Cortical excitability and plasticity in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis of transcranial magnetic stimulation studies

Ying-Hui Chou, Mark Sundman, Viet Ton That, Jacob Green, Chrisopher Trapani, Ying-Hui Chou, Mark Sundman, Viet Ton That, Jacob Green, Chrisopher Trapani

Abstract

Background: Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique. When stimulation is applied over the primary motor cortex and coupled with electromyography measures, TMS can probe functions of cortical excitability and plasticity in vivo. The purpose of this meta-analysis is to evaluate the utility of TMS-derived measures for differentiating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from cognitively normal older adults (CN).

Methods: Databases searched included PubMed, Embase, APA PsycInfo, Medline, and CINAHL Plus from inception to July 2021.

Results: Sixty-one studies with a total of 2728 participants (1454 patients with AD, 163 patients with MCI, and 1111 CN) were included. Patients with AD showed significantly higher cortical excitability, lower cortical inhibition, and impaired cortical plasticity compared to the CN cohorts. Patients with MCI exhibited increased cortical excitability and reduced plasticity compared to the CN cohort. Additionally, lower cognitive performance was significantly associated with higher cortical excitability and lower inhibition. No seizure events due to TMS were reported, and the mild adverse response rate is approximately 3/1000 (i.e., 9/2728).

Conclusions: Findings of our meta-analysis demonstrate the potential of using TMS-derived cortical excitability and plasticity measures as diagnostic biomarkers and therapeutic targets for AD and MCI.

Keywords: Alzheimer's disease; Cortical excitability; Inhibition; Mild cognitive impairment; Plasticity; Transcranial magnetic stimulation.

Copyright © 2022 Elsevier B.V. All rights reserved.

Figures

Figure 1.
Figure 1.
Flow diagram showing the search and selection procedure that was used for this meta-analysis. Diagram adapted from Moher et al. (2009). Abbreviations: AD = Alzheimer’s disease; MCI = mild cognitive impairment; TMS = transcranial magnetic stimulation
Figure 2.
Figure 2.
Forest plots. Individual and pooled effect sizes of comparisons: (A) between patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI) and cognitively normal older adults (CN); (B) between AD and CN; and (C) between MCI and CN.
Figure 2.
Figure 2.
Forest plots. Individual and pooled effect sizes of comparisons: (A) between patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI) and cognitively normal older adults (CN); (B) between AD and CN; and (C) between MCI and CN.
Figure 2.
Figure 2.
Forest plots. Individual and pooled effect sizes of comparisons: (A) between patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI) and cognitively normal older adults (CN); (B) between AD and CN; and (C) between MCI and CN.

References

    1. Jack CR Jr. et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & dementia : the journal of the Alzheimer’s Association 14, 535–562, doi:10.1016/j.jalz.2018.02.018 (2018).
    1. Dubois B et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s & dementia : the journal of the Alzheimer’s Association 12, 292–323, doi:10.1016/j.jalz.2016.02.002 (2016).
    1. Barker AT, Jalinous R & Freeston IL Non-invasive magnetic stimulation of human motor cortex. Lancet 1, 1106–1107 (1985).
    1. Paulus W et al. State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 1, 151–163, doi:10.1016/j.brs.2008.06.002 (2008).
    1. Badawy RA, Loetscher T, Macdonell RA & Brodtmann A Cortical excitability and neurology: insights into the pathophysiology. Funct Neurol 27, 131–145 (2012).
    1. Ziemann U Pharmaco-transcranial magnetic stimulation studies of motor excitability. Handb Clin Neurol 116, 387–397, doi:10.1016/B978-0-444-53497-2.00032-2 (2013).
    1. Groppa S et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123, 858–882, doi:10.1016/j.clinph.2012.01.010 (2012).
    1. Udupa K, Ni Z, Gunraj C & Chen R Interactions between short latency afferent inhibition and long interval intracortical inhibition. Exp Brain Res 199, 177–183, doi:10.1007/s00221-009-1997-9 (2009).
    1. Di Lazzaro V et al. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75, 555–559, doi:10.1136/jnnp.2003.018127 (2004).
    1. Nardone R, Bratti A & Tezzon F Motor cortex inhibitory circuits in dementia with Lewy bodies and in Alzheimer’s disease. J Neural Transm (Vienna) 113, 1679–1684, doi:10.1007/s00702-006-0551-1 (2006).
    1. Sakuma K, Murakami T & Nakashima K Short latency afferent inhibition is not impaired in mild cognitive impairment. Clin Neurophysiol 118, 1460–1463, doi:10.1016/j.clinph.2007.03.018 (2007).
    1. Di Lorenzo F et al. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer’s disease patients. Front Aging Neurosci 5, 2, doi:10.3389/fnagi.2013.00002 (2013).
    1. Di Lorenzo F et al. Long-term potentiation-like cortical plasticity is disrupted in Alzheimer’s disease patients independently from age of onset. Ann Neurol 80, 202–210, doi:10.1002/ana.24695 (2016).
