Oxidative Stress, Apoptosis, and Mitochondrial Function in Diabetic Nephropathy

Sonia Sifuentes-Franco, Diego Enrique Padilla-Tejeda, Sandra Carrillo-Ibarra, Alejandra Guillermina Miranda-Díaz, Sonia Sifuentes-Franco, Diego Enrique Padilla-Tejeda, Sandra Carrillo-Ibarra, Alejandra Guillermina Miranda-Díaz

Abstract

Diabetic nephropathy (DN) is the second most frequent and prevalent complication of diabetes mellitus (DM). The increase in the production of oxidative stress (OS) is induced by the persistent hyperglycemic state capable of producing oxidative damage to the macromolecules (lipids, carbohydrates, proteins, and nucleic acids). OS favors the production of oxidative damage to the histones of the double-chain DNA and affects expression of the DNA repairer enzyme which leads to cell death from apoptosis. The chronic hyperglycemic state unchains an increase in advanced glycation end-products (AGE) that interact through the cellular receptors to favor activation of the transcription factor NF-κB and the protein kinase C (PKC) system, leading to the appearance of inflammation, growth, and augmentation of synthesis of the extracellular matrix (ECM) in DN. The reactive oxygen species (ROS) play an important role in the pathogenesis of diabetic complications because the production of ROS increases during the persistent hyperglycemia. The primary source of the excessive production of ROS is the mitochondria with the capacity to exceed production of endogenous antioxidants. Due to the fact that the mechanisms involved in the development of DN have not been fully clarified, there are different approaches to specific therapeutic targets or adjuvant management alternatives in the control of glycemia in DN.

Figures

Figure 1
Figure 1
Mechanisms of cellular damage from the hyperglycemic state. Demonstration of the signaling pathways that are activated in the state of persistent hyperglycemia.
Figure 2
Figure 2
Hypothetical drawing of the apoptotic process in DN from hyperglycemia. Different signaling pathways that are activated in the state of hyperglycemia lead to OS and inflammation with capacity to carry out apoptosis in susceptible cells.

References

    1. International Diabetes Federation. Atlas of diabetes. Seventh. 2015, December 2017, .
    1. World Health Organization. Diabetes programme. November 2017, .
    1. Muthuppalaniappan V. M., Sheaff M., Yaqoob M. M. Diabetic nephropathy. Medicine. 2015;43(9):520–525. doi: 10.1016/j.mpmed.2015.06.007.
    1. Batuman V., Soman A. S., Schmidt R. J., Soman S. S. Diabetic nephropathy. Medscape. November 2017, .
    1. National Institute of Diabetes and Digestive and Kidney Diseases. Diabetic kidney disease. November 2017, .
    1. Federación Mexicana de Diabetes. November 2017,
    1. United States Renal Data System (USRDS) November 2017,
    1. Gross J. L., de Azevedo M. J., Silveiro S. P., Canani L. H., Caramori M. L., Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–176. doi: 10.2337/diacare.28.1.164.
    1. Grunwald J. E., Alexander J., Ying G. S., et al. Retinopathy and chronic kidney disease in the Chronic Renal Insufficiency Cohort (CRIC) study. Archives of Ophthalmology. 2012;130(9):1136–1144. doi: 10.1001/archophthalmol.2012.1800.
    1. Martínez-Castelao A., Navarro-González J., Górriz J., de Alvaro F. The concept and the epidemiology of diabetic nephropathy have changed in recent years. Journal of Clinical Medicine. 2015;4(12):1207–1216. doi: 10.3390/jcm4061207.
    1. Mogensen C. E., Christensen C. K., Vittinghus E. The stages in diabetic renal disease: with emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32(Supplement 2):64–78. doi: 10.2337/diab.32.2.S64.
    1. Haneda M., Utsunomiya K., Koya D., et al. A new classification of diabetic nephropathy 2014: a report from joint committee on diabetic nephropathy. Clinical and Experimental Nephrology. 2015;19(1):1–5. doi: 10.1007/s10157-014-1057-z.
    1. Rossing P. Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history. Current Diabetes Reports. 2006;6(6):479–483. doi: 10.1007/s11892-006-0083-y.
