Glycophosphopeptical AM3 Food Supplement: A Potential Adjuvant in the Treatment and Vaccination of SARS-CoV-2

Diego Fernández-Lázaro, Cesar I Fernandez-Lazaro, Juan Mielgo-Ayuso, David P Adams, Juan Luis García Hernández, Jerónimo González-Bernal, Marcela González-Gross, Diego Fernández-Lázaro, Cesar I Fernandez-Lazaro, Juan Mielgo-Ayuso, David P Adams, Juan Luis García Hernández, Jerónimo González-Bernal, Marcela González-Gross

Abstract

The world is currently experiencing the coronavirus disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome-2 (SARS-CoV-2). Its global spread has resulted in millions of confirmed infections and deaths. While the global pandemic continues to grow, the availability of drugs to treat COVID-19 infections remains limited to supportive treatments. Moreover, the current speed of vaccination campaigns in many countries has been slow. Natural substrates with biological immunomodulatory activity, such as glucans, may represent an adjuvant therapeutic agent to treat SARS-CoV-2. AM3, a natural glycophosphopeptical, has previously been shown to effectively slow, with no side effects, the progression of infectious respiratory diseases by regulating effects on innate and adaptive immunity in experimental models. No clinical studies, however, exist on the use of AM3 in SARS-CoV-2 infected patients. This review aims to summarize the beneficial effects of AM3 on respiratory diseases, the inflammatory response, modulation of immune response, and attenuation of muscle. It will also discuss its potential effects as an immune system adjuvant for the treatment of COVID-19 infections and adjuvant for SARS-CoV-2 vaccination.

Keywords: AM3; COVID-19; cytokines; food supplement; glycophosphopeptical; immunonutrition; muscular damage; vaccination.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Fernández-Lázaro, Fernandez-Lazaro, Mielgo-Ayuso, Adams, García Hernández, González-Bernal and González-Gross.

Figures

Figure 1
Figure 1
Potential of use AM3 on immune response against SARS-CoV-2. CCL, Chemokine (C-X-C motif); CCR, Chemokine (C-C motif) Receptor; CXCL, Chemokine (C-X-C motif) Ligand; CXCR, Chemokine (C-X-C motif) Receptor; DCs, Dendritic cells; IFN, Interferon; IL, Interleukin; mRNA, Messenger RNA; NK, Natural Killer; PBMCS, Peripheral blood mononuclear cells; PGE, Prostaglandin; SARS-CoV-2, Severe Acute Respiratory Syndrome-2; Th1, T helper 1; Th2, T helper 2; TNF, Tumor Necrosis Factor; +, Stimulation; -, Inhibition; ~, Modulation.
Figure 2
Figure 2
Potential beneficial impact(s) of AM3 supplementation on COVID-19 clinical features and outcomes. ALP, Alkaline Phosphatase; ALT, Aspartate Alanine aminotransferase; AST, Aspartate Aminotransferase; CK, Creatine Kinase; Gamma Glutamyl Transpeptidase; IL, Interleukin; LDH, Lactate Dehydrogenase; Mb, Myoglobin; SARS-CoV-2, Severe Acute Respiratory Syndrome-2; TNF, Tumor Necrosis Factor; TNFR, Tumor Necrosis Factor Receptor; ↓, Decrease.

References

    1. World Health Organization (WHO) . Questions and Answers About the COVID-19 Transmission. (2021). [cited 2021 May 19] Available at: .