    1. Motta C et al. Transcranial magnetic stimulation predicts cognitive decline in patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 89, 1237–1242, doi:10.1136/jnnp-2017-317879 (2018).
    1. Fitzgerald PB, Fountain S & Daskalakis ZJ A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 117, 2584–2596, doi:10.1016/j.clinph.2006.06.712 (2006).
    1. Moher D, Liberati A, Tetzlaff J, Altman DG & Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6, e1000097, doi:10.1371/journal.pmed.1000097 (2009).
    1. Nardone R et al. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand 129, 351–366, doi:10.1111/ane.12223 (2014).
    1. Koch G, Martorana A & Caltagirone C Transcranial magnetic stimulation: Emerging biomarkers and novel therapeutics in Alzheimer’s disease. Neurosci Lett 719, 134355, doi:10.1016/j.neulet.2019.134355 (2020).
    1. Pennisi G et al. Transcranial magnetic stimulation in Alzheimer’s disease: a neurophysiological marker of cortical hyperexcitability. J Neural Transm (Vienna) 118, 587–598, doi:10.1007/s00702-010-0554-9 (2011).
    1. Cantone M et al. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol 125, 1509–1532, doi:10.1016/j.clinph.2014.04.010 (2014).
    1. Guerra A et al. Transcranial magnetic stimulation studies in Alzheimer’s disease. Int J Alzheimers Dis 2011, 263817, doi:10.4061/2011/263817 (2011).
    1. Ni Z & Chen R Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Transl Neurodegener 4, 22, doi:10.1186/s40035-015-0045-x (2015).
    1. Mimura Y et al. Neurophysiological biomarkers using transcranial magnetic stimulation in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews 121, 47–59, doi:10.1016/j.neubiorev.2020.12.003 (2021).
    1. Higgins JP, Thompson SG, Deeks JJ & Altman DG Measuring inconsistency in meta-analyses. BMJ 327, 557–560, doi:10.1136/bmj.327.7414.557 (2003).
    1. Egger M, Smith GD, Schneider M & Minder C Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 315, 629–634 (1997).
    1. Duval S & Tweedie R Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463, doi:10.1111/j.0006-341x.2000.00455.x (2000).
    1. Borenstein M, Hedges LV, Higgins JPT & Rothstein HR in Introduction to meta-analysis (John Wiley and Sons, 2009).
    1. Wells G et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses., (Ottawa Hospital Research Institute, 2014).
    1. Alagona G et al. Transcranial magnetic stimulation in Alzheimer disease: motor cortex excitability and cognitive severity. Neurosci Lett 314, 57–60, doi:10.1016/s0304-3940(01)02288-1 (2001).
    1. Alagona G et al. Motor cortex excitability in Alzheimer’s disease and in subcortical ischemic vascular dementia. Neurosci Lett 362, 95–98, doi:10.1016/j.neulet.2004.03.006 (2004).
    1. Balla C, Maertens de Noordhout A & Pepin JL An Investigation of the Late Excitatory Potentials in the Hand following Transcranial Magnetic Stimulation in Early Alzheimer’s Disease. Dement Geriatr Cogn Dis Extra 4, 457–464, doi:10.1159/000367841 (2014).
    1. Battaglia F et al. Cortical plasticity in Alzheimer’s disease in humans and rodents. Biol Psychiatry 62, 1405–1412, doi:10.1016/j.biopsych.2007.02.027 (2007).
    1. Benussi A et al. Discrimination of atypical parkinsonisms with transcranial magnetic stimulation. Brain Stimul 11, 366–373, doi:10.1016/j.brs.2017.11.013 (2018).
    1. Benussi A et al. Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. Neurology 89, 665–672, doi:10.1212/WNL.0000000000004232 (2017).
    1. Benussi A et al. Classification Accuracy of Transcranial Magnetic Stimulation for the Diagnosis of Neurodegenerative Dementias. Ann Neurol 87, 394–404, doi:10.1002/ana.25677 (2020).
    1. Bonni S et al. Altered parietal-motor connections in Alzheimer’s disease patients. Journal of Alzheimer’s disease : JAD 33, 525–533, doi:10.3233/JAD-2012-121144 (2013).
    1. Brem AK et al. Corticomotor Plasticity Predicts Clinical Efficacy of Combined Neuromodulation and Cognitive Training in Alzheimer’s Disease. Front Aging Neurosci 12, 200, doi:10.3389/fnagi.2020.00200 (2020).
    1. Brem AK, Atkinson NJ, Seligson EE & Pascual-Leone A Differential pharmacological effects on brain reactivity and plasticity in Alzheimer’s disease. Front Psychiatry 4, 124, doi:10.3389/fpsyt.2013.00124 (2013).
    1. Buss SS et al. LTP-like plasticity is impaired in amyloid-positive amnestic MCI but independent of PET-amyloid burden. Neurobiology of aging 96, 109–116, doi:10.1016/j.neurobiolaging.2020.08.021 (2020).
    1. Casarotto S et al. Transcranial magnetic stimulation-evoked EEG/cortical potentials in physiological and pathological aging. Neuroreport 22, 592–597, doi:10.1097/WNR.0b013e328349433a (2011).