    1. Oates P. J. Polyol pathway and diabetic peripheral neuropathy. International Review of Neurobiology. 2002;50:325–392. doi: 10.1016/S0074-7742(02)50082-9.
    1. Koya D., Jirousek M. R., Lin Y. W., Ishii H., Kuboki K., King G. L. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. The Journal of Clinical Investigation. 1997;100(1):115–126. doi: 10.1172/JCI119503.
    1. Forbes J. M., Thallas V., Thomas M. C., et al. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. The FASEB Journal. 2003;17(12):1762–1764. doi: 10.1096/fj.02-1102fje.
    1. Manda G., Checherita A. I., Comanescu M. V., Hinescu M. E. Redox signaling in diabetic nephropathy: hypertrophy versus death choices in mesangial cells and podocytes. Mediators of Inflammation. 2015;2015:13. doi: 10.1155/2015/604208.604208
    1. Lee H. B., Yu M. R., Yang Y., Jiang Z., Ha H. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology. 2003;14:S241–S245. doi: 10.1097/01.ASN.0000077410.66390.0F.
    1. Madeo F., Fröhlich E., Ligr M., et al. Oxygen stress: a regulator of apoptosis in yeast. The Journal of Cell Biology. 1999;145(4):757–767. doi: 10.1083/jcb.145.4.757.
    1. Forbes J. M., Coughlan M. T., Cooper M. E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57(6):1446–1454. doi: 10.2337/db08-0057.
    1. Duchen M. R. Roles of mitochondria in health and disease. Diabetes. 2004;53(Supplement 1):S96–S102. doi: 10.2337/diabetes.53.2007.S96.
    1. Ceriello A., Morocutti A., Mercuri F., et al. Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes. 2000;49(12):2170–2177. doi: 10.2337/diabetes.49.12.2170.
    1. Baynes J. W., Thorpe S. R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48(1):1–9. doi: 10.2337/diabetes.48.1.1.
    1. Addabbo F., Montagnani M., Goligorsky M. S. Mitochondria and reactive oxygen species. Hypertension. 2009;53(6):885–892. doi: 10.1161/HYPERTENSIONAHA.109.130054.
    1. Voet D., Voet J. G., Pratt C. W. Fundamentals of biochemistry: life at the molecular level. Chemistry & Biochemistry. 2016.
    1. Westermann B. Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology. 2010;11(12):872–884. doi: 10.1038/nrm3013.
    1. Shenouda S. M., Widlansky M. E., Chen K., et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation. 2011;124(4):444–453. doi: 10.1161/CIRCULATIONAHA.110.014506.
    1. Hwang I., Lee J., Huh J. Y., et al. Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes. 2012;61(3):728–738. doi: 10.2337/db11-0584.
    1. Fernyhough P., Huang T. J., Verkhratsky A. Mechanism of mitochondrial dysfunction in diabetic sensory neuropathy. Journal of the Peripheral Nervous System. 2003;8(4):227–235. doi: 10.1111/j.1085-9489.2003.03028.x.
    1. Esposito L. A., Melov S., Panov A., Cottrell B. A., Wallace D. C. Mitochondrial disease in mouse results in increased oxidative stress. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(9):4820–4825. doi: 10.1073/pnas.96.9.4820.
    1. Lieber M. R., Karanjawala Z. E. Ageing, repetitive genomes and DNA damage. Nature Reviews Molecular Cell Biology. 2004;5(1):69–75. doi: 10.1038/nrm1281.
    1. Hollensworth S. B., Shen C. C., Sim J. E., Spitz D. R., Wilson G. L., LeDoux S. P. Glial cell type-specific responses to menadione-induced oxidative stress. Free Radical Biology & Medicine. 2000;28(8):1161–1174. doi: 10.1016/S0891-5849(00)00214-8.
    1. Srinivasan S., Stevens M., Wiley J. W. Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes. 2000;49(11):1932–1938. doi: 10.2337/diabetes.49.11.1932.
    1. Ghafourifar P., Schenk U., Klein S. D., Richter C. Mitochondrial nitric-oxide synthase stimulation causes cytochromec release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. Journal of Biological Chemistry. 1999;274(44):31185–31188. doi: 10.1074/jbc.274.44.31185.
    1. Grollman A. P., Moriya M. Mutagenesis by 8-oxoguanine: an enemy within. Trends in Genetics. 1993;9(7):246–249. doi: 10.1016/0168-9525(93)90089-Z.
