Prospective investigation of FOXP1 syndrome

Paige M Siper, Silvia De Rubeis, Maria Del Pilar Trelles, Allison Durkin, Daniele Di Marino, François Muratet, Yitzchak Frank, Reymundo Lozano, Evan E Eichler, Morgan Kelly, Jennifer Beighley, Jennifer Gerdts, Arianne S Wallace, Heather C Mefford, Raphael A Bernier, Alexander Kolevzon, Joseph D Buxbaum, Paige M Siper, Silvia De Rubeis, Maria Del Pilar Trelles, Allison Durkin, Daniele Di Marino, François Muratet, Yitzchak Frank, Reymundo Lozano, Evan E Eichler, Morgan Kelly, Jennifer Beighley, Jennifer Gerdts, Arianne S Wallace, Heather C Mefford, Raphael A Bernier, Alexander Kolevzon, Joseph D Buxbaum

Abstract

Background: Haploinsufficiency of the forkhead-box protein P1 (FOXP1) gene leads to a neurodevelopmental disorder termed FOXP1 syndrome. Previous studies in individuals carrying FOXP1 mutations and deletions have described the presence of autism spectrum disorder (ASD) traits, intellectual disability, language impairment, and psychiatric features. The goal of the present study was to comprehensively characterize the genetic and clinical spectrum of FOXP1 syndrome. This is the first study to prospectively examine the genotype-phenotype relationship in multiple individuals with FOXP1 syndrome, using a battery of standardized clinical assessments.

Methods: Genetic and clinical data was obtained and analyzed from nine children and adolescents between the ages of 5-17 with mutations in FOXP1. Phenotypic characterization included gold standard ASD testing and norm-referenced measures of cognition, adaptive behavior, language, motor, and visual-motor integration skills. In addition, psychiatric, medical, neurological, and dysmorphology examinations were completed by a multidisciplinary team of clinicians. A comprehensive review of reported cases was also performed. All missense and in-frame mutations were mapped onto the three-dimensional structure of DNA-bound FOXP1.

Results: We have identified nine de novo mutations, including three frameshift, one nonsense, one mutation in an essential splice site resulting in frameshift and insertion of a premature stop codon, three missense, and one in-frame deletion. Reviewing prior literature, we found seven instances of recurrent mutations and another 34 private mutations. The majority of pathogenic missense and in-frame mutations, including all four missense mutations in our cohort, lie in the DNA-binding domain. Through structural analyses, we show that the mutations perturb amino acids necessary for binding to the DNA or interfere with the domain swapping that mediates FOXP1 dimerization. Individuals with FOXP1 syndrome presented with delays in early motor and language milestones, language impairment (expressive language > receptive language), ASD symptoms, visual-motor integration deficits, and complex psychiatric presentations characterized by anxiety, obsessive-compulsive traits, attention deficits, and externalizing symptoms. Medical features included non-specific structural brain abnormalities and dysmorphic features, endocrine and gastrointestinal problems, sleep disturbances, and sinopulmonary infections.

Conclusions: This study identifies novel FOXP1 mutations associated with FOXP1 syndrome, identifies recurrent mutations, and demonstrates significant clustering of missense mutations in the DNA-binding domain. Clinical findings confirm the role FOXP1 plays in development across multiple domains of functioning. The genetic findings can be incorporated into clinical genetics practice to improve accurate genetic diagnosis of FOXP1 syndrome and the clinical findings can inform monitoring and treatment of individuals with FOXP1 syndrome.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the Institutional Review Boards at the Icahn School of Medicine at Mount Sinai and at the University of Washington. Parents or legal guardians provided informed consent for participation.