    1. Chandra SR, Issac TG, Nagaraju BC & Philip M A Study of Cortical Excitability, Central Motor Conduction, and Cortical Inhibition Using Single Pulse Transcranial Magnetic Stimulation in Patients with Early Frontotemporal and Alzheimer’s Dementia. Indian J Psychol Med 38, 25–30, doi:10.4103/0253-7176.175099 (2016).
    1. Colella D et al. Motor dysfunction in mild cognitive impairment as tested by kinematic analysis and transcranial magnetic stimulation. Clin Neurophysiol 132, 315–322, doi:10.1016/j.clinph.2020.10.028 (2021).
    1. de Carvalho M, de Mendonca A, Miranda PC, Garcia C & Luis ML Magnetic stimulation in Alzheimer’s disease. J Neurol 244, 304–307, doi:10.1007/s004150050091 (1997).
    1. Di Lazzaro V et al. In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias. Neurology 66, 1111–1113, doi:10.1212/01.wnl.0000204183.26231.23 (2006).
    1. Di Lazzaro V et al. Functional evaluation of cerebral cortex in dementia with Lewy bodies. Neuroimage 37, 422–429, doi:10.1016/j.neuroimage.2007.05.003 (2007).
    1. Di Lazzaro V et al. In vivo functional evaluation of central cholinergic circuits in vascular dementia. Clin Neurophysiol 119, 2494–2500, doi:10.1016/j.clinph.2008.08.010 (2008).
    1. Di Lorenzo F et al. Effects of Cerebellar Theta Burst Stimulation on Contralateral Motor Cortex Excitability in Patients with Alzheimer’s Disease. Brain Topogr 33, 613–617, doi:10.1007/s10548-020-00781-6 (2020).
    1. Di Lorenzo F et al. Impaired Spike Timing Dependent Cortico-Cortical Plasticity in Alzheimer’s Disease Patients. Journal of Alzheimer’s disease : JAD 66, 983–991, doi:10.3233/JAD-180503 (2018).
    1. Di Lorenzo F et al. LTP-like cortical plasticity is associated with verbal memory impairment in Alzheimer’s disease patients. Brain Stimul 12, 148–151, doi:10.1016/j.brs.2018.10.009 (2019).
    1. Ferreri F et al. Motor cortex excitability in Alzheimer’s disease: a transcranial magnetic stimulation study. Ann Neurol 53, 102–108, doi:10.1002/ana.10416 (2003).
    1. Ferreri F et al. Sensorimotor cortex excitability and connectivity in Alzheimer’s disease: A TMS-EEG Co-registration study. Human brain mapping 37, 2083–2096, doi:10.1002/hbm.23158 (2016).
    1. Hoeppner J et al. Intra- and inter-cortical motor excitability in Alzheimer’s disease. J Neural Transm (Vienna) 119, 605–612, doi:10.1007/s00702-011-0738-y (2012).
    1. Inghilleri M et al. Altered response to rTMS in patients with Alzheimer’s disease. Clin Neurophysiol 117, 103–109, doi:10.1016/j.clinph.2005.09.016 (2006).
    1. Julkunen P et al. Navigated TMS combined with EEG in mild cognitive impairment and Alzheimer’s disease: a pilot study. J Neurosci Methods 172, 270–276, doi:10.1016/j.jneumeth.2008.04.021 (2008).
    1. Khedr EM, Ahmed MA, Darwish ES & Ali AM The relationship between motor cortex excitability and severity of Alzheimer’s disease: a transcranial magnetic stimulation study. Neurophysiol Clin 41, 107–113, doi:10.1016/j.neucli.2011.03.002 (2011).
    1. Khedr EM et al. Electrophysiological differences in cortical excitability in different forms of dementia: A transcranial magnetic stimulation and laboratory biomarkers study. Neurophysiol Clin 50, 185–193, doi:10.1016/j.neucli.2020.05.001 (2020).
    1. Koch G et al. Impaired LTP- but not LTD-like cortical plasticity in Alzheimer’s disease patients. Journal of Alzheimer’s disease : JAD 31, 593–599, doi:10.3233/JAD-2012-120532 (2012).
    1. Koch G et al. Reversal of LTP-Like Cortical Plasticity in Alzheimer’s Disease Patients with Tau-Related Faster Clinical Progression. Journal of Alzheimer’s disease : JAD 50, 605–616, doi:10.3233/JAD-150813 (2016).
    1. Koch G et al. CSF tau is associated with impaired cortical plasticity, cognitive decline and astrocyte survival only in APOE4-positive Alzheimer’s disease. Sci Rep 7, 13728, doi:10.1038/s41598-017-14204-3 (2017).
    1. Koch G et al. Altered dopamine modulation of LTD-like plasticity in Alzheimer’s disease patients. Clin Neurophysiol 122, 703–707, doi:10.1016/j.clinph.2010.10.033 (2011).
    1. Koch G et al. CSF tau levels influence cortical plasticity in Alzheimer’s disease patients. Journal of Alzheimer’s disease : JAD 26, 181–186, doi:10.3233/JAD-2011-110116 (2011).
