Clinical utility of tumor genomic profiling in patients with high plasma circulating tumor DNA burden or metabolically active tumors

Cathy Zhou, Zilong Yuan, Weijie Ma, Lihong Qi, Angelique Mahavongtrakul, Ying Li, Hong Li, Jay Gong, Reggie R Fan, Jin Li, Michael Molmen, Travis A Clark, Dean Pavlick, Garrett M Frampton, Brady Forcier, Elizabeth H Moore, David K Shelton, Matthew Cooke, Siraj M Ali, Vincent A Miller, Jeffrey P Gregg, Philip J Stephens, Tianhong Li, Cathy Zhou, Zilong Yuan, Weijie Ma, Lihong Qi, Angelique Mahavongtrakul, Ying Li, Hong Li, Jay Gong, Reggie R Fan, Jin Li, Michael Molmen, Travis A Clark, Dean Pavlick, Garrett M Frampton, Brady Forcier, Elizabeth H Moore, David K Shelton, Matthew Cooke, Siraj M Ali, Vincent A Miller, Jeffrey P Gregg, Philip J Stephens, Tianhong Li

Abstract

Background: This retrospective study was undertaken to determine if the plasma circulating tumor DNA (ctDNA) level and tumor biological features in patients with advanced solid tumors affected the detection of genomic alterations (GAs) by a plasma ctDNA assay.

Method: Cell-free DNA (cfDNA) extracted from frozen plasma (N = 35) or fresh whole blood (N = 90) samples were subjected to a 62-gene hybrid capture-based next-generation sequencing assay FoundationACT. Concordance was analyzed for 51 matched FoundationACT and FoundationOne (tissue) cases. The maximum somatic allele frequency (MSAF) was used to estimate the amount of tumor fraction of cfDNA in each sample. The detection of GAs was correlated with the amount of cfDNA, MSAF, total tumor anatomic burden (dimensional sum), and total tumor metabolic burden (SUVmax sum) of the largest ten tumor lesions on PET/CT scans.

Results: FoundationACT detected GAs in 69 of 81 (85%) cases with MSAF > 0. Forty-two of 51 (82%) cases had ≥ 1 concordance GAs matched with FoundationOne, and 22 (52%) matched to the National Comprehensive Cancer Network (NCCN)-recommended molecular targets. FoundationACT also detected 8 unique molecular targets, which changed the therapy in 7 (88%) patients who did not have tumor rebiopsy or sufficient tumor DNA for genomic profiling assay. In all samples (N = 81), GAs were detected in plasma cfDNA from cancer patients with high MSAF quantity (P = 0.0006) or high tumor metabolic burden (P = 0.0006) regardless of cfDNA quantity (P = 0.2362).

Conclusion: This study supports the utility of using plasma-based genomic assays in cancer patients with high plasma MSAF level or high tumor metabolic burden.

Trial registration: ClinicalTrials.gov NCT02620527.

Keywords: Cell-free DNA (cfDNA); Circulating tumor DNA (ctDNA); Genomic alterations (GAs); Maximum somatic allele frequency (MSAF); Maximum standardized uptake value (SUVmax); Next-generation sequencing (NGS); Plasma; Positron emission tomography (PET) scan.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the institutional review board (IRB) at the University of California, Davis (IRB ID: 937274).

Consent for publication

Not applicable

Competing interests

Jeffrey P. Gregg: Foundation Medicine (H), AstraZeneca (H), AstraZeneca (SAB), and BMS (C/A). Tianhong Li: NCI (RF), Pfizer (RF), Foundation Medicine (C/A), Takada (C/A), and Puma (C/A). Michael Molmen: Foundation Medicine (E, OI); Travis A. Clark: Foundation Medicine (E, OI); Dean Pavlick: Foundation Medicine (E, OI); Brady Forcier: Foundation Medicine (E, OI); Garret M. Frampton: Foundation Medicine (E, OI, IP); Matthew Cooke Foundation Medicine (E, OI); Siraj M. Ali Foundation Medicine (E, OI); Vincent A. Miller: Foundation Medicine (E, OI); Philip J. Stephens: Foundation Medicine (E, OI, IP).

