Smartphone App with an Accelerometer Enhances Patients' Physical Activity Following Elective Orthopedic Surgery: A Pilot Study

Hanneke C van Dijk-Huisman, Anouk T R Weemaes, Tim A E J Boymans, Antoine F Lenssen, Rob A de Bie, Hanneke C van Dijk-Huisman, Anouk T R Weemaes, Tim A E J Boymans, Antoine F Lenssen, Rob A de Bie

Abstract

Low physical activity (PA) levels are common in hospitalized patients. Digital health tools could be valuable in preventing the negative effects of inactivity. We therefore developed Hospital Fit; which is a smartphone application with an accelerometer, designed for hospitalized patients. It enables objective activity monitoring and provides patients with insights into their recovery progress and offers a tailored exercise program. The aim of this study was to investigate the potential of Hospital Fit to enhance PA levels and functional recovery following orthopedic surgery. PA was measured with an accelerometer postoperatively until discharge. The control group received standard physiotherapy, while the intervention group used Hospital Fit in addition to physiotherapy. The time spent active and functional recovery (modified Iowa Level of Assistance Scale) on postoperative day one (POD1) were measured. Ninety-seven patients undergoing total knee or hip arthroplasty were recruited. Hospital Fit use, corrected for age, resulted in patients standing and walking on POD1 for an average increase of 28.43 min (95% confidence interval (CI): 5.55-51.32). The odds of achieving functional recovery on POD1, corrected for the American Society of Anesthesiologists classification, were 3.08 times higher (95% CI: 1.14-8.31) with Hospital Fit use. A smartphone app combined with an accelerometer demonstrates the potential to enhance patients' PA levels and functional recovery during hospitalization.

Keywords: activity monitoring; arthroplasty; functional recovery; hospitalization; mHealth; physical activity; physiotherapy; wearable sensors.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. All subjects gave their informed consent for inclusion before study initiation. This study was performed in compliance with the Declaration of Helsinki and the protocol was approved by the Medical Ethics Committee of the University Hospital Maastricht and Maastricht University (METC azM/UM), registration number 2017-0175.

Figures

Figure 1
Figure 1
The MOX activity monitor.
Figure 2
Figure 2
Overview of the total number of minutes spent standing and walking per day (A) and per week (B).
Figure 3
Figure 3
Recovery assessment with the option of scoring the extent of functional recovery based on the modified Iowa Level of Assistance Scale (A); an overview of the extent of functional recovery (B); the amount of assistance needed and progress over time per activity (C).
Figure 4
Figure 4
Exercise videos.
Figure 5
Figure 5
Lateral view (A) and frontal view (B) of the placement of the MOX activity monitor with the patient in a seated position. Arrows indicate the location of the hypoallergenic patch and sensor on the upper leg, which is 10 cm proximal to the patella.
Figure 6
Figure 6
Example of the raw tri-axial accelerometer data of one subject for one measurement day. One measurement day (24 h) is represented on the x-axis. G-forces per sensor axes (X, Y and Z) are represented on the y-axis.
Figure 7
Figure 7
Data processing—a schematic overview of the physical activity classification algorithm for the accelerometer worn on the upper leg location.

References

    1. Jansson M.M., Harjumaa M., Puhto A.P., Pikkarainen M. Patients’ satisfaction and experiences during elective primary fast-track total hip and knee arthroplasty journey: A qualitative study. J. Clin. Nurs. 2019 doi: 10.1111/jocn.15028.
    1. Berghmans D.D.P., Lenssen A.F., Emans P.J., de Bie R.A. Functions, disabilities and perceived health in the first year after total knee arthroplasty; a prospective cohort study. BMC Musculoskelet. Disord. 2018;19:250. doi: 10.1186/s12891-018-2159-7.
    1. Ibrahim M.S., Khan M.A., Nizam I., Haddad F.S. Peri-operative interventions producing better functional outcomes and enhanced recovery following total hip and knee arthroplasty: An evidence-based review. BMC Med. 2013;11:37. doi: 10.1186/1741-7015-11-37.