    1. Kumar S et al. Extent of Dorsolateral Prefrontal Cortex Plasticity and Its Association With Working Memory in Patients With Alzheimer Disease. JAMA Psychiatry 74, 1266–1274, doi:10.1001/jamapsychiatry.2017.3292 (2017).
    1. Lahr J et al. No difference in paired associative stimulation induced cortical neuroplasticity between patients with mild cognitive impairment and elderly controls. Clin Neurophysiol 127, 1254–1260, doi:10.1016/j.clinph.2015.08.010 (2016).
    1. Liepert J, Bar KJ, Meske U & Weiller C Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112, 1436–1441, doi:10.1016/s1388-2457(01)00554-5 (2001).
    1. Marra C et al. Central cholinergic dysfunction measured “in vivo” correlates with different behavioral disorders in Alzheimer’s disease and dementia with Lewy body. Brain Stimul 5, 533–538, doi:10.1016/j.brs.2011.08.009 (2012).
    1. Martorana A et al. L-dopa modulates motor cortex excitability in Alzheimer’s disease patients. J Neural Transm (Vienna) 115, 1313–1319, doi:10.1007/s00702-008-0082-z (2008).
    1. Martorana A et al. Dopamine D(2)-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology 64, 108–113, doi:10.1016/j.neuropharm.2012.07.015 (2013).
    1. Martorana A et al. Cerebrospinal fluid levels of Abeta42 relationship with cholinergic cortical activity in Alzheimer’s disease patients. J Neural Transm (Vienna) 119, 771–778, doi:10.1007/s00702-012-0780-4 (2012).
    1. Martorana A et al. Dopamine modulates cholinergic cortical excitability in Alzheimer’s disease patients. Neuropsychopharmacology 34, 2323–2328, doi:10.1038/npp.2009.60 (2009).
    1. Meder A et al. Motor cortical excitability and paired-associative stimulation-induced plasticity in amnestic mild cognitive impairment and Alzheimer’s disease. Clin Neurophysiol 132, 2264–2273, doi:10.1016/j.clinph.2021.01.011 (2021).
    1. Minkova L et al. Determinants of Inter-Individual Variability in Corticomotor Excitability Induced by Paired Associative Stimulation. Front Neurosci 13, 841, doi:10.3389/fnins.2019.00841 (2019).
    1. Nardone R et al. Abnormal short latency afferent inhibition in early Alzheimer’s disease: a transcranial magnetic demonstration. J Neural Transm (Vienna) 115, 1557–1562, doi:10.1007/s00702-008-0129-1 (2008).
    1. Nardone R et al. Dopamine differently modulates central cholinergic circuits in patients with Alzheimer disease and CADASIL. J Neural Transm (Vienna) 121, 1313–1320, doi:10.1007/s00702-014-1195-1 (2014).
    1. Niskanen E et al. New insights into Alzheimer’s disease progression: a combined TMS and structural MRI study. PLoS One 6, e26113, doi:10.1371/journal.pone.0026113 (2011).
    1. Olazaran J, Prieto J, Cruz I & Esteban A Cortical excitability in very mild Alzheimer’s disease: a long-term follow-up study. J Neurol 257, 2078–2085, doi:10.1007/s00415-010-5663-8 (2010).
    1. Pepin JL, Bogacz D, de Pasqua V & Delwaide PJ Motor cortex inhibition is not impaired in patients with Alzheimer’s disease: evidence from paired transcranial magnetic stimulation. J Neurol Sci 170, 119–123, doi:10.1016/s0022-510x(99)00206-3 (1999).
    1. Pierantozzi M et al. Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol 115, 2410–2418, doi:10.1016/j.clinph.2004.04.022 (2004).
    1. Terranova C et al. Impairment of sensory-motor plasticity in mild Alzheimer’s disease. Brain Stimul 6, 62–66, doi:10.1016/j.brs.2012.01.010 (2013).
    1. Trebbastoni A et al. Chronic treatment with rivastigmine in patients with Alzheimer’s disease: a study on primary motor cortex excitability tested by 5 Hz-repetitive transcranial magnetic stimulation. Clin Neurophysiol 123, 902–909, doi:10.1016/j.clinph.2011.09.010 (2012).
    1. Trebbastoni A et al. Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to Alzheimer’s Disease: Results from a 4-year Prospective Cohort Study. Front Aging Neurosci 7, 253, doi:10.3389/fnagi.2015.00253 (2016).
    1. Valls-Sole J et al. Examination of motor output pathways in patients with corticobasal ganglionic degeneration using transcranial magnetic stimulation. Brain 124, 1131–1137, doi:10.1093/brain/124.6.1131 (2001).
    1. Yang L et al. Evaluation of spinal cord motor function in Alzheimer’s disease using electrophysiological techniques indicates association of acetylcholine receptors with the disease. Int J Clin Exp Med 7, 5643–5649 (2014).
    1. Yildiz FG, Saka E, Elibol B & Temucin CM Modulation of Cerebellar-Cortical Connections in Multiple System Atrophy Type C by Cerebellar Repetitive Transcranial Magnetic Stimulation. Neuromodulation 21, 402–408, doi:10.1111/ner.12589 (2018).