    1. Loft S., Vistisen K., Ewertz M., Tjønneland A., Overvad K., Poulsen H. E. Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis. 1992;13(12):2241–2247. doi: 10.1093/carcin/13.12.2241.
    1. Lane D. P. p53, guardian of the genome. Nature. 1992;358(6381):15–16. doi: 10.1038/358015a0.
    1. Xu G. W., Yao Q. H., Weng Q. F., Su B. L., Zhang X., Xiong J. H. Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. Journal of Pharmaceutical and Biomedical Analysis. 2004;36(1):101–104. doi: 10.1016/j.jpba.2004.04.016.
    1. Hinokio Y., Suzuki S., Hirai M., Suzuki C., Suzuki M., Toyota T. Urinary excretion of 8-oxo-7,8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia. 2002;45(6):877–882. doi: 10.1007/s00125-002-0831-8.
    1. Schwartzman R. A., Cidlowski J. A. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocrine Reviews. 1993;14(2):133–151. doi: 10.1210/edrv-14-2-133.
    1. Allen D. A., Harwood S., Varagunam M., Raftery M. J., Yaqoob M. M. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. The FASEB Journal. 2003;17(8):908–910. doi: 10.1096/fj.02-0130fje.
    1. Simone S., Gorin Y., Velagapudi C., Abboud H. E., Habib S. L. Mechanism of oxidative DNA damage in diabetes: tuberin inactivation and downregulation of DNA repair enzyme 8-oxo-7,8-dihydro-2′-deoxyguanosine-DNA glycosylase. Diabetes. 2008;57(10):2626–2636. doi: 10.2337/db07-1579.
    1. Adeghate E. Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: a short review. Molecular and Cellular Biochemistry. 2004;261(1):187–191. doi: 10.1023/B:MCBI.0000028755.86521.11.
    1. Droge W. Free radicals in the physiological control of cell function. Physiological Reviews. 2002;82(1):47–95. doi: 10.1152/physrev.00018.2001.
    1. Hostetter T. H. Prevention of end-stage renal disease due to type 2 diabetes. The New England Journal of Medicine. 2001;345(12):910–912. doi: 10.1056/NEJM200109203451209.
    1. de Boer I. H., Sibley S. D., Kestenbaum B., et al. Central obesity, incident microalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. Journal of the American Society of Nephrology. 2007;18(1):235–243. doi: 10.1681/ASN.2006040394.
    1. Bojestig M., Arnqvist H. J., Hermansson G., Karlberg B. E., Ludvigsson J. Declining incidence of nephropathy in insulin-dependent diabetes mellitus. The New England Journal of Medicine. 1994;330(1):15–18. doi: 10.1056/NEJM199401063300103.
    1. de Boer I. H., for the DCCT/EDIC Research Group Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):24–30. doi: 10.2337/dc13-2113.
    1. Ruggenenti P., Cravedi P., Remuzzi G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nature Reviews Nephrology. 2010;6(6):319–330. doi: 10.1038/nrneph.2010.58.
    1. Lee F. T., Cao Z., Long D. M., et al. Interactions between angiotensin II and NF-κB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. Journal of the American Society of Nephrology. 2004;15(8):2139–2151. doi: 10.1097/01.ASN.0000135055.61833.A8.
    1. de Zeeuw D., Remuzzi G., Parving H. H., et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney International. 2004;65(6):2309–2320. doi: 10.1111/j.1523-1755.2004.00653.x.
    1. Navarro J. F., Mora C. Antiproteinuric effect of pentoxifylline in patients with diabetic nephropathy. Diabetes Care. 1999;22(6):1006–1008. doi: 10.2337/diacare.22.6.1006.
    1. Navarro J. F., Mora C., Muros M., Macıéa M., Garcıéa J. Effects of pentoxifylline administration on urinary N-acetyl-β-glucosaminidase excretion in type 2 diabetic patients: a short-term, prospective, randomized study. American Journal of Kidney Diseases. 2003;42(2):264–270. doi: 10.1016/S0272-6386(03)00651-6.
    1. Navarro J. F., Mora C., Muros M., García J. Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a short-term, randomized, controlled trial. Journal of the American Society of Nephrology. 2005;16(7):2119–2126. doi: 10.1681/ASN.2005010001.