    1. Carr A.J., Robertsson O., Graves S., Price A.J., Arden N.K., Judge A., Beard D.J. Knee replacement. Lancet. 2012;379:1331–1340. doi: 10.1016/S0140-6736(11)60752-6.
    1. AJRR . 2019 Annual Report. American Academy of Orthopaedic Surgeons (AAOS); Rosemont, IL, USA: 2019.
    1. Soeters R., White P.B., Murray-Weir M., Koltsov J.C.B., Alexiades M.M., Ranawat A.S. Preoperative physical therapy education reduces time to meet functional milestones after total joint arthroplasty. Clin. Orthop. Relat. Res. 2018;476:40–48. doi: 10.1007/s11999.0000000000000010.
    1. Tanzer D., Smith K., Tanzer M. Changing Patient expectations decreases length of stay in an enhanced recovery program for THA. Clin. Orthop. Relat. Res. 2018;476:372–378. doi: 10.1007/s11999.0000000000000043.
    1. Didden A.G.M., Punt I.M., Feczko P.Z., Lenssen A.F. Enhanced recovery in usual health care improves functional recovery after total knee arthroplasty. Int. J. Orthop. Trauma Nurs. 2019;34:9–15. doi: 10.1016/j.ijotn.2019.03.003.
    1. Engdal M., Foss O.A., Taraldsen K., Husby V.S., Winther S.B. Daily Physical activity in total hip arthroplasty patients undergoing different surgical approaches: A Cohort study. Am. J. Phys. Med. Rehabil. 2017;96:473–478. doi: 10.1097/PHM.0000000000000657.
    1. Den Hertog A., Gliesche K., Timm J., Muhlbauer B., Zebrowski S. Pathway-controlled fast-track rehabilitation after total knee arthroplasty: A randomized prospective clinical study evaluating the recovery pattern, drug consumption, and length of stay. Arch. Orthop. Trauma. Surg. 2012;132:1153–1163. doi: 10.1007/s00402-012-1528-1.
    1. Malviya A., Martin K., Harper I., Muller S.D., Emmerson K.P., Partington P.F., Reed M.R. Enhanced recovery program for hip and knee replacement reduces death rate. Acta Orthop. 2011;82:577–581. doi: 10.3109/17453674.2011.618911.
    1. Brown C.J., Roth D.L., Allman R.M. Validation of use of wireless monitors to measure levels of mobility during hospitalization. J. Rehabil. Res. Dev. 2008;45:551–558. doi: 10.1682/JRRD.2007.06.0086.
    1. Pedersen M.M., Bodilsen A.C., Petersen J., Beyer N., Andersen O., Lawson-Smith L., Kehlet H., Bandholm T. Twenty-four-hour mobility during acute hospitalization in older medical patients. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013;68:331–337. doi: 10.1093/gerona/gls165.
    1. Evensen S., Sletvold O., Lydersen S., Taraldsen K. Physical activity among hospitalized older adults—An observational study. BMC Geriatr. 2017;17:110. doi: 10.1186/s12877-017-0499-z.
    1. So C., Pierluissi E. Attitudes and expectations regarding exercise in the hospital of hospitalized older adults: A qualitative study. J. Am. Geriatr. Soc. 2012;60:713–718. doi: 10.1111/j.1532-5415.2012.03900.x.
    1. Hoogeboom T.J., Dronkers J.J., Hulzebos E.H., van Meeteren N.L. Merits of exercise therapy before and after major surgery. Curr. Opin. Anaesthesiol. 2014;27:161–166. doi: 10.1097/ACO.0000000000000062.
    1. Hoogeboom T.J., van Meeteren N.L., Schank K., Kim R.H., Miner T., Stevens-Lapsley J.E. Risk factors for delayed inpatient functional recovery after total knee arthroplasty. Biomed. Res. Int. 2015;2015:167643. doi: 10.1155/2015/167643.