    1. Covid-19 Map - Johns Hopkins Coronavirus Resource Center (2021). [cited 2021 May 25] Available at: .
    1. Fernández-Lázaro D, González-Bernal JJ, Sánchez-Serrano N, Navascués LJ, Ascaso-del-Río A, Mielgo-Ayuso J. Physical Exercise as a Multimodal Tool for COVID-19: Could It be Used as a Preventive Strategy? Int J Environ Res Public Health (2020) 17:8496. 10.3390/ijerph17228496
    1. Fernández-Lázaro D, Gómez NS, Serrano NS, Sosse AA, Aldea-Mansilla C. Emergency Standardization for SARS-CoV-2 Virus Diagnosis by Real-Time Reverse Transcription-Reverse Transcription Polymerase Chain Reaction (Rt-PCR) in COVID-19 Pandemic Situation. REMASP (2020) 4:1–11. 10.36300/remasp.2020.070
    1. Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. . Covid-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther (2020) 5:1–8. 10.1038/s41392-020-00243-2
    1. Phua J, Weng L, Ling L, Egi M, Lim C-M, Divatia JV, et al. . Intensive Care Management of Coronavirus Disease 2019 (COVID-19): Challenges and Recommendations. Lancet Respir Med (2020) 8:506–17. 10.1016/s2213-2600(20)30161-2
    1. Nasab MG, Saghazadeh A, Rezaei N. SARS-Cov-2–A Tough Opponent for the Immune System. Arch Med Res (2020) 51:589–92. 10.1016/j.arcmed.2020.05.020
    1. Rakedzon S, Neuberger A, Domb A, Petersiel N, Schwartz E. From Hydroxychloroquine to Ivermectin: What Are the Anti-Viral Properties of Anti-Parasitic Drugs to Combat SARS-Cov-2? J Travel Med (2021) 28:taab005. 10.1093/jtm/taab005
    1. Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The Epidemiology, Diagnosis and Treatment of COVID-19. Int J Antimicrob Agents (2020) 55:105955. 10.1016/j.ijantimicag.2020.105955
    1. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA (2020) 323:1824–36. 10.1001/jama.2020.6019
    1. Azevedo TC, Azevedo PC, Silveira RN, Carvalho AR, Cezarotti ML, Barbosa FT, et al. . Use of Remdesivir for Patients With Covid-19: A Review Article. Rev Assoc Med Bras (2020) 66:838–41. 10.1590/1806-9282.66.6.838
    1. Abdelrahman Z, Liu Q, Jiang S, Li M, Sun Q, Zhang Y, et al. . Evaluation of the Current Therapeutic Approaches for COVID-19: A Meta-Analysis. Front Pharmacol (2021) 12:607408. 10.3389/fphar.2021.607408
    1. Coutinho AE, Chapman KE. The Anti-Inflammatory and Immunosuppressive Effects of Glucocorticoids, Recent Developments and Mechanistic Insights. Mol Cell Endocrinol (2011) 335:2–13. 10.1016/j.mce.2010.04.00
    1. Recovery Collaborative Group (Group RC) . Dexamethasone in Hospitalized Patients With Covid-19—Preliminary Report. N Engl J Med (2021) 384:693–704. 10.1056/NEJMoa2021436
    1. Sood S, Bhatia GK, Seth P, Kumar P, Kaur J, Gupta V, et al. . Efficacy and Safety of New and Emerging Drugs for COVID-19: Favipiravir and Dexamethasone. Curr Pharmacol (2021) 27:1–6. 10.1007/s40495-021-00253-w
    1. Callaway E. The Race for Coronavirus Vaccines: A Graphical Guide. Nature (2020) 580:576. 10.1038/d41586-020-01221-y
    1. Forni G, Mantovani A, Forni G, Mantovani A, Moretta L, Rappuoli R, et al. . Covid-19 Vaccines: Where We Stand and Challenges Ahead. Cell Death Differ (2021) 28:626–39. 10.1038/s41418-020-00720-9
    1. Krammer F. Sars-CoV-2 Vaccines in Development. Nature (2020) 586:516–27. 10.1038/s41586-020-2798-3
    1. Coronavirus (COVID-19) Vaccinations - Statistics and Research - Our World in Data (2021). [cited 2021 May 25]. Available at: .
    1. Ferreira AO, Polonini HC, Dijkers EC. Postulated Adjuvant Therapeutic Strategies for COVID-19. J Pers Med (2020) 10:80. 10.3390/jpm10030080
    1. Vetvicka V, Vannucci L, Sima P, Richter J. Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules (2019) 24:1251. 10.3390/molecules24071251
    1. Vetvicka V, Vetvickova J. Natural Immunomodulators and Their Stimulation of Immune Reaction: True or False? Anticancer Res (2014) 34:2275–82.
    1. Alvarez-Sala J, Alvarez-Mon M. Effect of Immunomodulator AM3 on the Exacerbations in Patients With Chronic Bronchitis: A Systematic Review of Controlled Trials. Rev Clin Esp (2004) 204:466–71. 10.1157/13065976
    1. Prieto A, Reyes E, Bernstein ED, Martinez BN, Monserrat J, Izquierdo JL, et al. . Defective Natural Killer and Phagocytic Activities in Chronic Obstructive Pulmonary Disease are Restored by Glycophosphopeptical (Inmunoferon). Am J Resp Crit Care Med (2001) 163:1578–83. 10.1164/ajrccm.163.7.2002015
    1. Córdova A, Monserrat J, Villa G, Reyes E, Soto MA-M. Effects of AM3 (Inmunoferón®) on Increased Serum Concentrations of Interleukin-6 and Tumour Necrosis Factor Receptors I and II in Cyclists. J Sports Sci (2006) 24:565–73. 10.1080/02640410500141158
    1. Córdova A, Sureda A, Pons A, Alvarez-Mon M. Modulation of TNF-α, Tnf-α Receptors and IL-6 After Treatment With AM3 in Professional Cyclists. J Sports Med Phys Fitness (2014) 55:345–51.
