi: 10.2147/JIR.S167199.
    1. Bellesi M., Pfister-Genskow M., Maret S., Keles S., Tononi G., Cirelli C. Effects of sleep and wake on oligodendrocytes and their precursors. Journal of Neuroscience. 2013;33(36):14288–14300. doi: 10.1523/JNEUROSCI.5102-12.2013.
    1. Essa M. M., Moghadas M., Ba-Omar T., et al. Protective effects of antioxidants in Huntington’s disease: an extensive review. Neurotoxicity Research. 2019;35(3):739–774. doi: 10.1007/s12640-018-9989-9.
    1. Aziz N. A., Anguelova G. V., Marinus J., Lammers G. J., Roos R. A. C. Sleep and circadian rhythm alterations correlate with depression and cognitive impairment in Huntington’s disease. Parkinsonism & Related Disorders. 2010;16(5):345–350. doi: 10.1016/j.parkreldis.2010.02.009.
    1. Joo E. Y., Kim H., Suh S., Hong S. B. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. Sleep. 2014;37(7):1189–1198. doi: 10.5665/sleep.3836.
    1. Vetrivelan R., Qiu M.-H., Chang C., Lu J. Role of basal ganglia in sleep-wake regulation: neural circuitry and clinical significance. Frontiers in Neuroanatomy. 2010;4 doi: 10.3389/fnana.2010.00145.
    1. Menalled L. B., Kudwa A. E., Miller S., et al. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PloS One. 2012;7(12, article e49838) doi: 10.1371/journal.pone.0049838.
    1. Middleton F. A., Strick P. L. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Reviews. 2000;31(2–3):236–250. doi: 10.1016/s0165-0173(99)00040-5.
    1. Zhang Y., Yang Y., Yang Y., et al. Alterations in cerebellar functional connectivity are correlated with decreased psychomotor vigilance following total sleep deprivation. Frontiers in Neuroscience. 2019;13 doi: 10.3389/fnins.2019.00134.
    1. Manto M., Bower J. M., Conforto A. B., et al. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. The Cerebellum. 2012;11(2):457–487. doi: 10.1007/s12311-011-0331-9.
    1. Arnulf I., Nielsen J., Lohmann E., et al. Rapid eye movement sleep disturbances in Huntington disease. Archives of Neurology. 2008;65(4):482–488. doi: 10.1001/archneur.65.4.482.
    1. Herzog–Krzywoszanska R., Krzywoszanski L. Sleep disorders in Huntington’s disease. Frontiers in Psychiatry. 2019;10 doi: 10.3389/fpsyt.2019.00221.
    1. Baumann C. R., Kilic E., Petit B., et al. Sleep EEG changes after middle cerebral artery infarcts in mice: different effects of striatal and cortical lesions. Sleep. 2006;29(10):1339–1344. doi: 10.1093/sleep/29.10.1339.
    1. Gao B., Cam E., Jaeger H., Zunzunegui C., Sarnthein J., Bassetti C. L. Sleep disruption aggravates focal cerebral ischemia in the rat. Sleep. 2010;33(7):879–887. doi: 10.1093/sleep/33.7.879.
    1. Novati A., Hulshof H. J., Koolhaas J. M., Lucassen P. J., Meerlo P. Chronic sleep restriction causes a decrease in hippocampal volume in adolescent rats, which is not explained by changes in glucocorticoid levels or neurogenesis. Neuroscience. 2011;190:145–155. doi: 10.1016/j.neuroscience.2011.06.027.
    1. Adamantidis A., Carter M. C., de Lecea L. Optogenetic deconstruction of sleep–wake circuitry in the brain. Frontiers in Molecular Neuroscience. 2010;2:p. 31. doi: 10.3389/neuro.02.031.2009.
    1. Dirnagl U., Iadecola C., Moskowitz M. A. Pathobiology of ischaemic stroke: an integrated view. Trends in Neurosciences. 1999;22(9):391–397. doi: 10.1016/s0166-2236(99)01401-0.
    1. Babu C. S., Ramanathan M. Post-ischemic administration of nimodipine following focal cerebral ischemic-reperfusion injury in rats alleviated excitotoxicity, neurobehavioural alterations and partially the bioenergetics. International Journal of Developmental Neuroscience. 2010;29(1):93–105. doi: 10.1016/j.ijdevneu.2010.08.001.