(C/A) Consulting/advisory relationship; (RF) Research funding; (E) Employment; (ET) Expert testimony; (H) Honoraria received; (OI) Ownership interests; (IP) Intellectual property rights/ inventor/patent holder; (SAB) Scientific advisory board.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study schema. This study included 125 consecutive patients with locally advanced or metastatic solid tumors who underwent FoundationACT testing between November 17, 2015, and April 17, 2017. Among 90 patients with available FoundationACT reports, 81 patients had no interval treatment and 18F-FDG PET/CT scans performed at our institution within 45 days of blood sampling for imaging quantification analyses. The concordance rate of GA detection between 51 matched FoundationACT and FoundationOne cases was calculated and further analyzed for NCCN-recommended molecular targets in 42 patients
Fig. 2
Fig. 2
Genomic alterations (GAs) and concordance of NCCN-recommended molecular targets detected by both FoundationACT and FoundationOne assays in 42 patients with advanced solid tumors. GAs in base substitutions (A), insertions or deletions (B), amplifications (C) or rearrangements (D) detected in patients with detectable ctDNA (i.e., MSAF > 0) are shown. Concordant/shared GAs are in blue, GA found only in tissue are in red, and GA found only in ctDNA are in pink. Genes that were only included in tissue (FoundationOne) were shaded in gray. Red color highlights the NCCN-recommended test genes, and red box highlights the NCCN-recommended molecular targets
Fig. 3
Fig. 3
MSAF is a valid tool for quantifying the tumor fraction of cfDNA. A representative case showing MSAF was a better tool than cfDNA and SUVmax to correlate with clinical response when the patient had non-infectious, immune-related pneumonitis. A Schema of the clinical course. B Radiographic evaluation: a 67-year-old Caucasian male, former four pack-year smoking history (quit 20 years ago), presented with refractory, lung squamous cell carcinoma (i). The patient developed non-productive cough and shortness of breath after three doses of nivolumab monotherapy and was found to have biopsy-proven, new tumor formation in right lower lobe as well as grade 3 pneumonitis in bilateral lung fields (ii) [46]. However, notable tumor shrinkage at several pre-existing tumors was observed. Blood drawn at 10 weeks later before the initiation of high dose steroids revealed non-detectable ctDNA (i.e., MSAF zero) (iii). Despite discontinuation of nivolumab and use of steroids for over 2 months for symptomatic pneumonitis, continued tumor response to a complete remission was evident by radiographic assessment by ~ 3 months (iv), which has been maintained at 9 months (v) and a recent 3-year follow-up (data not shown). C Quantitative analysis of biomarkers and clinical responses were summarized in table
Fig. 4
Fig. 4
Factors affect the detection of GAs in FACT assay. Comparison of MSAF, tumor anatomic burden, and tumor metabolic burden in relation to the detection of GAs (0 vs ≥ 1) in patients with fresh blood samples (a, c, and e) and all sample group (b, d, and f). Each bar demonstrates a mean ± SD. P < 0.05 by two-sample t test is considered statistically significant