    1. Rossini PM et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91, 79–92, doi:10.1016/0013-4694(94)90029-9 (1994).
    1. Tokimura H et al. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523 Pt 2, 503–513, doi:10.1111/j.1469-7793.2000.t01-1-00503.x (2000).
    1. Turco CV et al. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul 11, 59–74, doi:10.1016/j.brs.2017.09.009 (2018).
    1. Valls-Sole J, Pascual-Leone A, Wassermann EM & Hallett M Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol 85, 355–364, doi:10.1016/0168-5597(92)90048-g (1992).
    1. Kujirai T et al. Corticocortical inhibition in human motor cortex. J Physiol 471, 501–519, doi:10.1113/jphysiol.1993.sp019912 (1993).
    1. Ziemann U, Lonnecker S, Steinhoff BJ & Paulus W The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109, 127–135, doi:10.1007/BF00228633 (1996).
    1. Ziemann U, Rothwell JC & Ridding MC Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496 ( Pt 3), 873–881, doi:10.1113/jphysiol.1996.sp021734 (1996).
    1. Cohen AD & Klunk WE Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol Dis 72 Pt A, 117–122, doi:10.1016/j.nbd.2014.05.001 (2014).
    1. Kato T, Inui Y, Nakamura A & Ito K Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev 30, 73–84, doi:10.1016/j.arr.2016.02.003 (2016).
    1. Vossel KA et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann Neurol 80, 858–870, doi:10.1002/ana.24794 (2016).
    1. Lam AD et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat Med 23, 678–680, doi:10.1038/nm.4330 (2017).
    1. Nicastro N, Assal F & Seeck M From here to epilepsy: the risk of seizure in patients with Alzheimer’s disease. Epileptic Disord 18, 1–12, doi:10.1684/epd.2016.0808 (2016).
    1. Pandis D & Scarmeas N Seizures in Alzheimer disease: clinical and epidemiological data. Epilepsy Curr 12, 184–187, doi:10.5698/1535-7511-12.5.184 (2012).
    1. Asadollahi M, Atazadeh M & Noroozian M Seizure in Alzheimer’s Disease: An Underestimated Phenomenon. Am J Alzheimers Dis Other Demen 34, 81–88, doi:10.1177/1533317518813551 (2019).
    1. Bakker A et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74, 467–474, doi:10.1016/j.neuron.2012.03.023 (2012).
    1. Hamalainen A et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiology of aging 28, 1889–1903, doi:10.1016/j.neurobiolaging.2006.08.008 (2007).
    1. Filippini N et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A 106, 7209–7214, doi:10.1073/pnas.0811879106 (2009).
    1. Ambrad Giovannetti E & Fuhrmann M Unsupervised excitation: GABAergic dysfunctions in Alzheimer’s disease. Brain research 1707, 216–226, doi:10.1016/j.brainres.2018.11.042 (2019).
    1. Huang Y & Mucke L Alzheimer mechanisms and therapeutic strategies. Cell 148, 1204–1222, doi:10.1016/j.cell.2012.02.040 (2012).
    1. Frere S & Slutsky I Alzheimer’s Disease: From Firing Instability to Homeostasis Network Collapse. Neuron 97, 32–58, doi:10.1016/j.neuron.2017.11.028 (2018).
    1. Mattson MP Involvement of GABAergic interneuron dysfunction and neuronal network hyperexcitability in Alzheimer’s disease: Amelioration by metabolic switching. Int Rev Neurobiol 154, 191–205, doi:10.1016/bs.irn.2020.01.006 (2020).
    1. Toniolo S, Sen A & Husain M Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer’s Disease. Int J Mol Sci 21, doi:10.3390/ijms21239318 (2020).
    1. Cheng A et al. SIRT3 Haploinsufficiency Aggravates Loss of GABAergic Interneurons and Neuronal Network Hyperexcitability in an Alzheimer’s Disease Model. J Neurosci 40, 694–709, doi:10.1523/JNEUROSCI.1446-19.2019 (2020).
    1. Verret L et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721, doi:10.1016/j.cell.2012.02.046 (2012).
    1. Ziemann U et al. Consensus: Motor cortex plasticity protocols. Brain Stimul 1, 164–182, doi:10.1016/j.brs.2008.06.006 (2008).
    1. Hestrin S & Galarreta M Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci 28, 304–309, doi:10.1016/j.tins.2005.04.001 (2005).
    1. Kann O, Papageorgiou IE & Draguhn A Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab 34, 1270–1282, doi:10.1038/jcbfm.2014.104 (2014).
    1. Busche MA et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321, 1686–1689, doi:10.1126/science.1162844 (2008).
    1. Garcia-Marin V et al. Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front Neuroanat 3, 28, doi:10.3389/neuro.05.028.2009 (2009).
    1. Sun X et al. GABA attenuates amyloid toxicity by downregulating its endocytosis and improves cognitive impairment. Journal of Alzheimer’s disease : JAD 31, 635–649, doi:10.3233/JAD-2012-120535 (2012).