    1. Kong J., Shepel P. N., Holden C. P., Mackiewicz M., Pack A. I., Geiger J. D. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. The Journal of Neuroscience. 2002;22(13):5581–5587. doi: 10.1523/JNEUROSCI.22-13-05581.2002.
    1. Dash M. B., Douglas C. L., Vyazovskiy V. V., Cirelli C., Tononi G. Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. Journal of Neuroscience. 2009;29(3):620–629. doi: 10.1523/JNEUROSCI.5486-08.2009.
    1. D’Almeida V., Lobo L. L., Hipólide D. C., de Oliveira A. C., Nobrega J. N., Tufilk S. Sleep deprivation induces brain region-specific decreases in glutathione levels. NeuroReport. 1998;9(12):2853–2856. doi: 10.1097/00001756-199808240-00031.
    1. Ramanathan L., Gulyani S., Nienhuis R., Siegel J. M. Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. NeuroReport. 2002;13(11):1387–1390. doi: 10.1097/00001756-200208070-00007.
    1. Dinges D. F., Douglas S. D., Hamarman S., Zaugg L., Kapoor S. Sleep deprivation and human immune function. Advances in Neuroimmunology. 1995;5(2):97–110. doi: 10.1016/0960-5428(95)00002-j.
    1. Gao B., Kilic E., Baumann C. R., Hermann D. M., Bassetti C. L. Gamma-hydroxybutyrate accelerates functional recovery after focal cerebral ischemia. Cerebrovascular Diseases. 2008;26(4):413–419. doi: 10.1159/000151683.
    1. Sharma S., Kavuru M. Sleep and metabolism: an overview. International Journal of Endocrinology. 2010;2010:12. doi: 10.1155/2010/270832.270832
    1. Zagaar M., Alhaider I., Dao A., et al. The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiological and molecular evidence. Neurobiology of Disease. 2012;45(3):1153–1162. doi: 10.1016/j.nbd.2011.12.039.
    1. Vecsey C. G., Baillie G. S., Jaganath D., et al. Sleep deprivation impairs cAMP signalling in the hippocampus. Nature. 2009;461(7267):1122–1125. doi: 10.1038/nature08488.
    1. Harris K. D., Henze D. A., Hirase H., et al. Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature. 2002;417(6890):738–741. doi: 10.1038/nature00808.
    1. Mehta M. R., Lee A. K., Wilson M. A. Role of experience and oscillations in transforming a rate code into a temporal code. Nature. 2002;417(6890):741–746. doi: 10.1038/nature00807.
    1. Malenka R. C., Kauer J. A., Perkel D. J., et al. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature. 1989;340(6234):554–557. doi: 10.1038/340554a0.
    1. Alhaider I. A., Aleisa A. M., Tran T. T., Alkadhi K. A. Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus. European Journal of Neuroscience. 2010;31(8):1368–1376. doi: 10.1111/j.1460-9568.2010.07175.x.
    1. Giese K. P., Fedorov N. B., Filipkowski R. K., Silva A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279(5352):870–873. doi: 10.1126/science.279.5352.870.
    1. Mulkey R. M., Herron C. E., Malenka R. C. An essential role for protein phosphatases in hippocampal long-term depression. Science. 1993;261(5124):1051–1055. doi: 10.1126/science.8394601.
    1. Mulkey R. M., Endo S., Shenolikar S., Malenka R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature. 1994;369(6480):486–488. doi: 10.1038/369486a0.
    1. Bliss T. V. P., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–39. doi: 10.1038/361031a0.
    1. Winder D. G., Mansuy I. M., Osman M., Moallem T. M., Kandel E. R. Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell. 1998;92(1):25–37. doi: 10.1016/s0092-8674(00)80896-x.
    1. Wang G.-P., Huang L.-Q., Wu H.-J., Zhang L., You Z.-D., Zhao Z.-X. Calcineurin contributes to spatial memory impairment induced by rapid eye movement sleep deprivation. NeuroReport. 2009;20(13):1172–1176. doi: 10.1097/WNR.0b013e32832f0772.