References

    1. Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31(8):1039–1049. doi: 10.1200/JCO.2012.45.3753.
    1. Kalemkerian Gregory P., Narula Navneet, Kennedy Erin B., Biermann William A., Donington Jessica, Leighl Natasha B., Lew Madelyn, Pantelas James, Ramalingam Suresh S., Reck Martin, Saqi Anjali, Simoff Michael, Singh Navneet, Sundaram Baskaran. Molecular Testing Guideline for the Selection of Patients With Lung Cancer for Treatment With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. Journal of Clinical Oncology. 2018;36(9):911–919. doi: 10.1200/JCO.2017.76.7293.
    1. Leong SM, Tan KM, Chua HW, Tan D, Fareda D, Osmany S, Li MH, Tucker S, Koay ES. Sampling circulating tumor cells for clinical benefits: how frequent? J Hematol Oncol. 2015;8:75. doi: 10.1186/s13045-015-0174-9.
    1. Zhang YC, Zhou Q, Wu YL. The emerging roles of NGS-based liquid biopsy in non-small cell lung cancer. J Hematol Oncol. 2017;10(1):167. doi: 10.1186/s13045-017-0536-6.
    1. Oncomine Dx Target Test FDA approval. 2017. . Accessed 30 July 2018.
    1. FDA announces approval, CMS proposes coverage of first breakthrough-designated test to detect extensive number of cancer biomarkers. 2017. . Accessed 30 July 2018.
    1. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS, Squire J, Thunnissen E, Ladanyi M. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;8(7):823–859. doi: 10.1097/JTO.0b013e318290868f.
    1. Jovelet C, Ileana E, Le Deley MC, Motte N, Rosellini S, Romero A, Lefebvre C, Pedrero M, Pata-Merci N, Droin N, Deloger M, Massard C, Hollebecque A, Ferte C, Boichard A, Postel-Vinay S, Ngo-Camus M, De Baere T, Vielh P, Scoazec JY, Vassal G, Eggermont A, Andre F, Soria JC, Lacroix L. Circulating cell-free tumor DNA analysis of 50 genes by next-generation sequencing in the prospective MOSCATO trial. Clin Cancer Res. 2016;22(12):2960–2968. doi: 10.1158/1078-0432.CCR-15-2470.
    1. Couraud S, Vaca-Paniagua F, Villar S, Oliver J, Schuster T, Blanche H, Girard N, Tredaniel J, Guilleminault L, Gervais R, Prim N, Vincent M, Margery J, Larive S, Foucher P, Duvert B, Vallee M, Le Calvez-Kelm F, McKay J, Missy P, Morin F, Zalcman G, Olivier M, Souquet PJ, Bio CI-i Noninvasive diagnosis of actionable mutations by deep sequencing of circulating free DNA in lung cancer from never-smokers: a proof-of-concept study from BioCAST/IFCT-1002. Clin Cancer Res. 2014;20(17):4613–4624. doi: 10.1158/1078-0432.CCR-13-3063.
    1. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–238. doi: 10.1038/nrc.2017.7.
    1. Chung JH, Pavlick D, Hartmaier R, Schrock AB, Young L, Forcier B, Ye P, Levin MK, Goldberg M, Burris H, Gay LM, Hoffman AD, Stephens PJ, Frampton GM, Lipson DM, Nguyen DM, Ganesan S, Park BH, Vahdat LT, Leyland-Jones B, Mughal TI, Pusztai L, O'Shaughnessy J, Miller VA, Ross JS, Ali SM. Hybrid capture-based genomic profiling of circulating tumor DNA from patients with estrogen receptor-positive metastatic breast cancer. Ann Oncol. 2017;28(11):2866–2873. doi: 10.1093/annonc/mdx490.
    1. Exome Aggregation Consortium. 2017. . Accessed 15 Jan 2018.
    1. Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Ventura CB, Wynes MW, Yatabe Y. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142(3):321–346. doi: 10.5858/arpa.2017-0388-CP.
    1. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao Y, Juhl HH, Kim JJ, Siravegna G, Laheru DA, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra224. doi: 10.1126/scitranslmed.3007094.
    1. Yang M, Topaloglu U, Petty WJ, Pagni M, Foley KL, Grant SC, Robinson M, Bitting RL, Thomas A, Alistar AT, Desnoyers RJ, Goodman M, Albright C, Porosnicu M, Vatca M, Qasem SA, DeYoung B, Kytola V, Nykter M, Chen K, Levine EA, Staren ED, D'Agostino RB, Jr, Petro RM, Blackstock W, Powell BL, Abraham E, Pasche B, Zhang W. Circulating mutational portrait of cancer: manifestation of aggressive clonal events in both early and late stages. J Hematol Oncol. 2017;10(1):100. doi: 10.1186/s13045-017-0468-1.
    1. Oxnard GR, Thress KS, Alden RS, Lawrance R, Paweletz CP, Cantarini M, Yang JC, Barrett JC, Janne PA. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(28):3375–3382. doi: 10.1200/JCO.2016.66.7162.