    1. Takacs VT et al. Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat Commun 9, 2848, doi:10.1038/s41467-018-05136-1 (2018).
    1. Zhou K, Cherra SJ 3rd, Goncharov A & Jin Y Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca(2+) Sensor Protein. Cell Rep 19, 1117–1129, doi:10.1016/j.celrep.2017.04.043 (2017).
    1. Ferreira ST & Klein WL The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 96, 529–543, doi:10.1016/j.nlm.2011.08.003 (2011).
    1. Patel N, Ramachandran S, Azimov R, Kagan BL & Lal R Ion Channel Formation by Tau Protein: Implications for Alzheimer’s Disease and Tauopathies. Biochemistry 54, 7320–7325, doi:10.1021/acs.biochem.5b00988 (2015).
    1. Wang X et al. Elevated Neuronal Excitability Due to Modulation of the Voltage-Gated Sodium Channel Nav1.6 by Abeta1–42. Front Neurosci 10, 94, doi:10.3389/fnins.2016.00094 (2016).
    1. Kim DY & Kovacs DM Surface trafficking of sodium channels in cells and in hippocampal slices. Methods Mol Biol 793, 351–361, doi:10.1007/978-1-61779-328-8_23 (2011).
    1. Liu C, Tan FC, Xiao ZC & Dawe GS Amyloid precursor protein enhances Nav1.6 sodium channel cell surface expression. J Biol Chem 290, 12048–12057, doi:10.1074/jbc.M114.617092 (2015).
    1. Vitvitsky VM, Garg SK, Keep RF, Albin RL & Banerjee R Na+ and K+ ion imbalances in Alzheimer’s disease. Biochim Biophys Acta 1822, 1671–1681, doi:10.1016/j.bbadis.2012.07.004 (2012).
    1. Bezprozvanny I & Mattson MP Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31, 454–463, doi:10.1016/j.tins.2008.06.005 (2008).
    1. Lanner JT Ryanodine receptor physiology and its role in disease. Adv Exp Med Biol 740, 217–234, doi:10.1007/978-94-007-2888-2_9 (2012).
    1. Del Prete D, Checler F & Chami M Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol Neurodegener 9, 21, doi:10.1186/1750-1326-9-21 (2014).
    1. Bruno AM et al. Altered ryanodine receptor expression in mild cognitive impairment and Alzheimer’s disease. Neurobiology of aging 33, 1001 e1001–1006, doi:10.1016/j.neurobiolaging.2011.03.011 (2012).
    1. Badimon A et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423, doi:10.1038/s41586-020-2777-8 (2020).
    1. Werneburg S, Feinberg PA, Johnson KM & Schafer DP A microglia-cytokine axis to modulate synaptic connectivity and function. Curr Opin Neurobiol 47, 138–145, doi:10.1016/j.conb.2017.10.002 (2017).
    1. Merlini M et al. Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nat Neurosci 24, 19–23, doi:10.1038/s41593-020-00756-7 (2021).
    1. Shetty PK, Galeffi F & Turner DA Cellular Links between Neuronal Activity and Energy Homeostasis. Front Pharmacol 3, 43, doi:10.3389/fphar.2012.00043 (2012).
    1. Pascual O et al. Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116, doi:10.1126/science.1116916 (2005).
    1. Corkrum M et al. Dopamine-Evoked Synaptic Regulation in the Nucleus Accumbens Requires Astrocyte Activity. Neuron 105, 1036–1047 e1035, doi:10.1016/j.neuron.2019.12.026 (2020).
    1. Beamer E, Conte G & Engel T ATP release during seizures - A critical evaluation of the evidence. Brain Res Bull 151, 65–73, doi:10.1016/j.brainresbull.2018.12.021 (2019).
    1. Haynes SE et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9, 1512–1519, doi:10.1038/nn1805 (2006).
    1. Robson SC, Sevigny J & Zimmermann H The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2, 409–430, doi:10.1007/s11302-006-9003-5 (2006).
    1. Lanser AJ et al. Disruption of the ATP/adenosine balance in CD39(−/−) mice is associated with handling-induced seizures. Immunology 152, 589–601, doi:10.1111/imm.12798 (2017).
    1. Dunwiddie TV & Masino SA The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24, 31–55, doi:10.1146/annurev.neuro.24.1.31 (2001).
    1. Hansen DV, Hanson JE & Sheng M Microglia in Alzheimer’s disease. J Cell Biol 217, 459–472, doi:10.1083/jcb.201709069 (2018).
    1. Di Lazzaro V et al. Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135, 455–461, doi:10.1007/s002210000543 (2000).
    1. Fujiki M, Hikawa T, Abe T, Ishii K & Kobayashi H Reduced short latency afferent inhibition in diffuse axonal injury patients with memory impairment. Neurosci Lett 405, 226–230, doi:10.1016/j.neulet.2006.07.005 (2006).
    1. Di Lazzaro V et al. Neurophysiological predictors of long term response to AChE inhibitors in AD patients. J Neurol Neurosurg Psychiatry 76, 1064–1069, doi:10.1136/jnnp.2004.051334 (2005).