    1. Wang J. H., Kelly P. T. The balance between postsynaptic Ca(2+)-dependent protein kinase and phosphatase activities controlling synaptic strength. Learning & Memory. 1996;3(2–3):170–181. doi: 10.1101/lm.3.2-3.170.
    1. Ferrara M., Iaria G., Tempesta D., et al. Sleep to find your way: the role of sleep in the consolidation of memory for navigation in humans. Hippocampus. 2008;18(8):844–851. doi: 10.1002/hipo.20444.
    1. Nakanishi H., Sun Y., Nakamura R. K., et al. Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. European Journal of Neuroscience. 1997;9(2):271–279. doi: 10.1111/j.1460-9568.1997.tb01397.x.
    1. Ramm P., Smith C. T. Rates of cerebral protein synthesis are linked to slow wave sleep in the rat. Physiology & Behavior. 1990;48(5):749–753. doi: 10.1016/0031-9384(90)90220-x.
    1. Xia Z., Storm D. R. Role of signal transduction crosstalk between adenylyl cyclase and MAP kinase in hippocampus-dependent memory. Learning & Memory. 2012;19(9):369–374. doi: 10.1101/lm.027128.112.
    1. Luo J., Phan T. X., Yang Y., Garelick M. G., Storm D. R. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: implications for REM sleep and memory consolidation. Journal of Neuroscience. 2013;33(15):6460–6468. doi: 10.1523/JNEUROSCI.5018-12.2013.
    1. Graves L. A., Heller E. A., Pack A. I., Abel T. Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learning & Memory. 2003;10(3):168–176. doi: 10.1101/lm.48803.
    1. Pezet S., Malcangio M., McMahon S. B. BDNF: a neuromodulator in nociceptive pathways? Brain Research Reviews. 2002;40(1–3):240–249. doi: 10.1016/s0165-0173(02)00206-0.
    1. Patterson S. L., Grover L. M., Schwartzkroin P. A., Bothwell M. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron. 1992;9(6):1081–1088. doi: 10.1016/0896-6273(92)90067-n.
    1. Castrén E., Pitkänen M., Sirviö J., et al. The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. NeuroReport. 1993;4(7):895–898. doi: 10.1097/00001756-199307000-00014.
    1. Boulanger L., Poo M. M. Gating of BDNF-induced synaptic potentiation by cAMP. Science. 1999;284(5422):1982–1984. doi: 10.1126/science.284.5422.1982.
    1. Finkbeiner S., Tavazoie S. F., Maloratsky A., Jacobs K. M., Harris K. M., Greenberg M. E. CREB: a major mediator of neuronal neurotrophin responses. Neuron. 1997;19(5):1031–1047. doi: 10.1016/s0896-6273(00)80395-5.
    1. Guzman-Marin R., Ying Z., Suntsova N., et al. Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. The Journal of Physiology. 2006;575(3):807–819. doi: 10.1113/jphysiol.2006.115287.
    1. Alhaider I. A., Aleisa A. M., Tran T. T., Alkadhi K. A. Sleep deprivation prevents stimulation-induced increases of levels of P-CREB and BDNF: protection by caffeine. Molecular and Cellular Neuroscience. 2011;46(4):742–751. doi: 10.1016/j.mcn.2011.02.006.
    1. Steriade M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends in Neurosciences. 2005;28(6):317–324. doi: 10.1016/j.tins.2005.03.007.
    1. Lanigar S., Bandyopadhyay S. Sleep and epilepsy: a complex interplay. Missouri Medicine. 2017;114(6):453–457.
    1. Staniszewska A., Mąka A., Religioni U., Olejniczak D. Sleep disturbances among patients with epilepsy. Neuropsychiatric Disease and Treatment. 2017;Volume 13:1797–1803. doi: 10.2147/NDT.S136868.
    1. Crespel A., Baldy-Moulinier M., Coubes P. The relationship between sleep and epilepsy in frontal and temporal lobe epilepsies: practical and physiopathologic considerations. Epilepsia. 1998;39(2):150–157. doi: 10.1111/j.1528-1157.1998.tb01352.x.
    1. Zucconi M., Oldani A., Smirne S., Ferini-Strambi L. The macrostructure and microstructure of sleep in patients with autosomal dominant nocturnal frontal lobe epilepsy. Journal of Clinical Neurophysiology. 2000;17(1):77–86. doi: 10.1097/00004691-200001000-00008.