    1. Lenssen A.F., Crijns Y.H., Waltje E.M., van Steyn M.J., Geesink R.J., van den Brandt P.A., de Bie R.A. Efficiency of immediate postoperative inpatient physical therapy following total knee arthroplasty: An RCT. BMC Musculoskelet. Disord. 2006;7:71. doi: 10.1186/1471-2474-7-71.
    1. Joosen P., Piette D., Buekers J., Taelman J., Berckmans D., De Boever P. A smartphone-based solution to monitor daily physical activity in a care home. J. Telemed. Telecare. 2019;25:611–622. doi: 10.1177/1357633X18790170.
    1. WHO . mHealth: New Horizons for Health Through Mobile Technologies. WHO; Geneva, Switzerland: 2011.
    1. Ureña R., Chiclana F., Gonzalez-Alvarez A., Herrera-Viedma E., Moral-Munoz J.A. m-SFT: A novel mobile health system to assess the elderly physical condition. Sensors. 2020;20:1462. doi: 10.3390/s20051462.
    1. Block V.A., Pitsch E., Tahir P., Cree B.A., Allen D.D., Gelfand J.M. Remote Physical activity monitoring in neurological disease: A systematic review. PLoS ONE. 2016;11:e0154335. doi: 10.1371/journal.pone.0154335.
    1. Thijs I., Fresiello L., Oosterlinck W., Sinnaeve P., Rega F. Assessment of physical activity by wearable technology during rehabilitation after cardiac surgery: Explorative Prospective monocentric observational cohort study. JMIR mHealth uHealth. 2019;7:e9865. doi: 10.2196/mhealth.9865.
    1. Vandelanotte C., Muller A.M., Short C.E., Hingle M., Nathan N., Williams S.L., Lopez M.L., Parekh S., Maher C.A. Past, present, and future of eHealth and mHealth research to improve physical activity and dietary behaviors. J. Nutr. Educ. Behav. 2016;48:219–228. doi: 10.1016/j.jneb.2015.12.006.
    1. Coughlin S.S., Whitehead M., Sheats J.Q., Mastromonico J., Smith S. A review of smartphone applications for promoting physical activity. Jacobs J. Community Med. 2016;2:1–14.
    1. van der Weegen S., Verwey R., Spreeuwenberg M., Tange H., van der Weijden T., de Witte L. It’s life! Mobile and web-based monitoring and feedback tool embedded in primary care increases physical activity: A cluster randomized controlled trial. J. Med. Internet Res. 2015;17:e184. doi: 10.2196/jmir.4579.
    1. Feldman D.I., Theodore Robison W., Pacor J.M., Caddell L.C., Feldman E.B., Deitz R.L., Feldman T., Martin S.S., Nasir K., Blaha M.J. Harnessing mHealth technologies to increase physical activity and prevent cardiovascular disease. Clin. Cardiol. 2018;41:985–991. doi: 10.1002/clc.22968.
    1. Ramkumar P.N., Haeberle H.S., Ramanathan D., Cantrell W.A., Navarro S.M., Mont M.A., Bloomfield M., Patterson B.M. Remote Patient monitoring using mobile health for total knee arthroplasty: Validation of a wearable and machine learning-based surveillance platform. J. Arthroplast. 2019;34:2253–2259. doi: 10.1016/j.arth.2019.05.021.
    1. Ramkumar P.N., Haeberle H.S., Bloomfield M.R., Schaffer J.L., Kamath A.F., Patterson B.M., Krebs V.E. Artificial Intelligence and arthroplasty at a single institution: Real-world applications of machine learning to big data, value-based care, mobile health, and remote patient monitoring. J. Arthroplast. 2019;34:2204–2209. doi: 10.1016/j.arth.2019.06.018.
