Physiological Characteristics of Type 1 Diabetes Patients during High Mountain Trekking

Bartłomiej Matejko, Andrzej Gawrecki, Marta Wróbel, Jerzy Hohendorff, Teresa Benbenek-Klupa, Dorota Zozulińska-Ziółkiewicz, Maciej T Malecki, Tomasz Klupa, Bartłomiej Matejko, Andrzej Gawrecki, Marta Wróbel, Jerzy Hohendorff, Teresa Benbenek-Klupa, Dorota Zozulińska-Ziółkiewicz, Maciej T Malecki, Tomasz Klupa

Abstract

In this study, the aim was to provide observational data from an ascent to the summit of Mount Damavand (5670 meters above sea level (m.a.s.l), Iran) by a group of people with type 1 diabetes (T1DM), with a focus on their physiological characteristics. After a 3-day expedition, 18 T1DM patients, all treated with personal insulin pumps, successfully climbed Mount Damavand. Information was collected on their physiological and dietary behaviors, as well as medical parameters, such as carbohydrate consumption, glucose patterns, insulin dosing, and the number of hypo- and hyperglycemic episodes during this time frame. The participants consumed significantly less carbohydrates on day 3 compared to day 1 (16.4 vs. 23.1 carbohydrate units; p = 0.037). Despite this, a gradual rise in the mean daily glucose concentration as measured with a glucometer was observed. Interestingly, the patients did not fully respond to higher insulin delivery as there was no significant difference in mean daily insulin dose during the expedition. There were more hyperglycemic episodes (≥180 mg/dL) per patient on day 3 vs. day 1 (p < 0.05) and more severe hyperglycemic episodes (>250 mg/dL) per patient on days 2 (p < 0.05) and 3 (p < 0.05) vs. day 1. In summary, high mountain trekking is feasible for T1DM patients with good glycemic control and no chronic complications. However, some changes in dietary preferences and an observable rise in glucose levels may occur. This requires an adequate therapeutic response.

Conflict of interest statement

No potential conflict of interest was reported by the authors.

Copyright © 2020 Bartłomiej Matejko et al.

Figures

Figure 1
Figure 1
The relationship between mean glycemia, mean carbohydrate unit intake, and daily insulin dose on each expedition day (with p values for the comparison between the 3 expedition days).
Figure 2
Figure 2
The correlation between lactate concentration at the beginning of day 2 and mean glucometer glycemia on day 2.