    1. Brieva A, Guerrero A, Alonso-Lebrero J, Pivel J. Inmunoferon®, a Glycoconjugate of Natural Origin, Inhibits LPS-Induced Tnf-α Production and Inflammatory Responses. Int Immunopharmacol (2001) 1:1979–87. 10.1016/j.intimp.2005.02.009
    1. Brieva A, Guerrero A, Pivel J. Inmunoferon®, a Glycoconjugate of Natural Origin, Regulates the Liver Response to Inflammation and Inhibits TNF-α Production by an HPA Axis-Dependent Mechanism. Int Immunopharmacol (2002) 2:807–13. 10.1016/s1567-5769(02)00019-x
    1. Córdova Martínez A, Fernández-Lázaro D. New Trends in Biological Aids to Recovery After Exercise: Immunomodulators. J Hum Sport Exerc (2018) 13:116–28. 10.14198/jhse.2018.131.11
    1. Córdova A, Martin JF, Reyes E, Alvarez-Mon M. Protection Against Muscle Damage in Competitive Sports Players: The Effect of the Immunomodulator AM3. J Sports Sci (2004) 22:827–33. 10.1080/02640410410001716742
    1. Córdova A, Seco-Calvo J, Mielgo-Ayuso J, Sureda A, Álvarez-Mon M. Effect of the Immunomodulator (AM3®) on Biochemical Muscular Damage Markers in Basketball Players. Biol Exerc (2016) 12:1–13. 10.4127/jbe.2016.0105
    1. Majano P, Alonso-Lebrero JL, Janczyk A, Martín-Vichez S, Molina-Jiménez F, Brieva A, et al. . AM3 Inhibits LPS-Induced iNOS Expression in Mice. Int Immunopharmacol (2005) 5:1165–70. 10.1016/j.intimp.2005.02.009
    1. Pérez-García R, Pérez-García A, Verbeelen D, Bernstein ED, Villarrubia VG, Álvarez-Mon M. AM3 (Inmunoferón®) as an Adjuvant to Hepatitis B Vaccination in Hemodialysis Patients. Kidney Int (2002) 61:1845–52. 10.1046/j.1523-1755.2002.00335.x
    1. Sanchez L, Pena E, Civantos A, Sada G, Alvarez MM, Chirigos M, et al. . AM3, an Adjuvant to Hepatitis B Revaccination in Non-Responder Healthy Persons. J Hepatol (1995) 22:119. 10.1016/0168-8278(95)80271-1
    1. Calder PC. Nutrition, Immunity and COVID-19. BMJ NPH (2020) 3:74. 10.1136/bmjnph-2020-000085
    1. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients (2020) 12:236. 10.3390/nu12010236Nutrients
    1. Akramienė D, Kondrotas A, Didžiapetrienė J, Kėvelaitis E. Effects of ß-Glucans on the Immune System. J Med (2007) 43:597. 10.3390/medicina43080076
    1. Pizarro C, Ronco M, Maria A, Gotteland R. Beta-Glucans: What Types Exist and What Are Their Health Benefits? Rev Chil Nutr (2014) 41:439–46. 10.4067/S0717-75182014000400014
    1. Varela J, Navarro Pico M, Guerrero A, Garcia F, Gimenez Gallego G, Pivel J. Identification and Characterization of the Peptidic Component of the Immunomodulatory Glycoconjugate Immunoferon (R). Methods Find Exp Clin Pharmacol (2002) 24:471–80. 10.1002/art.10836
    1. Pantoja-Uceda D, Palomares O, Bruix M, Villalba M, Rodríguez R, Rico M, et al. . Solution Structure and Stability Against Digestion of rproBnIb, a Recombinant 2S Albumin From Rapeseed: Relationship to Its Allergenic Properties. Biochem (2004) 43:16036–45. 10.1016/0167-4838(91)90568-k
    1. Brieva A, Guerrero A, Pivel J. Immunoferon (R), an Immunomodulator of Natural Origin, Does Not Affect the Rat Liver Cytochrome P-450 and Phase II Conjugation Enzymes. Methods Find Exp Clin Pharmacol (2003) 25:187–92. 10.1358/mf.2003.25.3.769638
