The laser of the future: reality and expectations about the new thulium fiber laser-a systematic review

Peter Kronenberg, Olivier Traxer, Peter Kronenberg, Olivier Traxer

Abstract

The Holmium:yttrium-aluminum-garnet (Ho:YAG) laser has been the gold-standard for laser lithotripsy over the last 20 years. However, recent reports about a new prototype thulium fiber laser (TFL) lithotripter have revealed impressive levels of performance. We therefore decided to systematically review the reality and expectations for this new TFL technology. This review was registered in the PROSPERO registry (CRD42019128695). A PubMed search was performed for papers including specific terms relevant to this systematic review published between the years 2015 and 2019, including already accepted but not yet published papers. Additionally, the medical sections of ScienceDirect, Wiley, SpringerLink, Mary Ann Liebert publishers, and Google Scholar were also searched for peer-reviewed abstract presentations. All relevant studies and data identified in the bibliographic search were selected, categorized, and summarized. The authors adhered to PRISMA guidelines for this review. The TFL emits laser radiation at a wavelength of 1,940 nm, and has an optical penetration depth in water about four-times shorter than the Ho:YAG laser. This results in four-times lower stone ablation thresholds, as well as lower tissue ablation thresholds. As the TFL uses electronically-modulated laser diodes, it offers the most comprehensive and flexible range of laser parameters among laser lithotripters, with pulse frequencies up to 2,200 Hz, very low to very high pulse energies (0.005-6 J), short to very long-pulse durations (200 µs up to 12 ms), and a total power level up to 55 W. The stone ablation efficiency is up to four-times that of the Ho:YAG laser for similar laser parameters, with associated implications for speed and operating time. When using dusting settings, the TFL outperforms the Ho:YAG laser in dust quantity and quality, producing much finer particles. Retropulsion is also significantly reduced and sometimes even absent with the TFL. The TFL can use small laser fibers (as small as 50 µm core), with resulting advantages in irrigation, scope deflection, retropulsion reduction, and (in)direct effects on accessibility, visibility, efficiency, and surgical time, as well as offering future miniaturization possibilities. Similar to the Ho:YAG laser, the TFL can also be used for soft tissue applications such as prostate enucleation (ThuFLEP). The TFL machine itself is seven times smaller and eight times lighter than a high-power Ho:YAG laser system, and consumes nine times less energy. Maintenance is expected to be very low due to the durability of its components. The safety profile is also better in many aspects, i.e., for patients, instruments, and surgeons. The advantages of the TFL over the Ho:YAG laser are simply too extensive to be ignored. The TFL appears to be a real alternative to the Ho:YAG laser and become a true game-changer in laser lithotripsy. Due to its novelty, further studies are needed to broaden our understanding of the TFL, and comprehend the full implications and benefits of this new technology, as well its limitations.

Keywords: Inventions; laser; lithotripsy; systematic review; thulium; urinary calculi.

Conflict of interest statement

Conflicts of Interest: The authors have no conflicts of interest to declare.

2019 Translational Andrology and Urology. All rights reserved.

Figures

Figure 1
Figure 1
Flow chart documenting the source of information selection process through the different phases, according to PRISMA guidelines (20).
Figure 2
Figure 2
Relationship between absorption coefficient α, optical penetration depth (OPD), and energy inside water at 20 °C. The figure shows how laser energy at Ho:YAG (2,090 nm) and TFL (1,940 nm) wavelengths decreases as it travels through water.
Figure 3
Figure 3
Comparison of laser setting specifications, provided only for illustrative purposes (graphic bars not to scale) and based on the published data (12,46,47,49,50,65,76,79-81,89,90,96).
Figure 4
Figure 4
Comparison of ablation efficiency-related parameters, provided only for illustrative purposes and based on the published data (13,19,41,65,74,79,81,82,95,96,108-118).
Figure 5
Figure 5
Comparison of machine-related parameters, provided only for illustrative purposes and based on the published data (12,46,50,68,153).

References

    1. Hofstetter A. Laser--science fiction or a new dimension in medicine? Urologe A 1985;24:310-2.
    1. Li AA. Physical methods in the treatment of patients with kidney and ureteral calculi. Vopr Kurortol Fizioter Lech Fiz Kult 1985;(4):65-8.
    1. Schmidt-Kloiber H, Reichel E, Schoffmann H. Laserinduced shock-wave lithotripsy (LISL). Biomed Tech (Berl) 1985;30:173-81. 10.1515/bmte.1985.30.7-8.173
    1. Coptcoat MJ, Ison KT, Watson G, Wickham JE. Lasertripsy for ureteric stones in 120 cases: lessons learned. Br J Urol 1988;61:487-9. 10.1111/j.1464-410X.1988.tb05085.x
    1. Hofmann R, Hartung R. Use of pulsed Nd:YAG laser in the ureter. Urol Clin North Am 1988;15:369-75.
    1. Ritchey M, Patterson DE, Kelalis PP, Segura JW. A case of pediatric ureteroscopic lasertripsy. J Urol 1988;139:1272-4. 10.1016/S0022-5347(17)42890-4
    1. Adkins WC, Dulabon DA, Chorazy ZJ, et al. Consider Ho:YAG for low-cost, effective laser lithotripsy. Clin Laser Mon 1994;12:139-41.