    1. Shankar GM & Walsh DM Alzheimer’s disease: synaptic dysfunction and Abeta. Mol Neurodegener 4, 48, doi:10.1186/1750-1326-4-48 (2009).
    1. Koffie RM, Hyman BT & Spires-Jones TL Alzheimer’s disease: synapses gone cold. Mol Neurodegener 6, 63, doi:10.1186/1750-1326-6-63 (2011).
    1. Palop JJ & Mucke L Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13, 812–818, doi:10.1038/nn.2583 (2010).
    1. Selkoe DJ Alzheimer’s disease is a synaptic failure. Science 298, 789–791, doi:10.1126/science.1074069 (2002).
    1. Terry RD et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30, 572–580, doi:10.1002/ana.410300410 (1991).
    1. Mufson EJ et al. Hippocampal plasticity during the progression of Alzheimer’s disease. Neuroscience 309, 51–67, doi:10.1016/j.neuroscience.2015.03.006 (2015).
    1. Morris GP, Clark IA & Vissel B Questions concerning the role of amyloid-beta in the definition, aetiology and diagnosis of Alzheimer’s disease. Acta Neuropathol 136, 663–689, doi:10.1007/s00401-018-1918-8 (2018).
    1. de Wilde MC, Overk CR, Sijben JW & Masliah E Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimer’s & dementia : the journal of the Alzheimer’s Association 12, 633–644, doi:10.1016/j.jalz.2015.12.005 (2016).
    1. Nabulsi NB et al. Synthesis and Preclinical Evaluation of 11C-UCB-J as a PET Tracer for Imaging the Synaptic Vesicle Glycoprotein 2A in the Brain. J Nucl Med 57, 777–784, doi:10.2967/jnumed.115.168179 (2016).
    1. Finnema SJ et al. Imaging synaptic density in the living human brain. Sci Transl Med 8, 348ra396, doi:10.1126/scitranslmed.aaf6667 (2016).
    1. Finnema SJ et al. Kinetic evaluation and test-retest reproducibility of [(11)C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. J Cereb Blood Flow Metab 38, 2041–2052, doi:10.1177/0271678X17724947 (2018).
    1. Constantinescu CC et al. Development and In Vivo Preclinical Imaging of Fluorine-18-Labeled Synaptic Vesicle Protein 2A (SV2A) PET Tracers. Mol Imaging Biol 21, 509–518, doi:10.1007/s11307-018-1260-5 (2019).
    1. Cai Z et al. Synthesis and Preclinical Evaluation of an (18)F-Labeled Synaptic Vesicle Glycoprotein 2A PET Imaging Probe: [(18)F]SynVesT-2. ACS Chem Neurosci 11, 592–603, doi:10.1021/acschemneuro.9b00618 (2020).
    1. Hong J et al. High-Frequency rTMS Improves Cognitive Function by Regulating Synaptic Plasticity in Cerebral Ischemic Rats. Neurochem Res 46, 276–286, doi:10.1007/s11064-020-03161-5 (2021).
    1. Fujiki M, Yee KM & Steward O Non-invasive High Frequency Repetitive Transcranial Magnetic Stimulation (hfrTMS) Robustly Activates Molecular Pathways Implicated in Neuronal Growth and Synaptic Plasticity in Select Populations of Neurons. Front Neurosci 14, 558, doi:10.3389/fnins.2020.00558 (2020).
    1. Ma Q et al. High Frequency Repetitive Transcranial Magnetic Stimulation Alleviates Cognitive Impairment and Modulates Hippocampal Synaptic Structural Plasticity in Aged Mice. Front Aging Neurosci 11, 235, doi:10.3389/fnagi.2019.00235 (2019).
    1. Li Y, Li L & Pan W Repetitive transcranial magnetic stimulation (rTMS) modulates hippocampal structural synaptic plasticity in rats. Physiol Res 68, 99–105, doi:10.33549/physiolres.933772 (2019).
    1. Wischnewski M & Schutter DJ Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans. Brain Stimul 8, 685–692, doi:10.1016/j.brs.2015.03.004 (2015).
    1. Huang YZ, Edwards MJ, Rounis E, Bhatia KP & Rothwell JC Theta burst stimulation of the human motor cortex. Neuron 45, 201–206, doi:10.1016/j.neuron.2004.12.033 (2005).
    1. Pauly MG et al. Cerebellar rTMS and PAS effectively induce cerebellar plasticity. Sci Rep 11, 3070, doi:10.1038/s41598-021-82496-7 (2021).
    1. Chung SW et al. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study. Clin Neurophysiol 128, 1117–1126, doi:10.1016/j.clinph.2017.04.005 (2017).
    1. Di Lazzaro V et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J Physiol 586, 3871–3879, doi:10.1113/jphysiol.2008.152736 (2008).
    1. Hamada M, Murase N, Hasan A, Balaratnam M & Rothwell JC The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex 23, 1593–1605, doi:10.1093/cercor/bhs147 (2013).
    1. Volz LJ et al. Modulation of I-wave generating pathways by theta-burst stimulation: a model of plasticity induction. J Physiol 597, 5963–5971, doi:10.1113/JP278636 (2019).