    1. Correia F.D., Nogueira A., Magalhães I., Guimarães J., Moreira M., Barradas I., Molinos M., Teixeira L., Tulha J., Seabra R., et al. Medium-Term outcomes of digital versus conventional home-based rehabilitation after total knee arthroplasty: Prospective, parallel-group feasibility study. JMIR Rehabil. Assist. Technol. 2019;6:e13111. doi: 10.2196/13111.
    1. Dorje T., Zhao G., Scheer A., Tsokey L., Wang J., Chen Y., Tso K., Tan B.K., Ge J., Maiorana A. SMARTphone and social media-based Cardiac Rehabilitation and Secondary Prevention (SMART-CR/SP) for patients with coronary heart disease in China: A randomised controlled trial protocol. BMJ Open. 2018;8:e021908. doi: 10.1136/bmjopen-2018-021908.
    1. Chen K.Y., Janz K.F., Zhu W., Brychta R.J. Redefining the roles of sensors in objective physical activity monitoring. Med. Sci. Sports Exerc. 2012;44:13–23. doi: 10.1249/MSS.0b013e3182399bc8.
    1. Evenson K.R., Goto M.M., Furberg R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015;12:159. doi: 10.1186/s12966-015-0314-1.
    1. Bijnens W.A., Aarts J., Stevens A., Ummels D., Meijer K. Optimization and validation of an adjustable activity classification algorithm for assessment of physical behavior in elderly. Sensors. 2019;19:5344. doi: 10.3390/s19245344.
    1. Berendsen B.A., Hendriks M.R., Meijer K., Plasqui G., Schaper N.C., Savelberg H.H. Which activity monitor to use? Validity, reproducibility and user friendliness of three activity monitors. BMC Public Health. 2014;14:749. doi: 10.1186/1471-2458-14-749.
    1. Annegarn J., Spruit M.A., Uszko-Lencer N.H., Vanbelle S., Savelberg H.H., Schols A.M., Wouters E.F., Meijer K. Objective physical activity assessment in patients with chronic organ failure: A validation study of a new single-unit activity monitor. Arch. Phys. Med. Rehabil. 2011;92:1852–1857. doi: 10.1016/j.apmr.2011.06.021.
    1. Manas A., Del Pozo-Cruz B., Garcia-Garcia F.J., Guadalupe-Grau A., Ara I. Role of objectively measured sedentary behaviour in physical performance, frailty and mortality among older adults: A short systematic review. Eur. J. Sport Sci. 2017;17:940–953. doi: 10.1080/17461391.2017.1327983.
    1. Shields R.K., Enloe L.J., Evans R.E., Smith K.B., Steckel S.D. Reliability, validity, and responsiveness of functional tests in patients with total joint replacement. Phys. Ther. 1995;75:169–176. doi: 10.1093/ptj/75.3.169.
    1. Bercken V.e.V.d. Lineaire Regressieanalyse. 1st ed. Noordhoff Uitgevers bv; Groningen/Houten, The Netherlands: 2010.
    1. Twisk J.W.R. Inleiding in de Toegepaste Biostatistiek. 2nd ed. Elsevier Gezondheidszorg; Maarssen, The Netherlands: 2010.
    1. Fisher S.R., Goodwin J.S., Protas E.J., Kuo Y.F., Graham J.E., Ottenbacher K.J., Ostir G.V. Ambulatory activity of older adults hospitalized with acute medical illness. J. Am. Geriatr. Soc. 2011;59:91–95. doi: 10.1111/j.1532-5415.2010.03202.x.
    1. Ostir G.V., Berges I.M., Kuo Y.F., Goodwin J.S., Fisher S.R., Guralnik J.M. Mobility activity and its value as a prognostic indicator of survival in hospitalized older adults. J. Am. Geriatr. Soc. 2013;61:551–557. doi: 10.1111/jgs.12170.
    1. Brown C.J., Williams B.R., Woodby L.L., Davis L.L., Allman R.M. Barriers to mobility during hospitalization from the perspectives of older patients and their nurses and physicians. J. Hosp. Med. 2007;2:305–313. doi: 10.1002/jhm.209.