    1. Anidjar M, Cussenot O, Ravery V, et al. Le rôle du laser en urologie. Prog Urol 1995;5:175-92.
    1. Denstedt JD, Razvi HA, Sales JL, et al. Preliminary experience with holmium: YAG laser lithotripsy. J Endourol 1995;9:255-8. 10.1089/end.1995.9.255
    1. Matsuoka K, Iida S, Nakanami M, et al. Holmium: yttrium-aluminum-garnet laser for endoscopic lithotripsy. Urology 1995;45:947-52. 10.1016/S0090-4295(99)80113-7
    1. Erhard MJ, Bagley DH. Urologic applications of the holmium laser: preliminary experience. J Endourol 1995;9:383-6. 10.1089/end.1995.9.383
    1. IPG Photonics. UROLASE SP+ Brochure; 2018.
    1. Blackmon RL, Irby PB, Fried NM. Thulium fiber laser lithotripsy using tapered fibers. Lasers Surg Med 2010;42:45-50. 10.1002/lsm.20883
    1. Hardy LA, Wilson CR, Irby PB, et al. Thulium fiber laser lithotripsy in an in vitro ureter model. J Biomed Opt 2014;19:128001. 10.1117/1.JBO.19.12.128001
    1. Fried NM, Irby PB. Advances in laser technology and fibre-optic delivery systems in lithotripsy. Nat Rev Urol 2018;15:563-73. 10.1038/s41585-018-0035-8
    1. Palepu A, Kendall C, Moher D. Open Medicine endorses PROSPERO. Open Med 2011;5:e65-6.
    1. Chien PFW, Khan KS, Siassakos D. Registration of systematic reviews: PROSPERO. BJOG 2012;119:903-5. 10.1111/j.1471-0528.2011.03242.x
    1. Davies S. The importance of PROSPERO to the National Institute for Health Research. Syst Rev 2012;1:5. 10.1186/2046-4053-1-5
    1. Kronenberg P, Somani B. Advances in Lasers for the Treatment of Stones-a Systematic Review. Curr Urol Rep 2018;19:45. 10.1007/s11934-018-0807-y
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6:e1000097. 10.1371/journal.pmed.1000097
    1. EAU15 - 30th Annual Congress of the European Association of Urology Abstracts. Eur Urol Suppl 2015;14:e1-eV77.
    1. EAU16 - 31st Annual Congress of the European Association of Urology Abstracts. Eur Urol Suppl 2016;15:e1-eV79.
    1. Abstracts EAU.17 - 32nd Annual EAU Congress. Eur Urol Suppl 2017;16:e1-2160.
    1. Abstracts EAU.18 - 33rd Annual EAU Congress. Eur Urol Suppl 2018;17:e1-2003.
    1. 2015 Annual Meeting Program Abstracts. J Urol 2015;193:e1-1118.
    1. 2016 Annual Meeting Program Abstracts. J Urol 2016;195:e1-1192.
    1. 2017 Annual Meeting Program Abstracts. J Urol 2017;197:1-1376.
    1. 2018 Annual Meeting Program Abstracts. J Urol 2018;199:1-1250.
    1. Scientific Program of 33rd World Congress of Endourology & SWL Program Book. J Endourol 2015;29 Suppl 1:P1-A457. 10.1089/end.2015.29003.abstracts
    1. Scientific program of 34th world congress of endourology & SWL program book and abstracts. J Endourol 2016;30:P1-A464. 10.1089/end.2016.29020.abstracts
    1. Scientific program of 35TH world congress of endourology program book and abstracts. J Endourol 2017;31:P1-A474. 10.1089/end.2017.29029.abstracts
    1. Scientific program of 36th world congress of endourology program book and abstracts. J Endourol 2018;32:P1-A573. 10.1089/end.2018.29043.abstracts
    1. SIU 2015 Abstracts. World J Urol 2015;33 Suppl 1:1-256. 10.1007/s00345-015-1684-3
    1. Abstract SIU. 2016 Buenos Aires, Argentina book. World J Urol 2016;34:1-248. 10.1007/s00345-016-1931-2
    1. Abstracts from the 37th Congress of the Société Internationale d'Urologie, Centro de Congressos de Lisboa, October 19-22, 2017. World J Urol 2017;35:1-360. 10.1007/s00345-017-2090-9
    1. Abstracts from 38th Congress of the Société Internationale d’Urologie Seoul Dragon City, October 4-7, 2018. World J Urol 2018;36:1-380. 10.1007/s00345-018-2492-3
    1. Floratos DL, de la Rosette JJ. Lasers in urology. BJU Int 1999;84:204-11. 10.1046/j.1464-410x.1999.00163.x
    1. Vicente Rodríguez JJ, Fernández González I, Hernández Fernández C, et al. Láser en Urología. Actas Urológicas Españolas 2006;30:879-95. 10.1016/S0210-4806(06)73554-9
    1. Shigemura K, Yamamichi F, Kitagawa K, et al. Does Surgeon Experience Affect Operative Time, Adverse Events and Continence Outcomes in Holmium Laser Enucleation of the Prostate? A Review of More Than 1,000 Cases. J Urol 2017;198:663-70. 10.1016/j.juro.2017.04.087