    1. Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, Lee CK, Sebastian M, Templeton A, Mann H, Marotti M, Ghiorghiu S, Papadimitrakopoulou VA, Investigators A. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–640. doi: 10.1056/NEJMoa1612674.
    1. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, Shafi S, Johnson DH, Mitter R, Rosenthal R, Salm M, Horswell S, Escudero M, Matthews N, Rowan A, Chambers T, Moore DA, Turajlic S, Xu H, Lee SM, Forster MD, Ahmad T, Hiley CT, Abbosh C, Falzon M, Borg E, Marafioti T, Lawrence D, Hayward M, Kolvekar S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109–2121. doi: 10.1056/NEJMoa1616288.
    1. Sun W, Yuan X, Tian Y, Wu H, Xu H, Hu G, Wu K. Non-invasive approaches to monitor EGFR-TKI treatment in non-small-cell lung cancer. J Hematol Oncol. 2015;8:95. doi: 10.1186/s13045-015-0193-6.
    1. Murphy DJ, Blyth KG. Predicting lung cancer recurrence from circulating tumour DNA. Commentary on ‘Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution’. Cell Death Differ. 2017;24(9):1473–1474. doi: 10.1038/cdd.2017.97.
    1. Ma W, Gong J, Shan J, Lewis D, Xiao W, Moore EH, Zhang Y, Hung J, Mans NZ, Wei S, Welborn J, Stollenwerk NS, Lam KS, Li T. Safety and efficacy of osimertinib in the treatment of a patient with metastatic lung cancer and concurrent somatic EGFR L858R and germline EGFR T790M mutations. JCO Precision Oncol. 2018;2:1–7.
    1. Newman AM, Bratman SV, To J. Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW, Jr, Alizadeh AA, Diehn M. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–554. doi: 10.1038/nm.3519.
    1. Jamal-Hanjani M, Hackshaw A, Ngai Y, Shaw J, Dive C, Quezada S, Middleton G, de Bruin E, Le Quesne J, Shafi S, Falzon M, Horswell S, Blackhall F, Khan I, Janes S, Nicolson M, Lawrence D, Forster M, Fennell D, Lee SM, Lester J, Kerr K, Muller S, Iles N, Smith S, Murugaesu N, Mitter R, Salm M, Stuart A, Matthews N, et al. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol. 2014;12(7):e1001906. doi: 10.1371/journal.pbio.1001906.
    1. Paweletz CP, Sacher AG, Raymond CK, Alden RS, O'Connell A, Mach SL, Kuang Y, Gandhi L, Kirschmeier P, English JM, Lim LP, Janne PA, Oxnard GR. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin Cancer Res. 2016;22(4):915–922. doi: 10.1158/1078-0432.CCR-15-1627-T.
    1. Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, Lieberman DB, Morrissette JD, Evans TL, Bauml J, Aggarwal C, Kosteva JA, Alley E, Ciunci C, Cohen RB, Bagley S, Stonehouse-Lee S, Sherry VE, Gilbert E, Langer C, Vachani A, Carpenter EL. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. 2016;22(23):5772–5782. doi: 10.1158/1078-0432.CCR-16-1231.
    1. Muller JN, Falk M, Talwar J, Neemann N, Mariotti E, Bertrand M, Zacherle T, Lakis S, Menon R, Gloeckner C, Tiemann M, Heukamp LC, Thomas RK, Griesinger F, Heuckmann JM. Concordance between comprehensive cancer genome profiling in plasma and tumor specimens. J Thorac Oncol. 2017;12(10):1503–1511. doi: 10.1016/j.jtho.2017.07.014.
    1. Williams PM, Conley BA. Clinical application of liquid biopsies. JAMA Oncol. 2016;2(8):1003–1005. doi: 10.1001/jamaoncol.2016.0240.
    1. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P, Sun J, Juhn F, Brennan K, Iwanik K, Maillet A, Buell J, White E, Zhao M, Balasubramanian S, Terzic S, Richards T, Banning V, Garcia L, Mahoney K, Zwirko Z, Donahue A, Beltran H, Mosquera JM, Rubin MA, Dogan S, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023–1031. doi: 10.1038/nbt.2696.
    1. Clark Travis A., Chung Jon H., Kennedy Mark, Hughes Jason D., Chennagiri Niru, Lieber Daniel S., Fendler Bernard, Young Lauren, Zhao Mandy, Coyne Michael, Breese Virginia, Young Geneva, Donahue Amy, Pavlick Dean, Tsiros Alyssa, Brennan Timothy, Zhong Shan, Mughal Tariq, Bailey Mark, He Jie, Roels Steven, Frampton Garrett M., Spoerke Jill M., Gendreau Steven, Lackner Mark, Schleifman Erica, Peters Eric, Ross Jeffrey S., Ali Siraj M., Miller Vincent A., Gregg Jeffrey P., Stephens Philip J., Welsh Allison, Otto Geoff A., Lipson Doron. Analytical Validation of a Hybrid Capture–Based Next-Generation Sequencing Clinical Assay for Genomic Profiling of Cell-Free Circulating Tumor DNA. The Journal of Molecular Diagnostics. 2018;20(5):686–702. doi: 10.1016/j.jmoldx.2018.05.004.