    1. Koenders N., van Oorsouw R., Seeger J.P.H., Nijhuis-van der Sanden M.W.G., van de Glind I., Hoogeboom T.J. “I’m not going to walk, just for the sake of walking…”: A qualitative, phenomenological study on physical activity during hospital stay. Disabil. Rehabil. 2018:1–8. doi: 10.1080/09638288.2018.1492636.
    1. Small S.R., Bullock G.S., Khalid S., Barker K., Trivella M., Price A.J. Current clinical utilisation of wearable motion sensors for the assessment of outcome following knee arthroplasty: A scoping review. BMJ Open. 2019;9:e033832. doi: 10.1136/bmjopen-2019-033832.
    1. Brønd J.C., Arvidsson D. Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts. J. Appl. Physiol. 2016;120:362–369. doi: 10.1152/japplphysiol.00628.2015.
    1. Godfrey A., Hetherington V., Shum H., Bonato P., Lovell N.H., Stuart S. From A to Z: Wearable technology explained. Maturitas. 2018;113:40–47. doi: 10.1016/j.maturitas.2018.04.012.
    1. Clark C.C.T., Nobre G.C., Fernandes J.F.T., Moran J., Drury B., Mannini A., Gronek P., Podstawski R. Physical activity characterization: Does one site fit all? Physiol. Meas. 2018;39:09TR02. doi: 10.1088/1361-6579/aadad0.
    1. Matthews C.E., Hagströmer M., Pober D.M., Bowles H.R. Best practices for using physical activity monitors in population-based research. Med. Sci. Sports Exerc. 2012;44:68–76. doi: 10.1249/MSS.0b013e3182399e5b.
    1. Schotanus M.G.M., Bemelmans Y.F.L., Grimm B., Heyligers I.C., Kort N.P. Physical activity after outpatient surgery and enhanced recovery for total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2017;25:3366–3371. doi: 10.1007/s00167-016-4256-1.
    1. Fenten M.G.E., Bakker S.M.K., Scheffer G.J., Wymenga A.B., Stienstra R., Heesterbeek P.J.C. Femoral nerve catheter vs. local infiltration for analgesia in fast track total knee arthroplasty: Short-term and long-term outcomes. Br. J. Anaesth. 2018;121:850–858. doi: 10.1016/j.bja.2018.05.069.
    1. Luna I.E., Kehlet H., Wede H.R., Hoevsgaard S.J., Aasvang E.K. Objectively measured early physical activity after total hip or knee arthroplasty. J. Clin. Monit. Comput. 2019;33:509–522. doi: 10.1007/s10877-018-0185-5.
    1. Krenk L., Jennum P., Kehlet H. Activity, sleep and cognition after fast-track hip or knee arthroplasty. J. Arthroplast. 2013;28:1265–1269. doi: 10.1016/j.arth.2013.02.013.
    1. Tsuji S., Tomita T., Fujii M., Laskin R.S., Yoshikawa H., Sugamoto K. Is minimally invasive surgery-total knee arthroplasty truly less invasive than standard total knee arthroplasty? A quantitative evaluation. J. Arthroplast. 2010;25:970–976. doi: 10.1016/j.arth.2009.06.016.
    1. Hayashi K., Kako M., Suzuki K., Takagi Y., Terai C., Yasuda S., Kadono I., Seki T., Hiraiwa H., Ushida T., et al. Impact of variation in physical activity after total joint replacement. J. Pain Res. 2018;11:2399–2406. doi: 10.2147/JPR.S178853.
    1. Twiggs J., Salmon L., Kolos E., Bogue E., Miles B., Roe J. Measurement of physical activity in the pre- and early post-operative period after total knee arthroplasty for Osteoarthritis using a Fitbit Flex device. Med. Eng. Phys. 2018;51:31–40. doi: 10.1016/j.medengphy.2017.10.007.