    1. Shigemura K, Fujisawa M. Current status of holmium laser enucleation of the prostate. Int J Urol 2018;25:206-11. 10.1111/iju.13507
    1. Kronenberg P, Traxer O. Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers. World J Urol 2015;33:463-9. 10.1007/s00345-014-1395-1
    1. Leveillee RJ, Lobik L. Intracorporeal lithotripsy: which modality is best? Curr Opin Urol 2003;13:249-53. 10.1097/00042307-200305000-00014
    1. Bader MJ, Gratzke C, Hecht V, et al. Impact of collateral damage to endourologic tools during laser lithotripsy--in vitro comparison of three different clinical laser systems. J Endourol 2011;25:667-72. 10.1089/end.2010.0169
    1. Dornier. The Dornier Medilas H20 Brochure: The Holmium Laser for Lithotripsy. DMT007-06/04; 2004. Available online:
    1. Zattoni F. Low-power holmium:Yag laser applications in endourology. Tuttlingen: Endo-Press; 2010.
    1. Lumenis. Lumenis PULSE 120H: Operator's Manual. UM-10012510 Rev. F; 2017. Available online:
    1. Quanta System. Cyber Ho 100 Brochure. BRO-CYBERHO100-rev001-ROTW; 2018. Available online:
    1. Olympus. Olympus EMPOWER H Laser Portfolio Brochure. S00169EN 09/18 OEKG; 2018. Available online:
    1. Dornier. Dornier Medilas® H 140 Brochure. DMT357-022018-REV A EN; 2018. Available online:
    1. Jena Surgical. MultiPulse HoPLUS Brochure. J51-2100-000/EN/Rev.02; 2018. Available online:
    1. Matlaga BR, Chew B, Eisner B, et al. Ureteroscopic Laser Lithotripsy: A Review of Dusting vs Fragmentation with Extraction. J Endourol 2018;32:1-6. 10.1089/end.2017.0641
    1. Aldoukhi AH, Roberts WW, Hall TL, et al. Holmium Laser Lithotripsy in the New Stone Age: Dust or Bust? Front Surg 2017;4:57. 10.3389/fsurg.2017.00057
    1. Santiago JE, Hollander AB, Soni SD, et al. To Dust or Not To Dust: A Systematic Review of Ureteroscopic Laser Lithotripsy Techniques. Curr Urol Rep 2017;18:32. 10.1007/s11934-017-0677-8
    1. Wu Z, Gao P, Feng C, et al. MP-04.10 Flexible Ureteroscopic Stone Dusting with Holmium: YAG Laser for Treatment of Renal Stones. World J Urol 2016;34:19.
    1. Electro Medical Systems. Swiss Laserclast Brochure. FA -398; 2012. Available online:
    1. Rocamed. MH01 Laser Lithotripter Brochure. V.Uk.2; 2013. Available online:
    1. Kang HW, Lee H, Teichman JMH, et al. Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy. Lasers Surg Med 2006;38:762-72. 10.1002/lsm.20376
    1. Wollin DA, Ackerman A, Yang C, et al. Variable Pulse Duration From a New Holmium: YAG Laser: The Effect on Stone Comminution, Fiber Tip Degradation, and Retropulsion in a Dusting Model. Urology 2017;103:47-51. 10.1016/j.urology.2017.01.007
    1. Bell JR, Penniston KL, Nakada SY. In Vitro Comparison of Holmium Lasers: Evidence for Shorter Fragmentation Time and Decreased Retropulsion Using a Modern Variable-pulse Laser. Urology 2017;107:37-42. 10.1016/j.urology.2017.06.018
    1. Sroka R, Pongratz T, Scheib G, et al. Impact of pulse duration on Ho: YAG laser lithotripsy: treatment aspects on the single-pulse level. World J Urol 2015;33:479-85. 10.1007/s00345-015-1504-9
    1. CoolTouch - Syneron Candela. StoneLight 30 brochure: Laser Therapy; 2016. Available online:
    1. Kronenberg P, Traxer O. PI-05 ultra-short, short, medium and long-pulse laser lithotripsy performance. J Urol 2016;195:e410 10.1016/j.juro.2016.02.1210
    1. Bell JR, Penniston KL, Nakada SY. In Vitro Comparison of Stone Fragmentation When Using Various Settings with Modern Variable Pulse Holmium Lasers. J Endourol 2017;31:1067-72. 10.1089/end.2017.0351
    1. Eisel M, Ströbl S, Pongratz T, et al. In vitro investigations of propulsion during laser lithotripsy using video tracking. Lasers Surg Med 2018;50: 333-9. 10.1002/lsm.22770
    1. Fried NM. Recent advances in infrared laser lithotripsy Invited. Biomed Opt Express 2018;9:4552-68. 10.1364/BOE.9.004552
    1. Vizziello D, Acquati P, Clementi M, et al. MP27-17 Virtual Basket technology - Impact on high frequency lithotripsy in a urological simulator. J Endourol 2018;32:A277.