    1. Di Lazzaro V et al. Direct demonstration that repetitive transcranial magnetic stimulation can enhance corticospinal excitability in stroke. Stroke 37, 2850–2853, doi:10.1161/01.STR.0000244824.53873.2c (2006).
    1. Li X et al. Cortical plasticity is correlated with cognitive improvement in Alzheimer’s disease patients after rTMS treatment. Brain Stimul 14, 503–510, doi:10.1016/j.brs.2021.01.012 (2021).
    1. Sundman M et al. Transcranial magnetic stimulation reveals diminished homoeostatic metaplasticity in cognitively impaired adults. Brain Communications 2 (2020).
    1. Huang YZ, Chen RS, Rothwell JC & Wen HY The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 118, 1028–1032, doi:10.1016/j.clinph.2007.01.021 (2007).
    1. Ziemann U, Hallett M & Cohen LG Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 18, 7000–7007 (1998).
    1. Tamura K et al. MRI-based visualization of rTMS-induced cortical plasticity in the primary motor cortex. PLoS One 14, e0224175, doi:10.1371/journal.pone.0224175 (2019).
    1. Chou YH et al. Effect of repetitive transcranial magnetic stimulation on fMRI resting-state connectivity in multiple system atrophy. Brain Connect 5, 451–459 (2015).
    1. Pascual-Leone A et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr 24, 302–315, doi:10.1007/s10548-011-0196-8 (2011).
    1. Li T et al. Different cerebral plasticity of intrinsic and extrinsic hand muscles after peripheral neurotization in a patient with brachial plexus injury: A TMS and fMRI study. Neurosci Lett 604, 140–144, doi:10.1016/j.neulet.2015.07.015 (2015).
    1. Esslinger C et al. Induction and quantification of prefrontal cortical network plasticity using 5 Hz rTMS and fMRI. Human brain mapping 35, 140–151, doi:10.1002/hbm.22165 (2014).
    1. Roberts DR et al. Cerebral cortex plasticity after 90 days of bed rest: data from TMS and fMRI. Aviat Space Environ Med 81, 30–40, doi:10.3357/asem.2532.2009 (2010).
    1. Baumer FM et al. Cortical Excitability, Synaptic Plasticity, and Cognition in Benign Epilepsy With Centrotemporal Spikes: A Pilot TMS-EMG-EEG Study. J Clin Neurophysiol 37, 170–180, doi:10.1097/WNP.0000000000000662 (2020).
    1. Zrenner C, Desideri D, Belardinelli P & Ziemann U Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul 11, 374–389, doi:10.1016/j.brs.2017.11.016 (2018).
    1. Ferreri F & Rossini PM TMS and TMS-EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex. Rev Neurosci 24, 431–442, doi:10.1515/revneuro-2013-0019 (2013).
    1. Vernet M et al. Insights on the neural basis of motor plasticity induced by theta burst stimulation from TMS-EEG. Eur J Neurosci 37, 598–606, doi:10.1111/ejn.12069 (2013).
    1. Benussi A et al. The impact of transcranial magnetic stimulation on diagnostic confidence in patients with Alzheimer disease. Alzheimer’s research & therapy 10, 94, doi:10.1186/s13195-018-0423-6 (2018).
    1. Ridding MC & Ziemann U Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol 588, 2291–2304, doi:10.1113/jphysiol.2010.190314 (2010).
    1. Corp DT et al. Large-scale analysis of interindividual variability in theta-burst stimulation data: Results from the ‘Big TMS Data Collaboration’. Brain Stimul 13, 1476–1488, doi:10.1016/j.brs.2020.07.018 (2020).
    1. Joseph S et al. Dorsolateral prefrontal cortex excitability abnormalities in Alzheimer’s Dementia: Findings from transcranial magnetic stimulation and electroencephalography study. Int J Psychophysiol 169, 55–62, doi:10.1016/j.ijpsycho.2021.08.008 (2021).
    1. Bagattini C et al. Predicting Alzheimer’s disease severity by means of TMS-EEG coregistration. Neurobiology of aging 80, 38–45, doi:10.1016/j.neurobiolaging.2019.04.008 (2019).
    1. Julkunen P et al. Combining transcranial magnetic stimulation and electroencephalography may contribute to assess the severity of Alzheimer’s disease. Int J Alzheimers Dis 2011, 654794, doi:10.4061/2011/654794 (2011).
    1. Ferreri F et al. TMS-EEG Biomarkers of Amnestic Mild Cognitive Impairment Due to Alzheimer’s Disease: A Proof-of-Concept Six Years Prospective Study. Front Aging Neurosci 13, 737281, doi:10.3389/fnagi.2021.737281 (2021).
    1. Koch G et al. Effect of Rotigotine vs Placebo on Cognitive Functions Among Patients With Mild to Moderate Alzheimer Disease: A Randomized Clinical Trial. JAMA Netw Open 3, e2010372, doi:10.1001/jamanetworkopen.2020.10372 (2020).

Source: PubMed

3
購読する