References

    1. Malcolm G., Rilstone S., Sivasubramaniyam S., et al. Managing diabetes at high altitude: personal experience with support from a multidisciplinary physical activity and diabetes clinic. BMJ Open Sport & Exercise Medicine. 2017;3(1, article e000238) doi: 10.1136/bmjsem-2017-000238.
    1. Matejko B., Benbenek-Klupa T., Malecki M. T., Klupa T. Personal insulin pump with predictive low glucose management technology at high altitude. Journal of Diabetes Science and Technology. 2016;11(1):176–177. doi: 10.1177/1932296816649973.
    1. Mohajeri S., Perkins B. A., Brubaker P. L., Riddell M. C. Diabetes, trekking and high altitude: recognizing and preparing for the risks. Diabetic Medicine. 2015;32(11):1425–1437. doi: 10.1111/dme.12795.
    1. Richards P., Hillebrandt D. The practical aspects of insulin at high altitude. High Altitude Medicine & Biology. 2013;14(3):197–204. doi: 10.1089/ham.2013.1020.
    1. de Mol P., de Vries S. T., de Koning E. J. P., Gans R. O. B., Bilo H. J. G., Tack C. J. Physical activity at altitude: challenges for people with diabetes: a review. Diabetes Care. 2014;37(8):2404–2413. doi: 10.2337/dc13-2302.
    1. Matejko B., Gawrecki A., Wróbel M., et al. The association between the level of baseline daily physical activity and selected clinical and biochemical parameters during mountain trekking in patients with type 1 diabetes. Clinical Diabetology. 2017;6(3):77–80. doi: 10.5603/DK.2017.0013.
    1. Gawrecki A., Benbenek-Klupa T., Wróbel M., et al. The “5000 meters above sugar level” project—“Alps 2015” expedition. Clinical Diabetology. 2015;4(4):172–173.
    1. Hirschler V., Maccallini G., Molinari C., et al. Type 2 diabetes markers in indigenous Argentinean children living at different altitudes. AIMS Public Health. 2018;5(4):440–453. doi: 10.3934/publichealth.2018.4.440.
    1. Riley C. J., Gavin M. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Altitude Medicine & Biology. 2017;18(2):102–113. doi: 10.1089/ham.2016.0112.
    1. Gawrecki A., Matejko B., Benbenek-Klupa T., Wróbel M., Hohendorff J., Klupa T. Type 1 diabetes mellitus at very high altitude. The summit of Mount Damāvand (5670 m) safely reached by 18 patients with type 1 diabetes mellitus. Polskie Archiwum Medycyny Wewnętrznej. 2016;126(7–8):576–578. doi: 10.20452/pamw.3521.
    1. Matejko B., Gawrecki A., Wróbel M., et al. Type 1 diabetes at high altitude: performance of personal insulin pumps and patient metabolic control. Diabetes Technology & Therapeutics. 2017;19(10):600–602. doi: 10.1089/dia.2016.0452.
    1. Bhambhani Y., Singh M. Ventilatory thresholds during a graded exercise test. Respiration. 2004;47(2):120–128. doi: 10.1159/000194758.
    1. Astrand I. Aerobic work capacity in men and women with special reference to age. Acta Physiologica Scandinavica. Supplementum. 1960;49(169):1–92.
    1. Koufakis T., Karras S. N., Mustafa O. G., Zebekakis P., Kotsa K. The effects of high altitude on glucose homeostasis, metabolic control, and other diabetes-related parameters: from animal studies to real life. High Altitude Medicine & Biology. 2019;20(1):1–11. doi: 10.1089/ham.2018.0076.
    1. de Mol P., de Vries S. T., de Koning E. J. P., Gans R. O. B., Tack C. J., Bilo H. J. G. Increased insulin requirements during exercise at very high altitude in type 1 diabetes. Diabetes Care. 2011;34(3):591–595. doi: 10.2337/dc10-2015.
    1. Admetlla J., Leal C., Ricart A. Health & Height: Proceedings of the Vth World Congress on Mountain Medicine and High Altitude Physiology. Barcelona: Spain, Edicions Universitat Barcelona; 2002. Diabetes mellitus and mountain sports; pp. 229–236.
    1. Pavan P., Sarto P., Merlo L., et al. Metabolic and cardiovascular parameters in type 1 diabetes at extreme altitude. Medicine and Science in Sports and Exercise. 2004;36(8):1283–1289. doi: 10.1249/01.MSS.0000135782.93008.6C.
    1. Valletta J. J., Chipperfield A. J., Clough G. F., Byrne C. D. Metabolic regulation during constant moderate physical exertion in extreme conditions in type 1 diabetes. Diabetic Medicine. 2012;29(6):822–826. doi: 10.1111/j.1464-5491.2011.03453.x.
    1. Hill N. E., Deighton K., Matu J., et al. Continuous glucose monitoring at high altitude—effects on glucose homeostasis. Medicine and Science in Sports and Exercise. 2018;50(8):1679–1686. doi: 10.1249/MSS.0000000000001624.
    1. Lundby C., Saltin B., van Hall G. The 'lactate paradox', evidence for a transient change in the course of acclimatization to severe hypoxia in lowlanders. Acta Physiologica Scandinavica. 2000;170(4):265–269. doi: 10.1046/j.1365-201x.2000.00785.x.
    1. Juel C., Halestrap A. P. Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. The Journal of Physiology. 1999;517(3):633–642. doi: 10.1111/j.1469-7793.1999.0633s.x.
    1. Moraga F. A., Osorio J., Jiménez D., Calderón-Jofré R., Moraga D. Aerobic capacity, lactate concentration, and work assessment during maximum exercise at sea level and high altitude in miners exposed to chronic intermittent hypobaric hypoxia (3,800 m) Frontiers in Physiology. 2019;10, article 1149 doi: 10.3389/fphys.2019.01149.

Source: PubMed

3
購読する