    1. Kronenberg P, Traxer O. MP22-13 burst laser lithotripsy - a novel lithotripsy mode. J Urol 2016;195:e258 10.1016/j.juro.2016.02.701
    1. Dornier. Dornier Medilas® H 140 specification sheet. DMT340-062018-REV B EN; 2018. Available online:
    1. Lumenis. VersaPulse PowerSuite Brochure. PB-1106750 Rev. B; 2013. Available online:
    1. Richard Wolf. Mega Pulse 70+ Brochure. D 711.XI.17.en.2; 2017.
    1. White MD, Moran ME, Calvano CJ, et al. Evaluation of retropulsion caused by holmium:YAG laser with various power settings and fibers. J Endourol 1998;12:183-6. 10.1089/end.1998.12.183
    1. Cansino Alcaide JR, Hidalgo Togores L, Cabrera Castillo PM, et al. Tratamiento de la litiasis con láser en condiciones especiales. Arch Esp Urol 2008;61:1111-4. 10.4321/S0004-06142008000900022
    1. Scott NJ, Cilip CM, Fried NM. Thulium fiber laser ablation of urinary Stones through small-core Optical fibers. IEEE J Sel Top Quantum Electron 2009;15:435-40. 10.1109/JSTQE.2008.2012133
    1. Blackmon RL, Irby PB, Fried NM. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed Opt 2011;16:071403. 10.1117/1.3564884
    1. Sarp ASK, Gulsoy M. Determining the optimal dose of 1940-nm thulium fiber laser for assisting the endodontic treatment. Lasers Med Sci 2017;32:1507-16. 10.1007/s10103-017-2272-0
    1. Hardy LA, Gonzalez DA, Irby PB, et al. Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, Thulium fiber laser. Proc SPIE 10468, Therapeutics and Diagnostics in Urology 2018, 104680O (7 February 2018).
    1. Chiron PH, Doizi S, Coninck VD, et al. PT066: Impact of SuperPulse Thulium Fiber Laser settings and curve diameter on optical fiber fracture during intracorporeal lithotripsy. Eur Urol Suppl 2019;18:e1756 10.1016/S1569-9056(19)31271-0
    1. Martov AG, Andronov AS, Dutov SV, et al. V36 Thulium SuperPulse Fiber Laser (TSPFL) for micro-PCNL. Eur Urol Suppl 2019;18:e2251 10.1016/S1569-9056(19)31633-1
    1. Traxer O, Rapoport L, Tsarichenko D, et al. V03-02 First clinical study on superpulse thulium fiber laser for lithotripsy. J Urol 2018;199:e321-2. 10.1016/j.juro.2018.02.827
    1. Ergakov D, Martov AG, Guseynov M. 991 - The comparative clinical study of Ho: YAG and SuperPulse Tm fiber laser lithotripters. Eur Urol Suppl 2018;17:e1391 10.1016/S1569-9056(18)31816-5
    1. Glybochko P, Altshuler G, Vinarov A, et al. 226 - Comparison between the possibilities of holmium and thulium laser in lithotripsy in vitro. Eur Urol Suppl 2017;16:e391-2. 10.1016/S1569-9056(17)30292-0
    1. Zamyatina V, Gapontsev V, Enikeev D, et al. Super pulse thulium fiber laser for lithotripsy. Lasers Surg Med 2016;48:10.
    1. Yaroslawsky I, Vinnichenko V, McNeill T, et al. Optimization of a novel Tm fiber laser lithotripter in terms of stone ablation efficiency and retropulsion reduction. Proc SPIE 10468, Therapeutics and Diagnostics in Urology 2018, 104680H (7 February 2018).
    1. Dymov A, Rapoport L, Enikeev D, et al. 383: Prospective clinical study on superpulse thulium fiber laser: Initial analysis of optimal laser settings. Eur Urol Suppl 2019;18:e500 10.1016/S1569-9056(19)30372-0
    1. Herrmann TR, Liatsikos EN, Nagele U, et al. Guidelines on Lasers and Technologies. Eur Urol 2012;61:783-95. 10.1016/j.eururo.2012.01.010
    1. Lange BI, Brendel T, Hüttmann G. Temperature dependence of light absorption in water at holmium and thulium laser wavelengths. Appl Opt 2002;41:5797-803. 10.1364/AO.41.005797
    1. Theisen-Kunde D, Danicke V, Wendt M, et al. Temperature dependence of water absorption for wavelengths at 1920 nm and 1940 nm. 4th European Conference of the International Federation for Medical and Biological Engineering. IFMBE Proceedings, Berlin, Heidelberg: Springer, 2008.