    1. Doherty G. M., Jensen J. C., Alexander H. R., Buresh C. M., Norton J. A. Pentoxifylline suppression of tumor necrosis factor gene transcription. Surgery. 1991;110(2):192–198.
    1. Cooper A., Mikhail A., Lethbridge M. W., Kemeny D. M., Macdougall I. C. Pentoxifylline improves hemoglobin levels in patients with erythropoietin-resistant anemia in renal failure. Journal of the American Society of Nephrology. 2004;15(7):1877–1882. doi: 10.1097/01.ASN.0000131523.17045.56.
    1. Kouoh F., Gressier B., Luyckx M., et al. Antioxidant properties of albumin: effect on oxidative metabolism of human neutrophil granulocytes. Il Farmaco. 1999;54(10):695–699. doi: 10.1016/S0014-827X(99)00082-8.
    1. Medina-Navarro R., Corona-Candelas I., Barajas-González S., Díaz-Flores M., Durán-Reyes G. Albumin antioxidant response to stress in diabetic nephropathy progression. PLoS One. 2014;9(9, article e106490) doi: 10.1371/journal.pone.0106490.
    1. Lim P. S., Cheng Y. M., Yang S. M. Impairments of the biological properties of serum albumin in patients on haemodialysis. Nephrology. 2007;12(1):18–24. doi: 10.1111/j.1440-1797.2006.00745.x.
    1. Yamada N., Nakayama A., Kubota K., Kawakami A., Suzuki E. Structure and function changes of oxidized human serum albumin: physiological significance of the biomarker and importance of sampling conditions for accurate measurement. Rinsho Byori. 2008;56(5):409–415.
    1. Medina-Navarro R., Durán-Reyes G., Díaz-Flores M., Vilar-Rojas C. Protein antioxidant response to the stress and the relationship between molecular structure and antioxidant function. PLoS One. 2010;5(1, article e8971) doi: 10.1371/journal.pone.0008971.
    1. Lamprecht M., Greilberger J. F., Schwaberger G., Hofmann P., Oettl K. Single bouts of exercise affect albumin redox state and carbonyl groups on plasma protein of trained men in a workload-dependent manner. Journal of Applied Physiology. 2008;104(6):1611–1617. doi: 10.1152/japplphysiol.01325.2007.
    1. Turell L., Botti H., Carballal S., et al. Reactivity of sulfenic acid in human serum albumin. Biochemistry. 2008;47(1):358–367. doi: 10.1021/bi701520y.
    1. Gaede P., Poulsen H. E., Parving H. H., Pedersen O. Double-blind, randomised study of the effect of combined treatment with vitamin C and E on albuminuria in type 2 diabetic patients. Diabetic Medicine. 2001;18(9):756–760. doi: 10.1046/j.0742-3071.2001.00574.x.
    1. Milman U., Blum S., Shapira C., et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(2):341–347. doi: 10.1161/ATVBAHA.107.153965.
    1. Bursell S. E., Clermont A. C., Aiello L. P., et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Diabetes Care. 1999;22(8):1245–1251. doi: 10.2337/diacare.22.8.1245.
    1. Heart Outcomes Prevention Evaluation Study Investigators, Yusuf S., Dagenais G., Pogue J., Bosch J., Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. The New England Journal of Medicine. 2000;342(3):154–160. doi: 10.1056/NEJM200001203420302.
    1. Cronan J. E. Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiology and Molecular Biology Reviews. 2016;80(2):429–450. doi: 10.1128/MMBR.00073-15.
    1. Packer L., Witt E. H., Tritschler H. J. Alpha-lipoic acid as a biological antioxidant. Free Radical Biology & Medicine. 1995;19(2):227–250. doi: 10.1016/0891-5849(95)00017-R.
    1. Borcea V., Nourooz-Zadeh J., Wolff S. P., et al. α-Lipoic acid decreases oxidative stress even in diabetic patients with poor glycemic control and albuminuria. Free Radical Biology & Medicine. 1999;26(11-12):1495–1500. doi: 10.1016/S0891-5849(99)00011-8.
    1. Yi X., Xu L., Hiller S., et al. Reduced expression of lipoic acid synthase accelerates diabetic nephropathy. Journal of the American Society of Nephrology. 2012;23(1):103–111. doi: 10.1681/ASN.2011010003.