    1. Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, Collisson EA, Divers SG, Hoon DS, Kopetz ES, Lee J, Nikolinakos PG, Baca AM, Kermani BG, Eltoukhy H, Talasaz A. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One. 2015;10(10):e0140712. doi: 10.1371/journal.pone.0140712.
    1. Morbelli S, Alama A, Ferrarazzo G, Coco S, Genova C, Rijavec E, Bongioanni F, Biello F, Dal Bello MG, Barletta G, Massollo M, Vanni I, Piva R, Nieri A, Bauckneht M, Sambuceti G, Grossi F. Circulating tumor DNA reflects tumor metabolism rather than tumor burden in chemotherapy-naive patients with advanced non-small cell lung cancer: (18)F-FDG PET/CT study. J Nucl Med. 2017;58(11):1764–1769. doi: 10.2967/jnumed.117.193201.
    1. Aravanis AM, Lee M, Klausner RD. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell. 2017;168(4):571–574. doi: 10.1016/j.cell.2017.01.030.
    1. Nygaard AD, Holdgaard PC, Spindler KL, Pallisgaard N, Jakobsen A. The correlation between cell-free DNA and tumour burden was estimated by PET/CT in patients with advanced NSCLC. Br J Cancer. 2014;110(2):363–368. doi: 10.1038/bjc.2013.705.
    1. Fischer B, Lassen U, Mortensen J, Larsen S, Loft A, Bertelsen A, Ravn J, Clementsen P, Hogholm A, Larsen K, Rasmussen T, Keiding S, Dirksen A, Gerke O, Skov B, Steffensen I, Hansen H, Vilmann P, Jacobsen G, Backer V, Maltbaek N, Pedersen J, Madsen H, Nielsen H, Hojgaard L. Preoperative staging of lung cancer with combined PET-CT. N Engl J Med. 2009;361(1):32–39. doi: 10.1056/NEJMoa0900043.
    1. Liao S, Penney BC, Zhang H, Suzuki K, Pu Y. Prognostic value of the quantitative metabolic volumetric measurement on 18F-FDG PET/CT in stage IV nonsurgical small-cell lung cancer. Acad Radiol. 2012;19(1):69–77. doi: 10.1016/j.acra.2011.08.020.
    1. Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC) Lung Cancer. 2007;57(2):125–134. doi: 10.1016/j.lungcan.2007.03.020.
    1. Townsend DW. Physical principles and technology of clinical PET imaging. Ann Acad Med Singap. 2004;33(2):133–145.
    1. Lee P, Weerasuriya DK, Lavori PW, Quon A, Hara W, Maxim PG, Le QT, Wakelee HA, Donington JS, Graves EE, Loo BW., Jr Metabolic tumor burden predicts for disease progression and death in lung cancer. Int J Radiat Oncol Biol Phys. 2007;69(2):328–333. doi: 10.1016/j.ijrobp.2007.04.036.
    1. Downey RJ, Akhurst T, Gonen M, Vincent A, Bains MS, Larson S, Rusch V. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol. 2004;22(16):3255–3260. doi: 10.1200/JCO.2004.11.109.
    1. Sasaki R, Komaki R, Macapinlac H, Erasmus J, Allen P, Forster K, Putnam JB, Herbst RS, Moran CA, Podoloff DA, Roth JA, Cox JD. [18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol. 2005;23(6):1136–1143. doi: 10.1200/JCO.2005.06.129.
    1. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore DA, Veeriah S, Rosenthal R, Marafioti T, Kirkizlar E, Watkins TBK, McGranahan N, Ward S, Martinson L, Riley J, Fraioli F, Al Bakir M, Gronroos E, Zambrana F, Endozo R, Bi WL, Fennessy FM, Sponer N, Johnson D, Laycock J, Shafi S, Czyzewska-Khan J, Rowan A, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545(7655):446–451. doi: 10.1038/nature22364.
    1. Single Nucleotide Polymorphism Database. 2017. . Accessed 15 Jan 2018.
    1. FoundationACT™ ctDNA assay. 2017. . Accessed 30 July 2018.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Dagogo-Jack I, Bernicker E, Li T, Wang V, Ross JS, Young L, Stephens PJ, Chung J, Shaw AT, Ali SM, Miller VA, Schrock AB, Spigel DR, Ou S-HI. Genomic profiling of circulating tumor DNA (ctDNA) from patients (pts) with advanced non-small cell lung cancer (NSCLC) J Clin Oncol. 2017;35(15_suppl):9025. doi: 10.1200/JCO.2017.35.15_suppl.9025.
    1. Li H, Ma W, Yoneda KY, Moore EH, Zhang Y, Pu LL, Frampton GM, Molmen M, Stephens PJ, Li T. Severe nivolumab-induced pneumonitis preceding durable clinical remission in a patient with refractory, metastatic lung squamous cell cancer: a case report. J Hematol Oncol. 2017;10(1):64. doi: 10.1186/s13045-017-0433-z.
    1. Diaz LA, Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–586. doi: 10.1200/JCO.2012.45.2011.

Source: PubMed

3
購読する