Consent for publication

Written informed consent was obtained from parents or legal guardians of participants for publication of participants’ individuals details and accompanying images in this manuscript. The consent forms are held by the authors’ institutions in the patients’ clinical notes and are available for review by the Editor-in-Chief.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
FOXP1 mutations. The mutations described in this study and those described in the literature are shown in the upper and lower panels, respectively. FOXP1 domains are reported as described for Q9H334–1 in Uniprot. The two nuclear localization signals (NLS) are indicated as previously reported [68]. Missense and in-frame mutations are indicated in blue, while loss-of-function (LoF) mutations are indicated in black. Recurrent mutations are indicated in bold. The position of c.975-2A > C reflects the Lys325Asnfs*12 mutation. The positions of the other splice-site mutations reflect the first residue of the exon downstream of the intron
Fig. 2
Fig. 2
Exon skipping caused by the c.975-2A > C mutation. a RT-PCR results for exons 6–9 of FOXP1 mRNA for blood-derived RNA for individual S1 and her parents. The upper band is the PCR amplicon resulting from the mRNA with exons 7 (blue), 8 (black), and 9 (purple); the lower band results from skipping of exon 8. b Sanger sequencing results of the PCR amplicons obtained in a. The nucleotide of the splice site mutated is indicated on the pre-mRNA in red
Fig. 3
Fig. 3
Pathogenic missense mutations in the FOXP1 DNA-binding domain. a Primary sequence and topological representation of the DNA-binding domain (as reported in PDB 2KIU). The five helices (H1-H5), the three β sheet (β1-β3) and the two wings regions (W1, W2) are shown. Residues mutated in the cohort described in this study are in red, while those affected by mutations described in literature are in blue. b Ribbon representation of the DNA binding domain of the FOXP1 monomer interacting with one double-stranded DNA molecule. The surface for the interaction with the DNA and the region involved in domain swapping are indicated by dashed lines. c Ribbon representation of the unbound FOXP1 DNA binding domain showing the missense mutations reported in the literature in blue (Additional file 2: Table S1). d Ribbon representation of the unbound FOXP1 DNA binding domain showing the missense and in-frame mutations reported in our cohort in red (Table 1)
Fig. 4
Fig. 4
Dysmorphisms in individuals with FOXP1 mutations. Most common features include prominent forehead (evident in a, b, c, d, g, and h), bulbous nose (evident in a, c, e, f, g, and h), broad nasal bridge (evident in a, b, c, e, and h), hypertelorism (evident in a, c, and h), thick vermillion (evident in e, f, and h), and long philtrum (evident in c and g)