    1. Segura-Campos M, Chel-Guerrero L, Betancur-Ancona D. Effect of Digestion on Bioavalability of Peptides With Biological Activity. Rev Chil Nutr (2010) 37:386–91. 10.406/S0717-75182010000300014
    1. Martín-Vilchez S, Molina-Jiménez F, Alonso-Lebrero JL, Sanz-Cameno P, Rodríguez-Muñoz Y, Benedicto I, et al. . AM3, a Natural Glycoconjugate, Induces the Functional Maturation of Human Dendritic Cells. Br J Pharmacol (2008) 154:698–708. 10.1038/bjp.2008.87
    1. Serrano-Gómez D, Martínez-Nuñez RT, Sierra-Filardi E, Izquierdo N, Colmenares M, Pla J, et al. . AM3 Modulates Dendritic Cell Pathogen Recognition Capabilities by Targeting DC-SIGN. Antimicrob Agents Ch (2007) 51:2313–23. 10.1128/aac.01289-06
    1. Reyes E, Prieto A, de la Hera A, de Lucas P, Alvarez-Sala R, Alvarez-Sala JL, et al. . Treatment With AM3 Restores Defective T-Cell Function in COPD Patients. Chest (2006) 129:527–35. 10.1378/chest.129.3.527
    1. Moya P, Baixeras E, Barasoain I, Rojo J, Ronda E, Alonso M, et al. . Inmunoferon (Am3) Enhances the Activities of Early–Type Interferon Inducers and Natural Killer Cells. Immunopharmacol Immunotoxicol (1987) 9:243–56. 10.3109/08923978709035213
    1. Olivella JG, Torrus EF. Study of the Immunostimulating Effect of Glycophosphopeptical (AM3) in Mice. FEMS Immunol Med Mic (1997) 18:87–9. 10.1111/j.1574-695x.1997.tb01031
    1. Güenechea G, Bueren JA, Maganto G, Real A, Tuduri P, Guerrero A, et al. . AM5, a Protein-Associated Polysaccharide, Stimulates Hematopoiesis and Modulates the Expression of Endogenous Hematopoietic Growth Factors in Murine Long-Term Bone Marrow Cultures. Stem Cells (1995) 13:175–85. 10.1002/stem.5530130209
    1. Majano P, Roda-Navarro P, Alonso-Lebrero JL, Brieva A, Casal C, Pivel JP, et al. . AM3 Inhibits HBV Replication Through Activation of Peripheral Blood Mononuclear Cells. Int Immunopharmacol (2004) 4:921–7. 10.1016/j.intimp.2004.04.002
    1. Vardhana SA, Wolchok JD. The Many Faces of the Anti-COVID Immune Response. J Exp Med (2020) 217:e20200678. 10.1084/JEM.20200678
    1. Gómez de la Concha E. Role of the Immune Response in COVID-19. An RANM (2020) 137:113–6. 10.32440/ar.2020.137.02.rev03
    1. Zhang C, Wang X-M, Li S-R, Twelkmeyer T, Wang W-H, Zhang S-Y, et al. . NKG2A Is a NK Cell Exhaustion Checkpoint for HCV Persistence. Nat Commun (2019) 10:1–11. 10.1038/s41467-019-09212-y
    1. Hammer Q, Rückert T, Romagnani C. Natural Killer Cell Specificity for Viral Infections. Nat Immunol (2018) 19:800–8. 10.1038/s41590-018-0163-6
    1. Van Erp EA, van Kampen MR, van Kasteren PB, de Wit J. Viral Infection of Human Natural Killer Cells. Viruses (2019) 11:243. 10.3390/v11030243
    1. Fauriat C, Long EO, Ljunggren H-G, Bryceson YT. Regulation of Human NK-Cell Cytokine and Chemokine Production by Target Cell Recognition. Am J Hematol (2010) 115:2167–76. 10.1182/blood-2009-08-238469
    1. Campbell J, Grunberger T, Kochman M, White SL. A Microplaque Reduction Assay for Human and Mouse Interferon. Can J Microbiol (1975) 21:1247–53. 10.1139/m75-186
    1. Rojo J, Rejas MT, Ojeda G, Portolés P, Barasoain I. Enhancement of Lymphocyte Proliferation, Interleukin-2 Production and NK Activity by Inmunoferon (am-3), a Fungal Immunomodulator: Variations in Normal and Immunosuppressed Mice. Int J Immunopharmacol (1986) 8:593–7. 10.1016/0192-0561(86)90031-7