    1. Schomacker KT, Domankevitz Y, Flotte TJ, et al. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage. Lasers Surg Med 1991;11:141-51. 10.1002/lsm.1900110208
    1. Hardy LA, Vinnichenko V, Fried NM. High power holmium:YAG versus thulium fiber laser treatment of kidney stones in dusting mode: ablation rate and fragment size studies. Lasers Surg Med 2019;51:522-30. 10.1002/lsm.23057
    1. Traxer O, Keller EX. Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser. World J Urol 2019. [Epub ahead of print]. 10.1007/s00345-019-02654-5
    1. Paschotta R. Encyclopedia of laser physics and technology. 1st ed. Weinheim: Wiley-VCH; 2008.
    1. Jackson SD, Lauto A. Diode-pumped fiber lasers: a new clinical tool? Lasers Surg Med 2002;30:184-90. 10.1002/lsm.10023
    1. Fried NM. Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 microm. Lasers Surg Med 2005;37:53-8. 10.1002/lsm.20196
    1. Paschotta R. Encyclopedia of laser physics and technology: diode-pumped lasers. 1st ed. Weinheim: Wiley-VCH; 2008.
    1. Wilson CR, Hardy LA, Irby PB, et al. Microscopic analysis of laser-induced proximal fiber tip damage during holmium: YAG and thulium fiber laser lithotripsy. Opt Eng 2016;55:46102 10.1117/1.OE.55.4.046102
    1. Gross A, Becker B, Taratkin M, et al. MP24-10 Wavelength and pulse shape effects on stone fragmentation of laser lithotripters. J Urol 2018;199:e293-4. 10.1016/j.juro.2018.02.763
    1. Ali S, Rapoport L, Tsarichenko D, et al. VS1-3 Clinical study on Superpulse Thulium Fiber Laser for Lithotripsy. J Endourol 2018;32:A496.
    1. Chiron PH, Berthe LL, Coninck VD, et al. MP5-4 Comparison of vapor bubbles induced by an Holmium:YAG Laser and a SuperPusled Thulium Fiber Laser. Toward high speed lithotripsy at KHz repetition rate. J Endourol 2018;32:A42.
    1. Aldoukhi AH, Ghani KR, Hall TL, et al. Thermal Response to High-Power Holmium Laser Lithotripsy. J Endourol 2017;31:1308-12. 10.1089/end.2017.0679
    1. Butticè S, Sener TE, Proietti S, et al. Temperature Changes Inside the Kidney: What Happens During Holmium:Yttrium-Aluminium-Garnet Laser Usage? J Endourol 2016;30:574-9. 10.1089/end.2015.0747
    1. Molina WR, Silva IN, Donalisio da Silva R, et al. Influence of saline on temperature profile of laser lithotripsy activation. J Endourol 2015;29:235-9. 10.1089/end.2014.0305
    1. Johnson JP, Oz MC, Chuck RS, et al. Comparison of methods for transcatheter fragmentation of gallstones. Surg Endosc 1989;3:7-10. 10.1007/BF00591307
    1. Johnson DE, Cromeens DM, Price RE. Use of the holmium:YAG laser in urology. Lasers Surg. Med 1992;12:353-63. 10.1002/lsm.1900120402
    1. Dymov A, Glybochko P, Alyaev Y, et al. V11-11 thulium lithotripsy: from experiment to clinical practice. J Urol 2017;197:e1285 10.1016/j.juro.2017.02.3000
    1. Keller EX, Coninck VD, Chiron PH, et al. VS1-1 Thulium fiber laser for lithotripsy of large renal stones: initial experience. J Endourol 2018;32:A495.
    1. Martov AG, Ergakov DV, Guseynov M, et al. VS1-2 SuperPulse Thulium Fiber Laser for Ureteroscopic Lithotripsy: 1 Year Experience. J Endourol 2018;32:A495-6.
    1. Rapoport LM, Vinarov AZ, Sorokin NI, et al. Experimental verification of thulium lithotripsy. Urologiia 2018;(5):74-80. 10.18565/urology.2018.5.74-80
    1. Chiron PH, Berthe LL, Coninck Vd, et al. MP5-20 SuperPulsedThulium Fiber Laser for endocorporeal lithotripsy: superior from the very first pulse? J Endourol 2018;32:A49-50.
    1. Molina WR, Knudsen BE, Chew BH. MP5-19 Comparison of Rapid-Pulse Tm Fiber LASER (RPFL) vs High Power 120W Holmium-YAG LASER (Ho:YAG): Stone ablation efficiency at the same average power settings. J Endourol 2018;32:A49.