References

    1. Hamdan FF, Daoud H, Rochefort D, Piton A, Gauthier J, Langlois M, Foomani G, Dobrzeniecka S, Krebs MO, Joober R, et al. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet. 2010;87:671–678. doi: 10.1016/j.ajhg.2010.09.017.
    1. Horn D, Kapeller J, Rivera-Brugues N, Moog U, Lorenz-Depiereux B, Eck S, Hempel M, Wagenstaller J, Gawthrope A, Monaco AP, et al. Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Hum Mutat. 2010;31:E1851–E1860. doi: 10.1002/humu.21362.
    1. Le Fevre AK, Taylor S, Malek NH, Horn D, Carr CW, Abdul-Rahman OA, O'Donnell S, Burgess T, Shaw M, Gecz J, et al. FOXP1 mutations cause intellectual disability and a recognizable phenotype. Am J Med Genet A. 2013;161A:3166–3175. doi: 10.1002/ajmg.a.36174.
    1. Lozano R, Vino A, Lozano C, Fisher SE, Deriziotis P. A de novo FOXP1 variant in a patient with autism, intellectual disability and severe speech and language impairment. Eur J Hum Genet. 2015;23:1702–1707. doi: 10.1038/ejhg.2015.66.
    1. Sollis E, Graham SA, Vino A, Froehlich H, Vreeburg M, Dimitropoulou D, Gilissen C, Pfundt R, Rappold GA, Brunner HG, et al. Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder. Hum Mol Genet. 2016;25:546–557. doi: 10.1093/hmg/ddv495.
    1. Pariani MJ, Spencer A, Graham JM, Jr, Rimoin DL. A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis. Eur J Med Genet. 2009;52:123–127. doi: 10.1016/j.ejmg.2009.03.012.
    1. Carr CW, Moreno-De-Luca D, Parker C, Zimmerman HH, Ledbetter N, Martin CL, Dobyns WB, Abdul-Rahman OA. Chiari I malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haploinsufficiency. Eur J Hum Genet. 2010;18:1216–1220. doi: 10.1038/ejhg.2010.96.
    1. Palumbo O, D'Agruma L, Minenna AF, Palumbo P, Stallone R, Palladino T, Zelante L, Carella M. 3p14.1 de novo microdeletion involving the FOXP1 gene in an adult patient with autism, severe speech delay and deficit of motor coordination. Gene. 2013;516:107–113. doi: 10.1016/j.gene.2012.12.073.
    1. Worthey EA, Raca G, Laffin JJ, Wilk BM, Harris JM, Jakielski KJ, Dimmock DP, Strand EA, Shriberg LD. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. J Neurodev Disord. 2013;5:29. doi: 10.1186/1866-1955-5-29.
    1. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, Mackenzie AP, Ng SB, Baker C, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–589. doi: 10.1038/ng.835.
    1. Grozeva D, Carss K, Spasic-Boskovic O, Tejada MI, Gecz J, Shaw M, Corbett M, Haan E, Thompson E, Friend K, et al. Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability. Hum Mutat. 2015;36:1197–1204. doi: 10.1002/humu.22901.
    1. Deciphering Developmental Disorders Study Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–438. doi: 10.1038/nature21062.
    1. Srivastava S, Cohen JS, Vernon H, Baranano K, McClellan R, Jamal L, Naidu S, Fatemi A. Clinical whole exome sequencing in child neurology practice. Ann Neurol. 2014;76:473–483. doi: 10.1002/ana.24251.
    1. Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, Patterson KE, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–221. doi: 10.1038/nature13908.
    1. Yuen RK, Merico D, Bookman M, Howe LJ, Thiruvahindrapuram B, Patel RV, Whitney J, Deflaux N, Bingham J, Wang Z, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20:602–611. doi: 10.1038/nn.4524.
    1. Tutulan-Cunita AC, Papuc SM, Arghir A, Rotzer KM, Deshpande C, Lungeanu A, Budisteanu M. 3p interstitial deletion: novel case report and review. J Child Neurol. 2012;27:1062–1066. doi: 10.1177/0883073811431016.
    1. Dimitrov BI, Ogilvie C, Wieczorek D, Wakeling E, Sikkema-Raddatz B, van Ravenswaaij-Arts CM, Josifova D. 3p14 deletion is a rare contiguous gene syndrome: report of 2 new patients and an overview of 14 patients. Am J Med Genet A. 2015;167:1223–1230. doi: 10.1002/ajmg.a.36556.
    1. Schwarzbraun T, Ofner L, Gillessen-Kaesbach G, Schaperdoth B, Preisegger KH, Windpassinger C, Wagner K, Petek E, Kroisel PM. A new 3p interstitial deletion including the entire MITF gene causes a variation of Tietz/Waardenburg type IIA syndromes. Am J Med Genet A. 2007;143A:619–624. doi: 10.1002/ajmg.a.31627.
    1. Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 2017;8:21. doi: 10.1186/s13229-017-0137-9.