    1. Bialasiewicz P., Nowak D. Obstructive sleep apnea syndrome and nocturnal epilepsy with tonic seizures. Epileptic Disorders. 2009;11(4):320–323. doi: 10.1684/epd.2009.0277.
    1. Janz D. The grand Mai épilepsies and the sleeping-waking cycle. Epilepsia. 1962;3(1):69–109. doi: 10.1111/j.1528-1157.1962.tb05235.x.
    1. Bennett D. R. Sleep deprivation and major motor convulsions. Neurology. 1963;13(11):953–958. doi: 10.1212/wnl.13.11.953.
    1. Mattson R. H., Pratt K. L., Calverley J. R. Electroencephalograms of epileptics following sleep deprivation. Archives of Neurology. 1965;13(3):310–315. doi: 10.1001/archneur.1965.00470030090009.
    1. Pratt K. L., Mattson R. H., Weikers N. J., Williams R. EEG activation of epileptics following sleep deprivation: a prospective study of 114 cases. Electroencephalography and Clinical Neurophysiology. 1968;24(1):11–15. doi: 10.1016/0013-4694(68)90061-8.
    1. Prince T.-M., Abel T. The impact of sleep loss on hippocampal function. Learning & Memory. 2013;20(10):558–569. doi: 10.1101/lm.031674.113.
    1. Degen R., Degen H. E. A comparative study of the diagnostic value of drug-induced sleep EEGs and sleep EEGs following sleep deprivation in patients with complex partial seizures. Journal of Neurology. 1981;225(2):85–93. doi: 10.1007/bf00313322.
    1. Aguglia U., Gambardella A., Le Piane E., De Sarro G. B., Zappia M., Quattrone A. Chlorpromazine versus sleep deprivation in activation of EEG in adult-onset partial epilepsy. Journal of Neurology. 1994;241(10):605–610. doi: 10.1007/bf00920624.
    1. Aird R. B. The importance of seizure-inducing factors in youth. Brain and Development. 1988;10(2):73–76. doi: 10.1016/S0387-7604(88)80073-1.
    1. Díaz-Negrillo A. Influence of sleep and sleep deprivation on ictal and interictal epileptiform activity. Epilepsy Research and Treatment. 2013;2013:7. doi: 10.1155/2013/492524.492524
    1. Kotagal P. The relationship between sleep and epilepsy. Seminars in Pediatric Neurology. 2001;8(4):241–250. doi: 10.1053/spen.2001.29476.
    1. Jain S. V., Glauser T. A. Effects of epilepsy treatments on sleep architecture and daytime sleepiness: an evidence-based review of objective sleep metrics. Epilepsia. 2014;55(1):26–37. doi: 10.1111/epi.12478.
    1. Trull T. J., Vergés A., Wood P. K., Jahng S., Sher K. J. The structure of Diagnostic and Statistical Manual of Mental Disorders (4th edition, text revision) personality disorder symptoms in a large national sample. Personality Disorders: Theory, Research, and Treatment. 2012;3(4):355–369. doi: 10.1037/a0027766.
    1. Buckley A. W., Rodriguez A. J., Jennison K., et al. Rapid eye movement sleep percentage in children with autism compared with children with developmental delay and typical development. Archives of Pediatrics & Adolescent Medicine. 2010;164(11):1032–1037. doi: 10.1001/archpediatrics.2010.202.
    1. Why Do We Need Sleep? - National Sleep Foundation. October 2019 .
    1. Mindell J. A., Emslie G., Blumer J., et al. Pharmacologic management of insomnia in children and adolescents: consensus statement. Pediatrics. 2006;117(6):e1223–e1232. doi: 10.1542/peds.2005-1693.
    1. Limoges E., Mottron L., Bolduc C., Berthiaume C., Godbout R. Atypical sleep architecture and the autism phenotype. Brain. 2005;128(5):1049–1061. doi: 10.1093/brain/awh425.
    1. Elia M., Ferri R., Musumeci S. A., et al. Sleep in subjects with autistic disorder: a neurophysiological and psychological study. Brain and Development. 2000;22(2):88–92. doi: 10.1016/s0387-7604(99)00119-9.