    1. Vg V. The Immunosenescent Phenotype in Mice and Humans can be Defined by Alterations in the Natural Immunity Reversal by Immunomodulation With Oral AM3. Immunopharmacol Immunotoxicol (1997) 19:53–74. 10.3109/08923979709038533
    1. Brunda MJ, Herberman R, Holden H. Inhibition of Murine Natural Killer Cell Activity by Prostaglandins. J Immunol (1980) 124:2682–7. 10.1016/B978-0-12-341350-5.50059-1
    1. Holt D, Ma X, Kundu N, Fulton A. Prostaglandin E 2 (PGE 2) Suppresses Natural Killer Cell Function Primarily Through the PGE 2 Receptor EP4. Cancer Immunol Immunother (2011) 69:1577–86. 10.1007/s00262-011-1064-9
    1. Kundu N, Ma X, Holt D, Goloubeva O, Ostrand-Rosenberg S, Fulton AM. Antagonism of the Prostaglandin E Receptor EP4 Inhibits Metastasis and Enhances NK Function. Breast Cancer Res Treat (2009) 117:235–42. 10.1007/s10549-008-0180-5
    1. Demaria O, Carvelli J, Batista L, Thibult M-L, Morel A, André P, et al. . Identification of Druggable Inhibitory Immune Checkpoints on Natural Killer Cells in COVID-19. Cell Mol Immunol (2020) 17:995–7. 10.1038/s41423-020-0493-9
    1. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of Dendritic Cell Activation: Impact on Priming of TH 1, TH 2 and Nonpolarized T Cells. Nat Immunol (2000) 1:311–6. 10.1038/79758
    1. Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ, et al. . LPS-Induced Cytokine Production in Human Monocytes and Macrophages. Crit Rev Immunol (2011) 31:5. 10.1615/critrevimmunol.v31.i5.20
    1. Borish LC, Steinke JW. 2. Cytokines and Chemokines. J Allergy Clin Immunol (2003) 111:S460–S75. 10.1016/j.jaci.2005.07.001
    1. Corinti S, Albanesi C, la Sala A, Pastore S, Girolomoni G. Regulatory Activity of Autocrine IL-10 on Dendritic Cell Functions. J Immunol (2001) 166:4312–8. 10.4049/jimmunol.166.7.4312
    1. Merad M, Martin JC. Pathological Inflammation in Patients With COVID-19: A Key Role for Monocytes and Macrophages. Nat Rev Immunol (2020) 20:355–62. 10.1038/s41577-020-0353-y
    1. Hu B, Huang S, Yin L. The Cytokine Storm and COVID-19. J Med Virol (2021) 93:250–6. 10.1002/jmv.26232
    1. Pontelli MC, Castro IA, Martins RB, Veras FP, La Serra L, Nascimento DC, et al. . Infection of Human Lymphomononuclear Cells by SARS-Cov-2. BioRxiv (2020) 11:1–7l. 10.1101/2020.07.28.225912
    1. Zheng F, Zhou Y, Zhou Z, Ye F, Huang B, Huang Y, et al. . SARS-Cov-2 Clearance in COVID-19 Patients With Novaferon Treatment: A Randomized, Open-label, Parallel Group Trial. Int J Infect Dis (2020) 99:84–91. 10.1016/j.ijid.2020.07.053
    1. Prompetchara E, Ketloy C, Palaga T. Immune Responses in COVID-19 and Potential Vaccines: Lessons Learned From SARS and MERS Epidemic. Asian Pac J Allergy Immunol (2020) 38:1–9. 10.12932/ap-200220-0772
    1. Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the Regulation of Immune Functions. Progress in Molecular Biology and Translational Science. Elsevier (2015) 135:355–80. 10.1016/bs.pmbts.2015.08.001
    1. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop N, et al. . Position Statement Part One: Immune Function and Exercise. Exerc Immunol Rev (2011) 17:6–63.