    1. Wang L., Wu C. G., Fang C. Q., et al. The protective effect of α-lipoic acid on mitochondria in the kidney of diabetic rats. International Journal of Clinical and Experimental Medicine. 2013;6(2):90–97.
    1. Kamei M., Fujita T., Kanbe T., et al. The distribution and content of ubiquinone in foods. International Journal for Vitamin and Nutrition Research. 1986;56(1):57–63.
    1. Schmelzer C., Lindner I., Rimbach G., Niklowitz P., Menke T., Döring F. Functions of coenzyme Q10 in inflammation and gene expression. BioFactors. 2008;32(1-4):179–183. doi: 10.1002/biof.5520320121.
    1. Kohli Y., Suto Y., Kodama T. Effect of hypoxia on acetic acid ulcer of the stomach in rats with or without coenzyme Q10. The Japanese Journal of Experimental Medicine. 1981;51(2):105–108.
    1. Lenaz G., Fato R., Formiggini G., Genova M. L. The role of coenzyme Q in mitochondrial electron transport. Mitochondrion. 2007;7:S8–S33. doi: 10.1016/j.mito.2007.03.009.
    1. Ernster L., Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1995;1271(1):195–204. doi: 10.1016/0925-4439(95)00028-3.
    1. Persson M. F., Franzén S., Catrina S. B., et al. Coenzyme Q10 prevents GDP-sensitive mitochondrial uncoupling, glomerular hyperfiltration and proteinuria in kidneys from db/db mice as a model of type 2 diabetes. Diabetologia. 2012;55(5):1535–1543. doi: 10.1007/s00125-012-2469-5.
    1. Sourris K. C., Harcourt B. E., Tang P. H., et al. Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radical Biology & Medicine. 2012;52(3):716–723. doi: 10.1016/j.freeradbiomed.2011.11.017.
    1. Maheshwari R. A., Balaraman R., Sen A. K., Seth A. K. Effect of coenzyme Q10 alone and its combination with metformin on streptozotocin-nicotinamide-induced diabetic nephropathy in rats. Indian Journal of Pharmacology. 2014;46(6):627–632. doi: 10.4103/0253-7613.144924.
    1. Gasser D. L., Winkler C. A., Peng M., et al. Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10. American Journal of Physiology-Renal Physiology. 2013;305(8):F1228–F1238. doi: 10.1152/ajprenal.00143.2013.
    1. Bertelli A. A. A., Das D. K. Grapes, wines, resveratrol, and heart health. Journal of Cardiovascular Pharmacology. 2009;54(6):468–476. doi: 10.1097/FJC.0b013e3181bfaff3.
    1. Brasnyó P., Molnár G. A., Mohás M., et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. The British Journal of Nutrition. 2011;106(3):383–389. doi: 10.1017/S0007114511000316.
    1. Kondratyuk T. P., Park E. J., Marler L. E., et al. Resveratrol derivatives as promising chemopreventive agents with improved potency and selectivity. Molecular Nutrition & Food Research. 2011;55(8):1249–1265. doi: 10.1002/mnfr.201100122.
    1. Chang C. C., Chang C. Y., Wu Y. T., Huang J. P., Yen T. H., Hung L. M. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. Journal of Biomedical Science. 2011;18(1):p. 47. doi: 10.1186/1423-0127-18-47.
    1. Ross R. Atherosclerosis — an inflammatory disease. The New England Journal of Medicine. 1999;340(2):115–126. doi: 10.1056/NEJM199901143400207.
    1. Shepherd J., Kastelein J. J., Bittner V., et al. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets) study. Journal of the American College of Cardiology. 2008;51(15):1448–1454. doi: 10.1016/j.jacc.2007.11.072.
    1. Brouwers F. P., Asselbergs F. W., Hillege H. L., et al. Long-term effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria: ten years of follow-up of Prevention of Renal and Vascular End-stage Disease Intervention Trial (PREVEND IT) American Heart Journal. 2011;161(6):1171–1178. doi: 10.1016/j.ahj.2011.03.028.