    1. Bekheirnia MR, Bekheirnia N, Bainbridge MN, Gu S, Coban Akdemir ZH, Gambin T, Janzen NK, Jhangiani SN, Muzny DM, Michael M, et al. Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene. Genet Med. 2017;19:412–420. doi: 10.1038/gim.2016.131.
    1. Shu W, Yang H, Zhang L, Lu MM, Morrisey EE. Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors. J Biol Chem. 2001;276:27488–27497. doi: 10.1074/jbc.M100636200.
    1. Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA. Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J Neurosci. 2004;24:3152–3163. doi: 10.1523/JNEUROSCI.5589-03.2004.
    1. Frohlich H, Rafiullah R, Schmitt N, Abele S, Rappold GA. Foxp1 expression is essential for sex-specific murine neonatal ultrasonic vocalization. Hum Mol Genet. 2017;26:1511–1521. doi: 10.1093/hmg/ddx055.
    1. Feuk L, Kalervo A, Lipsanen-Nyman M, Skaug J, Nakabayashi K, Finucane B, Hartung D, Innes M, Kerem B, Nowaczyk MJ, et al. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am J Hum Genet. 2006;79:965–972. doi: 10.1086/508902.
    1. Zeesman S, Nowaczyk MJ, Teshima I, Roberts W, Cardy JO, Brian J, Senman L, Feuk L, Osborne LR, Scherer SW. Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2. Am J Med Genet A. 2006;140:509–514. doi: 10.1002/ajmg.a.31110.
    1. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 2001;413:519–523. doi: 10.1038/35097076.
    1. MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CS, Vernes SC, Vargha-Khadem F, McKenzie F, Smith RL, Monaco AP, Fisher SE. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am J Hum Genet. 2005;76:1074–1080. doi: 10.1086/430841.
    1. Li X, Xiao J, Frohlich H, Tu X, Li L, Xu Y, Cao H, Qu J, Rappold GA, Chen JG. Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. PLoS One. 2015;10:e0127671. doi: 10.1371/journal.pone.0127671.
    1. Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J Comp Neurol. 2003;460:266–279. doi: 10.1002/cne.10654.
    1. Tsui D, Vessey JP, Tomita H, Kaplan DR, Miller FD. FoxP2 regulates neurogenesis during embryonic cortical development. J Neurosci. 2013;33:244–258. doi: 10.1523/JNEUROSCI.1665-12.2013.
    1. Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, Schmeidler J, De Gasperi R, Sosa MA, Rabidou D, et al. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci U S A. 2005;102:9643–9648. doi: 10.1073/pnas.0503739102.
    1. Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, Monyer H, Rappold GA. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Mol Psychiatry. 2015;20:632–639. doi: 10.1038/mp.2014.116.
    1. Blanco Sanchez T, Duat Rodriguez A, Cantarin Extremera V, Lapunzina P, Palomares Bralo M, Nevado BJ. Clinical phenotype of a patient with FOXP1 deletion. An Pediatr (Barc) 2015;82:280–281. doi: 10.1016/j.anpedi.2014.06.007.
    1. Lloveras E, Vendrell T, Fernandez A, Castells N, Cueto A, del Campo M, Hernando C, Villa O, Plaja A. Intrachromosomal 3p insertion as a cause of reciprocal pure interstitial deletion and duplication in two siblings: further delineation of the emerging proximal 3p deletion syndrome. Cytogenet Genome Res. 2014;144:290–293. doi: 10.1159/000375184.
    1. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux AF, Smith T, Antonarakis SE, Taschner PE. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016;37:564–569. doi: 10.1002/humu.22981.
    1. Turner TN, Yi Q, Krumm N, Huddleston J, Hoekzema K, HAF S, Doebley AL, Bernier RA, Nickerson DA, Eichler EE. denovo-db: a compendium of human de novo variants. Nucleic Acids Res. 2017;45:D804–D811. doi: 10.1093/nar/gkw865.
    1. Chu YP, Chang CH, Shiu JH, Chang YT, Chen CY, Chuang WJ. Solution structure and backbone dynamics of the DNA-binding domain of FOXP1: insight into its domain swapping and DNA binding. Protein Sci. 2011;20:908–924. doi: 10.1002/pro.626.
    1. Stroud JC, Wu Y, Bates DL, Han A, Nowick K, Paabo S, Tong H, Chen L. Structure of the forkhead domain of FOXP2 bound to DNA. Structure. 2006;14:159–166. doi: 10.1016/j.str.2005.10.005.
    1. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084.
    1. Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop SL. Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) Manual (Part I): Modules 1–4. Western Psychological Services: Torrance; 2012.
    1. Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–685. doi: 10.1007/BF02172145.