    1. Coninck Vd, Keller E, Kovalenko A, et al. PT067: Dusting efficiency comparison between Moses technology of Ho: YAG laser and superpulse thulium fiber laser. Eur Urol Suppl 2019;18:e1757-8. 10.1016/S1569-9056(19)31272-2
    1. Coninck Vd, Keller EX, Chiron PH, et al. MP5-6 Dusting Efficiency Comparison between Moses Technology of Ho:YAG Laser and SuperPulse Thulium Fiber Laser. J Endourol 2018;32:A42-3.
    1. Kronenberg P, Traxer O. V1718 Laser fibers, pulse energy and retropulsion-what we can see and what we can't. J Urol 2013;189:e707 10.1016/j.juro.2013.02.2964
    1. Martov AG, Ergakov DV, Guseinov MA, et al. Initial experience in clinical application of thulium laser contact lithotripsy for transurethral treatment of urolithiasis. Urologiia 2018: 112-20. 10.18565/urology.2018.1.112-120
    1. Blackmon RL, Hutchens TC, Hardy LA, et al. Thulium fiber laser ablation of kidney stones using a 50 -µm -core silica optical fiber. Opt Eng 2015;54.
    1. Kronenberg P, Traxer O. E60. The truth about laser fiber diameters. Eur Urol Suppl 2013;12:50 10.1016/S1569-9056(13)61726-1
    1. Pasqui F, Dubosq F, Tchala K, et al. Impact on active scope deflection and irrigation flow of all endoscopic working tools during flexible ureteroscopy. Eur Urol 2004;45:58-64. 10.1016/j.eururo.2003.08.013
    1. Spore SS, Teichman JM, Corbin NS, et al. Holmium: YAG lithotripsy: optimal power settings. J Endourol 1999;13:559-66. 10.1089/end.1999.13.559
    1. Chiron PH, Berthe L, Keller EX, et al. MP5-11 The ‘‘Safety distance concept’’ applied to ureterorenoscopy with a SuperPulsed Thulium Fiber Laser: are all parameters really usable? J Endourol 2018;32:A44-5.
    1. Blackmon RL, Irby PB, Fried NM. Holmium:YAG (lambda = 2,120 nm) versus thulium fiber (lambda = 1,908 nm) laser lithotripsy. Lasers Surg Med 2010;42:232-6. 10.1002/lsm.20893
    1. Chan KF, Vassar GJ, Pfefer TJ, et al. Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg Med 1999;25:22-37. 10.1002/(SICI)1096-9101(1999)25:1<22::AID-LSM4>;2-6
    1. Hardy LA, Irby P, Fried N. Scanning electron microscopy of real and artificial kidney stones before and after Thulium fiber laser ablation in air and water. Proc. SPIE, Vol 10468; 2018.
    1. Vinnichenko V, Hardy L, Fried N. MP5-9 Comparison of high power Holmium:YAG and Thulium fiber lasers for dusting of calcium oxalate monohydrate stones. J Endourol 2018;32:A43-4.
    1. Ghani KR, Gagin G, Hollingsworth J, et al. V14-3 Developments in Ureteroscopic Stone Treatment (DUST): Tips and tricks for lithotripsy using multi-cavity high-power holmium lasers. J Endourol 2015;29 Suppl 1:A392-3.
    1. Tracey J, Gagin G, Morhardt D, et al. MP51-07 Flexible ureteroscopy and laser lithotripsy for renal stones using ‘pop-dusting’: comparison of outcomes between traditional dusting settings versus ultra-high frequency settings. J Urol 2016;195:e683 10.1016/j.juro.2016.02.462
    1. Netsch C, Becker B, Taratkin M, et al. MP2-13 Effects of Wavelength and Pulse Shape on Stone Fragmentation Rate of Laser Lithotripter Devices. J Endourol 2018;32:A16.
    1. Becker B, Gross AJ, Netsch C. Ho: YaG laser lithotripsy: recent innovations. Curr Opin Urol 2019;29:103-7. 10.1097/MOU.0000000000000573
    1. Hardy LA, Kennedy JD, Wilson CR, et al. Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones. J Biophotonics 2017;10:1240-9. 10.1002/jbio.201600010
    1. Isner J, Clarke R, Katzir A, et al. Transmission characteristics of individual wavelengths in blood do not predict ability to accomplish laser ablation in a blood field: Inferential evidence for the ‘Moses effect'. Circulation 1986;74:II-361.