    1. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. . Dysregulation of Immune Response in Patients With COVID-19 in Wuhan, China. Clin Infect Dis (2020) 71:762–68. 10.1093/cid/ciaa248
    1. Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune Response in COVID-19: Addressing a Pharmacological Challenge by Targeting Pathways Triggered by SARS-Cov-2. Signal Transduct Target Ther (2020) 5:1–10. 10.1038/s41392-020-0191-1
    1. Barbosa ML, Fumian MM, Miranda AL, Barreiro EJ, Lima LM. Therapeutic Approaches for Tumor Necrosis Factor Inhibition. Braz J Pharm Sci (2011) 47:427–46. 10.1590/S1984-82502011000300002
    1. Loo Y-M, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. . Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity. J Virol (2008) 82:335–45. 10.1128/jvi.01080-07
    1. Wang JP, Kurt-Jones EA, Finberg RW. Innate Immunity to Respiratory Viruses. Cell Microbiol (2007) 9:1641–6. 10.1111/j.1462-5822.2007.00961.x
    1. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. . Coronavirus Infections and Immune Responses. J Med Virol (2020) 92:424–32. 10.1002/jmv.25685
    1. Le Page C, Genin P, Baines M, Hiscott J. Interferon Activation and Innate Immunity. Rev Immunogenet (2000) 2:374–86.
    1. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Pere H, et al. . Impaired Type I Interferon Activity and Exacerbated Inflammatory Responses in Severe Covid-19 Patients. J Sci (2020) 369:718–24. 10.1126/science.abc6027
    1. Vidal SM, Khakoo SI, Biron CA. Natural Killer Cell Responses During Viral Infections: Flexibility and Conditioning of Innate Immunity by Experience. Curr Opin Virol (2011) 1:497–512. 10.1016/j.coviro.2011.10.017
    1. Gruber C. Impaired Interferon Signature in Severe COVID-19. Nat Rev Immunol (2020) 20:353. 10.1038/s41577-020-0335-0
    1. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. . Clinical and Immunologic Features in Severe and Moderate Forms O F Coronavirus Disease. J Clin Invest (2020) 130:137244. 10.1172/jci137244
    1. Lagunas-Rangel FA, Chávez-Valencia V. High IL-6/IFN-γ Ratio Could be Associated With Severe Disease in COVID-19 Patients. J Med Virol (2020) 92:1789–90. 10.1002/jmv.25900
    1. De Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent Insights Into Emerging Coronaviruses. Nat Rev Microbiol (2016) 14:523. 10.1038/nrmicro.2016.81
    1. Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics? BioMed Res Int (2020) 2020:4389089. 10.1155/2020/4389089
    1. Astuti I. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2): An Overview of Viral Structure and Host Response. Diabetes Metab Syndr (2020) 14:407–12. 10.1016/j.dsx.2020.04.020
    1. Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, et al. . Nitric Oxide and Redox Mechanisms in the Immune Response. J Leukoc Biol (2011) 89:873–91. 10.1189/jlb.1010550
    1. Lundberg JO, Weitzberg E, Gladwin MT. The Nitrate–Nitrite–Nitric Oxide Pathway in Physiology and Therapeutics. Nat Rev Drug Discov (2008) 7:156–67. 10.1038/nrd2466
    1. Peng H-B, Spiecker M, Liao JK. Inducible Nitric Oxide: An Autoregulatory Feedback Inhibitor of Vascular Inflammation. J Immunol (1998) 161:1970–6.
    1. Vodovotz Y. Control of Nitric Oxide Production by Transforming Growth Factor-β1: Mechanistic Insights and Potential Relevance to Human Disease. Nitric Oxide (1997) 1:3– 17. 10.1006/niox.1996.0105
    1. Prado CM, Martins MA, Tibério IF. Nitric Oxide in Asthma Physiopathology. ISRN Allergy (2011) 2011:832560. 10.5402/2011/832560
    1. Zamora R, Vodovotz Y, Billiar TR. Inducible Nitric Oxide Synthase and Inflammatory Diseases. Mol Med (2000) 6:347. 10.1007/BF03401781
    1. Rosete PG, Sánchez RC, Ledesma RL, Mancilla BE, Galindo EZ. Nitric Oxide, a Multifunctional Molecule. Rev Inst Nac Enf Respir (1999) 12:300– 4.