    1. Malow B. A., Marzec M. L., McGrew S. G., Wang L., Henderson L. M., Stone W. L. Characterizing sleep in children with autism spectrum disorders: a multidimensional approach. Sleep. 2006;29(12):1563–1571. doi: 10.1093/sleep/29.12.1563.
    1. Bourgeron T. The possible interplay of synaptic and clock genes in autism spectrum disorders. Cold Spring Harbor Symposia on Quantitative Biology. 2007;72(1):645–654. doi: 10.1101/sqb.2007.72.020.
    1. Garstang J., Wallis M. Randomized controlled trial of melatonin for children with autistic spectrum disorders and sleep problems. Child: Care, Health and Development. 2006;32(5):585–589. doi: 10.1111/j.1365-2214.2006.00616.x.
    1. Nicholas B., Rudrasingham V., Nash S., Kirov G., Owen M. J., Wimpory D. C. Association of Per1 and Npas2 with autistic disorder: support for the clock genes/social timing hypothesis. Molecular Psychiatry. 2007;12(6):581–592. doi: 10.1038/sj.mp.4001953.
    1. Louis D. N. Molecular pathology of malignant gliomas. Annual Review of Pathology: Mechanisms of Disease. 2006;1(1):97–117. doi: 10.1146/annurev.pathol.1.110304.100043.
    1. Mason W. P., Cairncross J. G. Invited article: the expanding impact of molecular biology on the diagnosis and treatment of gliomas. Neurology. 2008;71(5):365–373. doi: 10.1212/01.wnl.0000319721.98502.1b.
    1. Rao R. D., Uhm J. H., Krishnan S., James C. D. Genetic and signaling pathway alterations in glioblastoma: relevance to novel targeted therapies. Frontiers in Bioscience. 2003;8:e270–e280. doi: 10.2741/897.
    1. Lee K., Cho M., Miaskowski C., Dodd M. Impaired sleep and rhythms in persons with cancer. Sleep Medicine Reviews. 2004;8(3):199–212. doi: 10.1016/j.smrv.2003.10.001.
    1. Irwin M. Effects of sleep and sleep loss on immunity and cytokines. Brain, Behavior, and Immunity. 2002;16(5):503–512. doi: 10.1016/S0889-1591(02)00003-X.
    1. Morin C. M., Ware J. C. Sleep and psychopathology. Applied and Preventive Psychology. 1996;5(4):211–224. doi: 10.1016/S0962-1849(96)80013-8.
    1. Sehgal A., Mignot E. Genetics of sleep and sleep disorders. Cell. 2011;146(2):194–207. doi: 10.1016/j.cell.2011.07.004.
    1. Alfaro E., Dhruva A., Langford D. J., et al. Associations between cytokine gene variations and self-reported sleep disturbance in women following breast cancer surgery. European Journal of Oncology Nursing. 2014;18(1):85–93. doi: 10.1016/j.ejon.2013.08.004.
    1. Park H. J., Kim H. J., Ra J., et al. Melatonin inhibits lipopolysaccharide-induced CC chemokine subfamily gene expression in human peripheral blood mononuclear cells in a microarray analysis. Journal of Pineal Research. 2007;43(2):121–129. doi: 10.1111/j.1600-079X.2007.00452.x.
    1. Cuzzocrea S., Costantino G., Mazzon E., Caputi A. P. Regulation of prostaglandin production in carrageenan-induced pleurisy by melatonin. Journal of Pineal Research. 1999;27(1):9–14. doi: 10.1111/j.1600-079x.1999.tb00591.x.
    1. Hardeland R., Pandi-Perumal S. R. Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutrition & Metabolism. 2005;2(1):p. 22. doi: 10.1186/1743-7075-2-22.
    1. Tan D.-X., Manchester L. C., Terron M. P., Flores L. J., Tamura H., Reiter R. J. Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT3 melatonin membrane receptor: hypothesis and significance. Journal of Pineal Research. 2007;43(4):317–320. doi: 10.1111/j.1600-079X.2007.00513.x.
    1. Jung B., Ahmad N. Melatonin in cancer management: progress and Promise: Figure 1. Cancer Research. 2006;66(20):9789–9793. doi: 10.1158/0008-5472.CAN-06-1776.