    1. Isner J, Steg G, Clarke R. Current status of cardiovascular laser therapy, 1987. IEEE Journal of Quantum Electronics 1987;23:1756-71. 10.1109/JQE.1987.1073241
    1. Isner JM, Lucas AR, Fields CD. Laser therapy in the treatment of cardiovascular disease. Br J Hosp Med 1988;40:172-8.
    1. Blackmon RL, Case JR, Trammell SR, et al. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers. J Biomed Opt 2013;18:28001. 10.1117/1.JBO.18.2.028001
    1. Wilson C, Kennedy JD, Irby P, et al. Miniature ureteroscope distal tip designs for potential use in thulium fiber laser lithotripsy. J Biomed Opt 2018;23:1-9. 10.1117/1.JBO.23.3.030901
    1. Hardy LA, Wilson CR, Irby PB, et al. Rapid Thulium Fiber Laser Lithotripsy at Pulse Rates up to 500 Hz Using a Stone Basket. IEEE J Sel Top Quantum Electron 2014;20:138-41. 10.1109/JSTQE.2014.2305715
    1. Wilson CR, Hardy LA, Kennedy JD, et al. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones. J Biomed Opt 2016;21:18003. 10.1117/1.JBO.21.1.018003
    1. Hutchens TC, Blackmon RL, Irby PB, et al. Hollow steel tips for reducing distal fiber burn-back during thulium fiber laser lithotripsy. J Biomed Opt 2013;18:078001. 10.1117/1.JBO.18.7.078001
    1. Hutchens TC, Blackmon RL, Irby PB, et al. Detachable fiber optic tips for use in thulium fiber laser lithotripsy. J Biomed Opt 2013;18:038001. 10.1117/1.JBO.18.3.038001
    1. Hutchens TC, Gonzalez DA, Irby PB, et al. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy. J Biomed Opt 2017;22:18001. 10.1117/1.JBO.22.1.018001
    1. Hall LA, Gonzalez DA, Fried NM. Thulium fiber laser ablation of kidney stones using an automated, vibrating fiber. J Biomed Opt 2019;24:1-10. 10.1117/1.JBO.24.3.038001
    1. Wilson CR, Hutchens TC, Hardy LA, et al. A Miniaturized, 1.9F Integrated Optical Fiber and Stone Basket for Use in Thulium Fiber Laser Lithotripsy. J Endourol 2015;29:1110-4. 10.1089/end.2015.0124
    1. Rouse L, Cleveland R, Turney BW. MP29-6 Renal Pelvic Pressure during Ureteroscopy: Sheath versus Ureteroscope alone. J Endourol 2018;32:A294.
    1. Doizi S, Uzan A, Keller EX, et al. MP2-5 Comparison of intrarenal pelvic pressure levels during flexible ureteroscopy, mini-percutaneous nephrolithotomy and standard percutaneous nephrolithotomy in a kidney model. J Endourol 2018;32:A12-3.
    1. Enikeev D, Glybochko P, Rapoport L, et al. A Randomized Trial Comparing The Learning Curve of 3 Endoscopic Enucleation Techniques (HoLEP, ThuFLEP, and MEP) for BPH Using Mentoring Approach-Initial Results. Urology 2018;121:51-7. 10.1016/j.urology.2018.06.045
    1. Enikeev D, Okhunov Z, Rapoport L, et al. Novel Thulium Fiber Laser for Enucleation of Prostate: A Retrospective Comparison with Open Simple Prostatectomy. J Endourol 2019;33:16-21. 10.1089/end.2018.0791
    1. Enikeev D, Glybochko P, Alyaev Y, et al. V65 - Thulium fiber laser enucleation of the prostate in management of giant BPH (>200 cc). Eur Urol Suppl 2018;17:e1978 10.1016/S1569-9056(18)32380-7
    1. Enikeev D, Glybochko P, Alyaev Y, et al. MP62-10 Monopolar versus laser (thuflep, holep) endoscopic enucleation of the prostate: a single-center experience. J Urol 2018;199:e835-6. 10.1016/j.juro.2018.02.2011
    1. Enikeev D, Glybochko P, Rapoport L, et al. Impact of endoscopic enucleation of the prostate with thulium fiber laser on the erectile function. BMC Urol 2018;18:87. 10.1186/s12894-018-0400-1
    1. Rapoport L, Glybochko P, Enikeev D, et al. PE69 - Peri-operative Outcomes of Robotic-assisted simple prostatectomy versus Thulium Fiber Laser Enucleation of the Prostate. Eur Urol Suppl 2018;17:e2354 10.1016/S1569-9056(18)32732-5
    1. Taratkin M, Enikeev D, Rapoport L, et al. PT182 - Initial results of a prospective randomized trial on the learning curve of three endoscopic enucleation techniques (HoLEP, ThuFLEP and MEP) for BPH. Eur Urol Suppl 2019;18:e1914 10.1016/S1569-9056(19)31386-7
    1. Glybochko P, Alyaev Y, Rapoport L, et al. V55 PDD-guided thulium fiber laser en-bloc enucleation of bladder tumor. Eur Urol Suppl 2018;17:e1967 10.1016/S1569-9056(18)32370-4
    1. Fried NM. Therapeutic applications of lasers in urology: an update. Expert Rev Med Devices 2006;3: 81-94. 10.1586/17434440.3.1.81
    1. Dołowy Ł, Krajewski W, Dembowski J, et al. The role of lasers in modern urology. Cent European J Urol 2015;68:175-82. 10.5173/ceju.2015.537
    1. Villa L, Haddad M, Capitanio U, et al. Which Patients with Upper Tract Urothelial Carcinoma Can be Safely Treated with Flexible Ureteroscopy with Holmium:YAG Laser Photoablation? Long-Term Results from a High Volume Institution. J Urol 2018;199:66-73. 10.1016/j.juro.2017.07.088