    1. Shen X., Zhang Z., Zhang X., et al. Efficacy of statins in patients with diabetic nephropathy: a meta-analysis of randomized controlled trials. Lipids in Health and Disease. 2016;15(1):p. 179. doi: 10.1186/s12944-016-0350-0.
    1. Hopper A. H., Tindall H., Davies J. A. Administration of aspirin-dipyridamole reduces proteinuria in diabetic nephropathy. Nephrology Dialysis Transplantation. 1989;4(2):140–143. doi: 10.1093/oxfordjournals.ndt.a091843.
    1. Mulay S. R., Gaikwad A. B., Tikoo K. Combination of aspirin with telmisartan suppresses the augmented TGFβ/smad signaling during the development of streptozotocin-induced type I diabetic nephropathy. Chemico-Biological Interactions. 2010;185(2):137–142. doi: 10.1016/j.cbi.2010.03.008.
    1. Cheng H. F., Wang C. J., Moeckel G. W., Zhang M. Z., McKanna J. A., Harris R. C. Cyclooxygenase-2 inhibitor blocks expression of mediators of renal injury in a model of diabetes and hypertension. Kidney International. 2002;62(3):929–939. doi: 10.1046/j.1523-1755.2002.00520.x.
    1. Sinsakul M., Sika M., Rodby R., et al. A randomized trial of a 6-week course of celecoxib on proteinuria in diabetic kidney disease. American Journal of Kidney Diseases. 2007;50(6):946–951. doi: 10.1053/j.ajkd.2007.09.005.
    1. Kobayashi M., Yamamoto M. Nrf2–Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Advances in Enzyme Regulation. 2006;46(1):113–140. doi: 10.1016/j.advenzreg.2006.01.007.
    1. de Haan J. B. Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes. 2011;60(11):2683–2684. doi: 10.2337/db11-1072.
    1. Yang L., Palliyaguru D. L., Kensler T. W. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. Seminars in Oncology. 2016;43(1):146–153. doi: 10.1053/j.seminoncol.2015.09.013.
    1. Pall M. L., Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Acta Physiologica Sinica. 2015;67(1):1–18. doi: 10.13294/j.aps.2015.0001.
    1. Xue M., Qian Q., Adaikalakoteswari A., Rabbani N., Babaei-Jadidi R., Thornalley P. J. Activation of NF-E2–related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease. Diabetes. 2008;57(10):2809–2817. doi: 10.2337/db06-1003.
    1. Adamczak M., Wiecek A. The adipose tissue as an endocrine organ. Seminars in Nephrology. 2013;33(1):2–13. doi: 10.1016/j.semnephrol.2012.12.008.
    1. Kadowaki T., Yamauchi T. Adiponectin and adiponectin receptors. Endocrine Reviews. 2005;26(3):439–451. doi: 10.1210/er.2005-0005.
    1. Yamauchi T., Kadowaki T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. International Journal of Obesity. 2008;32(S7):S13–S18. doi: 10.1038/ijo.2008.233.
    1. Fisher F. F. M., Trujillo M. E., Hanif W., et al. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males. Diabetologia. 2005;48(6):1084–1087. doi: 10.1007/s00125-005-1758-7.
    1. Kacso I., Lenghel A., Bondor C. I., et al. Low plasma adiponectin levels predict increased urinary albumin/creatinine ratio in type 2 diabetes patients. International Urology and Nephrology. 2012;44(4):1151–1157. doi: 10.1007/s11255-011-0064-1.
    1. Fields D. A., Schneider C. R., Pavela G. A narrative review of the associations between six bioactive components in breast milk and infant adiposity. Obesity. 2016;24(6):1213–1221. doi: 10.1002/oby.21519.
    1. Fisman E. Z., Tenenbaum A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovascular Diabetology. 2014;13(1):p. 103. doi: 10.1186/1475-2840-13-103.
    1. Menini S., Amadio L., Oddi G., et al. Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress. Diabetes. 2006;55(6):1642–1650. doi: 10.2337/db05-1477.
    1. Mima A., Hiraoka-Yamomoto J., Li Q., et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes. 2012;61(11):2967–2979. doi: 10.2337/db11-1824.
    1. Mima A., Kitada M., Geraldes P., et al. Glomerular VEGF resistance induced by PKCδ/SHP-1 activation and contribution to diabetic nephropathy. The FASEB Journal. 2012;26(7):2963–2974. doi: 10.1096/fj.11-202994.