    1. Bassett D.R., John D. Use of pedometers and accelerometers in clinical populations: Validity and reliability issues. Phys. Ther. Rev. 2010;15:135–142. doi: 10.1179/1743288X10Y.0000000004.
    1. Peel N.M., Kuys S.S., Klein K. Gait speed as a measure in geriatric assessment in clinical settings: A systematic review. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013;68:39–46. doi: 10.1093/gerona/gls174.
    1. Floegel T.A., Florez-Pregonero A., Hekler E.B., Buman M.P. Validation of consumer-based hip and wrist activity monitors in older adults with varied ambulatory abilities. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2017;72:229–236. doi: 10.1093/gerona/glw098.
    1. Beevi F.H., Miranda J., Pedersen C.F., Wagner S. An evaluation of commercial pedometers for monitoring slow walking speed populations. Telemed. J. E Health. 2016;22:441–449. doi: 10.1089/tmj.2015.0120.
    1. Martin J.B., Krč K.M., Mitchell E.A., Eng J.J., Noble J.W. Pedometer accuracy in slow walking older adults. Int. J. Ther. Rehabil. 2012;19:387–393. doi: 10.12968/ijtr.2012.19.7.387.
    1. Cyarto E.V., Myers A., Tudor-Locke C. Pedometer accuracy in nursing home and community-dwelling older adults. Med. Sci. Sports Exerc. 2004;36:205–209. doi: 10.1249/01.MSS.0000113476.62469.98.
    1. Argent R., Slevin P., Bevilacqua A., Neligan M., Daly A., Caulfield B. Clinician perceptions of a prototype wearable exercise biofeedback system for orthopaedic rehabilitation: A qualitative exploration. BMJ Open. 2018;8:e026326. doi: 10.1136/bmjopen-2018-026326.
    1. Argent R., Slevin P., Bevilacqua A., Neligan M., Daly A., Caulfield B. Wearable sensor-based exercise biofeedback for orthopaedic rehabilitation: A mixed methods user evaluation of a prototype system. Sensors. 2019;19:432. doi: 10.3390/s19020432.
    1. Kayaalp M.E., Agres A.N., Reichmann J., Bashkuev M., Duda G.N., Becker R. Validation of a novel device for the knee monitoring of orthopaedic patients. Sensors. 2019;19:5193. doi: 10.3390/s19235193.
    1. Brennan L., Dorronzoro Zubiete E., Caulfield B. Feedback design in targeted exercise digital biofeedback systems for home rehabilitation: A scoping review. Sensors. 2019;20:181. doi: 10.3390/s20010181.
    1. Bell K.M., Onyeukwu C., McClincy M.P., Allen M., Bechard L., Mukherjee A., Hartman R.A., Smith C., Lynch A.D., Irrgang J.J. Verification of a portable motion tracking system for remote management of physical rehabilitation of the knee. Sensors. 2019;19:21. doi: 10.3390/s19051021.
    1. Chiang C.Y., Chen K.H., Liu K.C., Hsu S.J., Chan C.T. Data Collection and analysis using wearable sensors for monitoring knee range of motion after total knee arthroplasty. Sensors. 2017;17:418. doi: 10.3390/s17020418.
    1. Msayib Y., Gaydecki P., Callaghan M., Dale N., Ismail S. An Intelligent remote monitoring system for total knee arthroplasty patients. J. Med. Syst. 2017;41:90. doi: 10.1007/s10916-017-0735-2.
    1. O’Reilly M., Caulfield B., Ward T., Johnston W., Doherty C. Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. Sports Medicine (Auckland N. Z.) 2018;48:1221–1246. doi: 10.1007/s40279-018-0878-4.
    1. Peake J.M., Kerr G., Sullivan J.P. A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Front. Physiol. 2018;9:743. doi: 10.3389/fphys.2018.00743.

Source: PubMed

3
購読する