    1. Robbins R, Barnes O, Springall D, Warren J, Kwon O, Butterry L. Expresion of Inducible Oxide Nitric Synthasa in Human Bronchial Epithelial Cells. Biochem Biophys Res Commun (1994) 203:209–18. 10.1006/bbrc.1994.2169
    1. Horby P, Lim WS, Emberson J, Mafham M, Bell J, Linsell L, et al. . Effect of Dexamethasone in Hospitalized Patients With COVID-19: Preliminary Report. N Engl J Med (2021) 384:693–704. 10.1101/2020.06.22.20137273
    1. Filippone M, Nardo D, Bonadies L, Salvadori S, Baraldi E. Update on Postnatal Corticosteroids to Prevent or Treat Bronchopulmonary Dysplasia. Am J Perinatol (2019) 36:S58–62. 10.1055/s-0039-1691802
    1. Pourahmad J, Salimi A. Isolated Human Peripheral Blood Mononuclear Cell (PBMC), a Cost Effective Tool for Predicting Immunosuppressive Effects of Drugs and Xenobiotics. IJPR (2015) 14:979.
    1. Li L, Wo J, Shao J, Zhu H, Wu N, Li M, et al. . SARS-Coronavirus Replicates in Mononuclear Cells of Peripheral Blood (Pbmcs) From SARS Patients. J Clin Virol (2003) 28:239–44. 10.1016/s1386-6532(03)00195-1
    1. Johansson SM, Admyre C, Scheynius A, Gabrielsson S. Different Types of In Vitro Generated Human Monocyte-Derived Dendritic Cells Release Exosomes With Distinct Phenotypes. J Immunol (2008) 123:491–9. 10.1111/j.1365-2567.2007.02714.x
    1. D’Alessio FR, Heller NM. Covid-19 and Myeloid Cells: Complex Interplay Correlates With Lung Severity. J Clin Investig (2020) 130:12. 10.1172/jci143361
    1. Brufsky A, Lotze MT. Dc/L-SIGNs of Hope in the COVID-19 Pandemic. J Med Virol (2020) 92:1396–8. 10.1002/jmv.25980
    1. Cui W, Fan Y, Wu W, Zhang F, Wang J-Y, Ni A-P. Expression of Lymphocytes and Lymphocyte Subsets in Patients With Severe Acute Respiratory Syndrome. Clin Infect Dis (2003) 37:857–9. 10.1086/378587
    1. Tai Y, Wang Q, Korner H, Zhang L, Wei W. Molecular Mechanisms of T Cells Activation by Dendritic Cells in Autoimmune Diseases. Front Pharmacol (2018) 9:642. 10.3389/fphar.2018.00642
    1. Garcia-Vallejo JJ, van Kooyk Y. The Physiological Role of DC-SIGN: A Tale of Mice and Men. Trends Immunol (2013) 34:482–6. 10.1016/j.it.2013.03.001
    1. Alamri A, Fisk D, Upreti D, Kung SK. A Missing Link: Engagements of Dendritic Cells in the Pathogenesis of SARS-CoV-2 Infections. Int J Mol Sci (2021) 22:1118. 10.3390/ijms22031118
    1. Henry BM, De Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, Biochemical and Immune Biomarker Abnormalities Associated With Severe Illness and Mortality in Coronavirus Disease 2019 (COVID-19): A Meta-Analysis. CCLM (2020) 58:1021–8. 10.1515/cclm-2020-0369
    1. Alvarez D, Vollmann EH, von Andrian UH. Mechanisms and Consequences of Dendritic Cell Migration. Immunity (2008) 29:325–42. 10.1016/j.immuni.2008.08.006Immunity
    1. Steinman RM, Banchereau J. Taking Dendritic Cells Into Medicine. Nature (2007) 449:419–26. 10.1038/nature06175
    1. Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, et al. . Covid-19: Melatonin as a Potential Adjuvant Treatment. Life Sci (2020) 250:117583. 10.1016/j.lfs.2020.117583
    1. Song P, Li W, Xie J, Hou Y, You C. Cytokine Storm Induced by SARS-Cov-2. Clin Chim Acta (2020) 509:280–87. 10.1016/j.cca.2020.06.017
    1. Gubernatorova E, Gorshkova E, Polinova A, Drutskaya M. Il-6: Relevance for Immunopathology of SARS-Cov-2. Cytokine Growth Factor Rev (2020) 53:13–24. 10.1016/j.cytogfr.2020.05.009
    1. Hernandez-Rojas EC, Urrego ICA, Chamorro ACR, Pretelt IS. Vacunas Para COVID-19: Estado Actual Y Perspectivas Para Su Desarrollo. Nova (2020) 18:67–74. 10.22490/24629448.4188