    1. Paschotta R. Encyclopedia of laser physics and technology: lamp-pumped lasers. 1st ed. Weinheim: Wiley-VCH; 2008.
    1. Rassweiler J, Rassweiler MC, Kenngott H, et al. The past, present and future of minimally invasive therapy in urology: a review and speculative outlook. Minim Invasive Ther Allied Technol 2013;22:200-9. 10.3109/13645706.2013.816323
    1. Stern KL, Monga M. The Moses holmium system - time is money. Can J Urol 2018;25:9313-6.
    1. Dubrovin V, Tabakov A, Egoshin A. UP.330 Thulium Laser Lithotripsy for Dusting of Ureteral Stones, Initial Experience. World J Urol 2018;36:314.
    1. Kronenberg P, Traxer O. The truth about laser fiber diameters. Urology 2014;84:1301-7. 10.1016/j.urology.2014.08.017
    1. Wilson CR, Hardy LA, Irby PB, et al. Collateral damage to the ureter and Nitinol stone baskets during thulium fiber laser lithotripsy. Lasers Surg Med 2015;47:403-10. 10.1002/lsm.22348
    1. Talso M, Emiliani E, Haddad M, et al. Laser Fiber and Flexible Ureterorenoscopy: The Safety Distance Concept. J Endourol 2016;30:1269-74. 10.1089/end.2016.0209
    1. Shrestha A. MP29-8 Intra-renal pressure profile during flexible ureteroscopy. J Endourol 2018;32:A295.
    1. Wollin DA, Carlos EC, Tom WR, et al. Effect of Laser Settings and Irrigation Rates on Ureteral Temperature During Holmium Laser Lithotripsy, an In Vitro Model. J Endourol 2018;32:59-63. 10.1089/end.2017.0658
    1. Kallidonis P, Amanatides L, Panagopoulos V, et al. Does the Heat Generation by the Thulium:Yttrium Aluminum Garnet Laser in the Irrigation Fluid Allow Its Use on the Upper Urinary Tract? An Experimental Study. J Endourol 2016;30:422-7. 10.1089/end.2015.0252
    1. Dragos LB, Somani B, Keller E, et al. 386: Super-pulse thulium fiber versus high power holmium lasers. What about temperature? Eur Urol Suppl 2019;18:e505-8. 10.1016/S1569-9056(19)30375-6
    1. Gross AJ, Netsch C. Editorial Comment on: Thermal Response to High-Power Holmium Laser Lithotripsy by Aldoukhi et al. J Endourol 2017;31:1313. 10.1089/end.2017.0809
    1. Aldoukhi AH, Hall TL, Ghani KR, et al. MP24-11 ‘‘Operator Duty-Cycle’’ effect of heat generation during holmium laser lithotripsy. J Endourol 2018;32:A236-7.
    1. Terry RS, Winship BB, Wollin D, et al. MP29-12 The Rise and Fall of Dangerous Temperature Changes During Ureteroscopic Laser Lithotripsy. J Endourol 2018;32:A296-7.
    1. Paschotta R. Encyclopedia of laser physics and technology: Eye-safe lasers. 1st ed. Weinheim: Wiley-VCH; 2008.
    1. Doizi S, Villa L, Cloutier J, et al. Doit-on porter des lunettes protectrices lors de l’utilisation du laser Holmium:YAG lors des procédures endourologiques ? Étude chez un modèle animal. Prog Urol 2015;25:751. 10.1016/j.purol.2015.08.072
    1. Villa L, Cloutier J, Compérat E, et al. Do We Really Need to Wear Proper Eye Protection When Using Holmium:YAG Laser During Endourologic Procedures? Results from an Ex Vivo Animal Model on Pig Eyes. J Endourol 2016;30:332-7. 10.1089/end.2015.0232
    1. Food and Drug Administration Medical devices; current good manufacturing practice (CGMP) final rule; quality system regulation. Fed Regist 1996;61:52602-62.
    1. Nicolau A, Casal D, Lopes P, et al. O Ruído nas Unidades de Cidados Intensivos Neonatais de Lisboa e Vale do Tejo 2005;36:15-21.
    1. Hodge B, Thompson JF. Noise pollution in the operating theatre. Lancet 1990;335:891-4. 10.1016/0140-6736(90)90486-O
    1. Gu M, Liu C, Chen YB, et al. Comparison of Vela and holmium laser enucleation of the prostate: a retrospective clinical trial with a 12-month follow-up. Int Urol Nephrol 2018;50:819-23. 10.1007/s11255-018-1840-y
    1. Xu H, Chen YB, Gu M, et al. Evaluation of noise hazard during the holmium laser enucleation of prostate. BMC Urol 2017;17:71. 10.1186/s12894-017-0246-y

Source: PubMed

3
購読する