    1. Kamal F., Yanakieva-Georgieva N., Piao H., Morioka T., Oite T. Local delivery of angiotensin II receptor blockers into the kidney passively attenuates inflammatory reactions during the early phases of streptozotocin-induced diabetic nephropathy through inhibition of calpain activity. Nephron. 2010;115(3):e69–e79. doi: 10.1159/000313832.
    1. Yang H. C., Deleuze S., Zuo Y., Potthoff S. A., Ma L. J., Fogo A. B. The PPARγ agonist pioglitazone ameliorates aging-related progressive renal injury. Journal of the American Society of Nephrology. 2009;20(11):2380–2388. doi: 10.1681/ASN.2008111138.
    1. Wu J., Guan T. J., Zheng S., et al. Inhibition of inflammation by pentosan polysulfate impedes the development and progression of severe diabetic nephropathy in aging C57B6 mice. Laboratory Investigation. 2011;91(10):1459–1471. doi: 10.1038/labinvest.2011.93.
    1. Lieberthal W., Levine J. S. The role of the mammalian target of rapamycin (mTOR) in renal disease. Journal of the American Society of Nephrology. 2009;20(12):2493–2502. doi: 10.1681/ASN.2008111186.
    1. Nagai K., Matsubara T., Mima A., et al. Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy. Kidney International. 2005;68(2):552–561. doi: 10.1111/j.1523-1755.2005.00433.x.
    1. Velagapudi C., Bhandari B. S., Abboud-Werner S., Simone S., Abboud H. E., Habib S. L. The tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes. Journal of the American Society of Nephrology. 2011;22(2):262–273. doi: 10.1681/ASN.2010040352.
    1. Mori H., Inoki K., Masutani K., et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochemical and Biophysical Research Communications. 2009;384(4):471–475. doi: 10.1016/j.bbrc.2009.04.136.
    1. Yang Y., Wang J., Qin L., et al. Rapamycin prevents early steps of the development of diabetic nephropathy in rats. American Journal of Nephrology. 2007;27(5):495–502. doi: 10.1159/000106782.
    1. Yerneni K. K., Bai W., Khan B. V., Medford R. M., Natarajan R. Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes. 1999;48(4):855–864. doi: 10.2337/diabetes.48.4.855.
    1. Mima A., Ohshiro Y., Kitada M., et al. Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney International. 2011;79(8):883–896. doi: 10.1038/ki.2010.526.
    1. Ohshiro Y., Ma R. C., Yasuda Y., et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cβ–null mice. Diabetes. 2006;55(11):3112–3120. doi: 10.2337/db06-0895.
    1. Gilbert R. E., Kim S. A., Tuttle K. R., et al. Effect of ruboxistaurin on urinary transforming growth factor-β in patients with diabetic nephropathy and type 2 diabetes. Diabetes Care. 2007;30(4):995–996. doi: 10.2337/dc06-2079.
    1. Toto R. D. SGLT-2 inhibition: a potential new treatment for diabetic kidney disease? Nephron. 2017;137(1):64–67. doi: 10.1159/000450895.
    1. Zanoli L., Granata A., Lentini P., et al. Sodium-glucose linked transporter-2 inhibitors in chronic kidney disease. Scientific World Journal. 2015;2015, article 317507:6. doi: 10.1155/2015/317507.
    1. Yale J.-F., Bakris G., Cariou B., et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes, Obesity & Metabolism. 2013;15(5):463–473. doi: 10.1111/dom.12090.
    1. Heerspink H. J. L., Johnsson E., Gause-Nilsson I., Cain V. A., Sjöström C. D. Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers. Diabetes, Obesity & Metabolism. 2016;18(6):590–597. doi: 10.1111/dom.12654.
    1. Chonchol M., Shlipak M. G., Katz R., et al. Relationship of uric acid with progression of kidney disease. American Journal of Kidney Diseases. 2007;50(2):239–247. doi: 10.1053/j.ajkd.2007.05.013.
    1. Panchapakesan U., Pollock C. A. DPP-4 inhibitors—renoprotection in diabetic nephropathy? Diabetes. 2014;63(6):1829–1830. doi: 10.2337/db14-0366.

Source: PubMed

3
購読する