    1. Rutter M, Le Couteur A, Lord C. Autism Diagnostic Interview-Revised (ADI-R) Manual. Western Psychological Services: Los Angeles; 2003.
    1. Hus V, Gotham K, Lord C. Standardizing ADOS domain scores: separating severity of social affect and restricted and repetitive behaviors. J Autism Dev Disord. 2014;44:2400–2412. doi: 10.1007/s10803-012-1719-1.
    1. Constantino JN, Gruber CP. Social Responsiveness Scale, Second Edition (SRS-2) Torrance: Western Psychological Services; 2012.
    1. Bodfish JW, Symons FJ, Parker DE, Lewis MH. Varieties of repetitive behavior in autism: comparisons to mental retardation. J Autism Dev Disord. 2000;30:237–243. doi: 10.1023/A:1005596502855.
    1. Bodfish JW, Symons FJ, Lewis MH. The Repetitive Behavior Scale. Western Carolina Center Research Reports; 1999.
    1. Dunn W, Westman K. The Sensory Profile: The performance of a national sample of children without disabilities. Am J Occupational Ther. 1997;51:25–34. doi: 10.5014/ajot.51.1.25.
    1. Roid GH. Stanford-Binet Intelligence Scales. 5. Itasca: Riverside Publishing; 2003.
    1. Elliot CD. Differential Ability Scales-Second Edition. Introductory and Technical Manual San Antonio: Pearson; 2007.
    1. Wechsler D. Preschool and Primary Scale of Intelligence. 3. San Antonio: The Psychological Corporation; 2002.
    1. Sparrow SS, Cicchetti DV, Balla DA. Vineland Adaptive Behavior Scales: Second edition (Vineland II), Survey Forms Manual. Livonia: Pearson; 2005.
    1. Dunn LM, Dunn DM. Peabody Picture Vocabulary Test, Fourth Edition (PPVT-4), Manual. Minneapolis: Pearson; 2007.
    1. Williams KT. The Expressive Vocabulary Test, Second Edition (EVT-2), Manual. Minneapolis: Pearson; 2007.
    1. Beery KE, Beery NA. The Beery-Buktenica Developmental Test of Visual-Motor Integration, Sixth Edition (Beery VMI), Administration, Scoring, and Teaching Manual. Bloomington: Pearson; 2010.
    1. Wilson BN, Dewey D, Campbell A. Developmental coordination disorder questionnaire (DCDQ) Canada: Alberta Children’s Hospital Research Center; 1998.
    1. Achenbach TM, Edelbrock CS, Rescorla LA. Manual for ASEBA School-Age Forms & Profiles. 2001.
    1. Aman MG, Singh NN, Stewart AW, Field CJ. The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am J Ment Defic. 1985;89:485–491.
    1. Aman MG, Singh NN. Aberrant Behavior Checklist (ABC) Manual. East Aurora: Slosson Educational Publications, Inc; 1986.
    1. Aman MG, Singh NN. Aberrant Behavior Checklist-Community (ABC), Supplementary Manual. East Aurora: Slosson Educational Publications, Inc; 1994.
    1. Reuter MS, Riess A, Moog U, Briggs TA, Chandler KE, Rauch A, Stampfer M, Steindl K, Glaser D, Joset P, et al. FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum. J Med Genet. 2017;54:64–72. doi: 10.1136/jmedgenet-2016-104094.
    1. Vernes SC, Nicod J, Elahi FM, Coventry JA, Kenny N, Coupe AM, Bird LE, Davies KE, Fisher SE. Functional genetic analysis of mutations implicated in a human speech and language disorder. Hum Mol Genet. 2006;15:3154–3167. doi: 10.1093/hmg/ddl392.
    1. Lam KS, Aman MG. The Repetitive Behavior Scale-Revised: independent validation in individuals with autism spectrum disorders. J Autism Dev Disord. 2007;37:855–866. doi: 10.1007/s10803-006-0213-z.
    1. Chang SW, Mislankar M, Misra C, Huang N, Dajusta DG, Harrison SM, McBride KL, Baker LA, Garg V. Genetic abnormalities in FOXP1 are associated with congenital heart defects. Hum Mutat. 2013;34:1226–1230. doi: 10.1002/humu.22366.
    1. Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350:1262–1266. doi: 10.1126/science.aac9396.
    1. Wang B, Weidenfeld J, Lu MM, Maika S, Kuziel WA, Morrisey EE, Tucker PW. Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development. 2004;131:4477–4487. doi: 10.1242/dev.01287.
    1. Rocca DL, Wilkinson KA, Henley JM. SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci Rep. 2017;7:877. doi: 10.1038/s41598-017-00707-6.
    1. Fujita E, Tanabe Y, Shiota A, Ueda M, Suwa K, Momoi MY, Momoi T. Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proc Natl Acad Sci U S A. 2008;105:3117–3122. doi: 10.1073/pnas.0712298105.
    1. Banham AH, Beasley N, Campo E, Fernandez PL, Fidler C, Gatter K, Jones M, Mason DY, Prime JE, Trougouboff P, et al. The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res. 2001;61:8820–8829.

Source: PubMed

3
購読する