    1. Naidoo N., Giang W., Galante R. J., Pack A. I. Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. Journal of Neurochemistry. 2005;92(5):1150–1157. doi: 10.1111/j.1471-4159.2004.02952.x.
    1. Biegańska K., Sokołowska P., Jöhren O., Zawilska J. B. Orexin A suppresses the growth of rat C6 glioma cells via a caspase-dependent mechanism. Journal of Molecular Neuroscience. 2012;48(3):706–712. doi: 10.1007/s12031-012-9799-0.
    1. Treister A. K., Hatch M. N., Cramer S. C., Chang E. Y. Demystifying post-stroke pain: from etiology to treatment. PM&R. 2017;9(1):63–75. doi: 10.1016/j.pmrj.2016.05.015.
    1. Khan N., Smith M. T. Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology. 2014;22(1):1–22. doi: 10.1007/s10787-013-0195-3.
    1. Hagen E. M., Rekand T. Management of Neuropathic pain associated with spinal cord injury. Pain and Therapy. 2015;4(1):51–65. doi: 10.1007/s40122-015-0033-y.
    1. Schütz S. G., Robinson-Papp J. HIV-related neuropathy: current perspectives. HIV/AIDS - Research and Palliative Care. 2013;5:243–251. doi: 10.2147/HIV.S36674.
    1. Kundermann B., Krieg J.-C., Schreiber W., Lautenbacher S. The effect of sleep deprivation on pain. Pain Research and Management. 2004;9(1):p. 32. doi: 10.1155/2004/949187.
    1. Hakki Onen S., Alloui A., Jourdan D., Eschalier A., Dubray C. Effects of rapid eye movement (REM) sleep deprivation on pain sensitivity in the rat. Brain Research. 2001;900(2):261–267. doi: 10.1016/s0006-8993(01)02320-4.
    1. Murck H., Struttmann T., Czisch M., Wetter T., Steiger A., Auer D. P. Increase in amino acids in the pons after sleep deprivation: a pilot study using proton magnetic resonance spectroscopy. Neuropsychobiology. 2002;45(3):120–123. doi: 10.1159/000054949.
    1. Fadda P., Tortorella A., Fratta W. Sleep deprivation decreases mu and delta opioid receptor binding in the rat limbic system. Neuroscience Letters. 1991;129(2):315–317. doi: 10.1016/0304-3940(91)90489-g.
    1. Everson C. A. Clinical assessment of blood leukocytes, serum cytokines, and serum immunoglobulins as responses to sleep deprivation in laboratory rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2005;289(4):R1054–R1063. doi: 10.1152/ajpregu.00021.2005.
    1. Mullington J. M., Simpson N. S., Meier-Ewert H. K., Haack M. Sleep loss and inflammation. Best Practice & Research Clinical Endocrinology & Metabolism. 2010;24(5):775–784. doi: 10.1016/j.beem.2010.08.014.
    1. Bellesi M., de Vivo L., Chini M., Gilli F., Tononi G., Cirelli C. Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. The Journal of Neuroscience. 2017;37(21):5263–5273. doi: 10.1523/JNEUROSCI.3981-16.2017.
    1. Huang C.-T., Chiang R. P.-Y., Chen C.-L., Tsai Y.-J. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. Sleep. 2014;37(9):1513–1523. doi: 10.5665/sleep.4002.
    1. Liu J., Clough S. J., Hutchinson A. J., Adamah-Biassi E. B., Popovska-Gorevski M., Dubocovich M. L. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annual Review of Pharmacology and Toxicology. 2016;56(1):361–383. doi: 10.1146/annurev-pharmtox-010814-124742.
    1. Zlotos D., Jockers R., Cecon E., Rivara S., Witt-Enderby P. A. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. Journal of Medicinal Chemistry. 2014;57(8):3161–3185. doi: 10.1021/jm401343c.
    1. Priya S., Mahalakshmi A. M., Tuladhar S., et al. Sleep and body fluids. International Journal of Nutrition, Pharmacology, Neurological Diseases. 2020;10(2):65–68. doi: 10.4103/ijnpnd.ijnpnd_11_20.

Source: PubMed

3
購読する