    1. McGill University . Covid-19 Vaccine Tracker (2021). [cited 2021 May 23] Available at: .
    1. Cavaleri M, Enzmann H, Straus S, Cooke E. The European Medicines Agency’s EU Conditional Marketing Authorisations for COVID-19 Vaccines. Lancet (2021) 397:355–7. 10.1016/S0140-6736(21)00085-4
    1. Krause PR, Gruber MF. Emergency Use Authorization of Covid Vaccines—Safety and Efficacy Follow-Up Considerations. N Engl J Med (2020) 383:e107. 10.1056/nejmp2031373
    1. Ye T, Zhong Z, García-Sastre A, Schotsaert M, De Geest BG. Current Status of COVID-19 (Pre) Clinical Vaccine Development. Angew Chemie Int Ed (2020) 59:18885–97. 10.1002/anie.202008319
    1. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. . Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med (2020) 383:2603–15. 10.1056/nejmoa2034577
    1. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. . Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med (2021) 384:403–16. 10.1056/nejmoa2035389
    1. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. . Safety and Efficacy of the ChAdOx1 nCoV-19 Vaccine (AZD1222) Against SARS-CoV-2: An Interim Analysis of Four Randomised Controlled Trials in Brazil, South Africa, and the UK. Lancet (2021) 397:99–111. 10.1016/s0140-6736(20)32661-1
    1. Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM, et al. . Interim Results of a Phase 1–2a Trial of Ad26. Cov2. S Covid-19 Vaccine. N Engl J Med (2021) 384:1824–35. 10.1056/nejmoa2034201
    1. Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. . Phase 1–2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N Engl J Med (2020) 383:2320–32. 10.1056/NEJMoa2026920
    1. Banatvala J, Van Damme P, Oehen S. Lifelong Protection Against Hepatitis B: The Role of Vaccine Immunogenicity in Immune Memory. Vaccine (2000) 19:877–85. 10.1016/s0264-410x(00)00224-3
    1. Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y, Ono M. T-Cell Dysregulation in COVID-19. Biophys Res Commun (2020) 538:204–10. 10.1016/j.bbrc.2020.10.079
    1. Fernández-Lázaro D, Fernandez-Lazaro CI, Mielgo-Ayuso J, Navascués LJ, Córdova Martínez A, Seco-Calvo J. The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review. Nutrients (2020) 12:1790. 10.3390/nu12061790
    1. Fernández-Lázaro D, Mielgo-Ayuso J, Seco Calvo J, Córdova Martínez A, Caballero García A, Fernandez-Lazaro CI. Modulation of Exercise-Induced Muscle Damage, Inflammation, and Oxidative Markers by Curcumin Supplementation in a Physically Active Population: A Systematic Review. Nutrients (2020) 12:501. 10.3390/nu12020501
    1. Pedersen BK, Saltin B. Exercise as Medicine–Evidence for Prescribing Exercise as Therapy in 26 Different Chronic Diseases. Scand J Med Sci Sports (2015) 25:1–72. 10.1111/sms.12581
    1. Ghazavi A, Ganji A, Keshavarzian N, Rabiemajd S, Mosayebi G. Cytokine Profile and Disease Severity in Patients With COVID-19. Cytokine (2020) 137:155323. 10.1016/j.cyto.2020.155323
    1. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LF. The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nat Rev Immunol (2020) 20:363–74. 10.1038/s41577-020-0311-8
    1. De Giorgio MR, Di Noia S, Morciano C, Conte D. The Impact of SARS-CoV-2 on Skeletal Muscles. Acta Myol (2020) 39:307. 10.36185/2532-1900-034
    1. Henry BM, Aggarwal G, Wong J, Benoit S, Vikse J, Plebani M, et al. . Lactate Dehydrogenase Levels Predict Coronavirus Disease 2019 (COVID-19) Severity and Mortality: A Pooled Analysis. CCLM (2020) 58:1021–8. 10.1515/cclm-2020-0369
    1. Ghahramani S, Tabrizi R, Lankarani KB, mohammad amin Kashani S, Rezaei S, Zeidi N, et al. . Laboratory Features in Severe vs. Non-Severe COVID-19 Patients, a Systematic Review and Meta-Analysis. Am J Emerg Med (2020) 25:30. 10.1186/s40001-020-00432-3
    1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. . Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med (2020) 382:1708–20. 10.1056/NEJMoa2002032
    1. Wu M, Yao L, Wang Y, Zhu X, Wang X, Tang P, et al. . Clinical Evaluation of Potential Usefulness of Serum Lactate Dehydrogenase (LDH) in 2019 Novel Coronavirus (COVID-19) Pneumonia. Respir Res (2020) 21:1–6. 10.1186/s12931-020-01427-8

Source: PubMed

3
購読する