Imaging Cognitive Impairment and Impulse Control Disorders in Parkinson's Disease

Antonio Martín-Bastida, Manuel Delgado-Alvarado, Irene Navalpotro-Gómez, María Cruz Rodríguez-Oroz, Antonio Martín-Bastida, Manuel Delgado-Alvarado, Irene Navalpotro-Gómez, María Cruz Rodríguez-Oroz

Abstract

Dementia and mild forms of cognitive impairment as well as neuropsychiatric symptoms (i. e., impulse control disorders) are frequent and disabling non-motor symptoms of Parkinson's disease (PD). The identification of changes in neuroimaging studies for the early diagnosis and monitoring of the cognitive and neuropsychiatric symptoms associated with Parkinson's disease, as well as their pathophysiological understanding, are critical for the development of an optimal therapeutic approach. In the current literature review, we present an update on the latest structural and functional neuroimaging findings, including high magnetic field resonance and radionuclide imaging, assessing cognitive dysfunction and impulse control disorders in PD.

Keywords: Parkinson's disease dementia (PDD); impulse control disorders (ICD); magnetic resonance imaging (MRI); mild cognitive impairment (MCI); positron emission tomography (PET); single photon computed tomography (SPECT).

Conflict of interest statement

AM-B, MD-A, and IN-G declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. MR-O received financial support for her research from national and local government institutions in Spain (Carlos III Institute of Health, Navarra Government) and honoraria from Insightec, and Boston Scientific for lectures, travel and accommodation to attend scientific meetings.

Copyright © 2021 Martín-Bastida, Delgado-Alvarado, Navalpotro-Gómez and Rodríguez-Oroz.

References

    1. Gibb WRG, Lees AJ. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J Neurol Neurosurg Psychiatry. (1991) 54:388–96. 10.1136/jnnp.54.5.388
    1. Mann DMA, Yates PO. Possible role of neuromelanin in the pathogenesis of Parkinson's disease. Mech Ageing Dev. (1983) 21:193–203. 10.1016/0047-6374(83)90074-X
    1. Aarsland D, Andersen K, Larsen JP, Lolk A, Kragh-Sørensen P. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol. (2003) 60:387–92. 10.1001/archneur.60.3.387
    1. Williams-Gray CH, Mason SL, Evans JR, Foltynie T, Brayne C, Robbins TW, et al. . The CamPaIGN study of Parkinson's disease: 10-year outlook in an incident population-based cohort. J Neurol Neurosurg Psychiatry. (2013) 84:1258–64. 10.1136/jnnp-2013-305277
    1. Hely MA, Reid WGJ, Adena MA, Halliday GM, Morris JGL. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Move Disord. (2008) 23:837–44. 10.1002/mds.21956
    1. Broeders M, De Bie RMA, Velseboer DC, Speelman JD, Muslimovic D, Schmand B. Evolution of mild cognitive impairment in Parkinson disease. Neurology. (2013) 81:346–52. 10.1212/WNL.0b013e31829c5c86
    1. Gasca-Salas C, Estanga A, Clavero P, Aguilar-Palacio I, González-Redondo R, Obeso JA, et al. . Longitudinal assessment of the pattern of cognitive decline in non-demented patients with advanced Parkinson's disease. J Parkinsons Dis. (2014) 4:677–86. 10.3233/JPD-140398
    1. Janvin CC, Larsen JP, Aarsland D, Hugdahl K. Subtypes of mild cognitive impairment in Parkinson's disease: progression to dementia. Move Disord. (2006) 21:1343–9. 10.1002/mds.20974
    1. Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B, et al. . MDS task force on mild cognitive impairment in Parkinson's disease: critical review of PD-MCI. Move Disord. (2011) 26:1814-24. 10.1002/mds.23823
    1. Pigott K, Rick J, Xie SX, Hurtig H, Chen-Plotkin A, Duda JE, et al. . Longitudinal study of normal cognition in Parkinson disease. Neurology. (2015) 85:1276–82. 10.1212/WNL.0000000000002001
    1. Pedersen KF, Larsen JP, Tysnes OB, Alves G. Prognosis of mild cognitive impairment in early Parkinson disease: the Norwegian ParkWest study. JAMA Neurol. (2013) 70:580–6. 10.1001/jamaneurol.2013.2110
    1. Hughes TA, Ross HF, Musa S, Bhattacherjee S, Nathan RN, Mindham RHS, et al. . A 10-year study of the incidence of and factors predicting dementia in Parkinson's disease. Neurology. (2000) 54:1596–602. 10.1212/WNL.54.8.1596
    1. Rinne JO, Mlic JR, Paljärvi L, Rinne UK. Dementia in Parkinson's disease is related to neuronal loss in the medial substantia nigra. Ann Neurol. (1989) 26:47–50. 10.1002/ana.410260107
    1. Del Tredici K, Braak H. Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson's disease-related dementia. J Neurol Neurosurg Psychiatry. (2013) 84:774–83. 10.1136/jnnp-2011-301817
    1. Halliday GM, Blumbergs PC, Cotton RGH, Blessing WW, Geffen LB. Loss of brainstem serotonin- and substance P-containing neurons in Parkinson's disease. Brain Res. (1990) 510:104–7. 10.1016/0006-8993(90)90733-R
    1. Tagliavini F, Pilleri G, Bouras C, Constantinidis J. The basal nucleus of Meynert in idiopathic Parkinson's disease. Acta Neurol Scand. (1984) 70:20–8. 10.1111/j.1600-0404.1984.tb00798.x
    1. Compta Y, Parkkinen L, O'Sullivan SS, Vandrovcova J, Holton JL, Collins C, et al. . Lewy- and Alzheimer-type pathologies in Parkinson's disease dementia: which is more important? Brain. (2011) 134:1493-505. 10.1093/brain/awr031
    1. Aarsland D, Marsh L, Schrag A. Neuropsychiatric symptoms in Parkinson's disease. Move Disord. (2009) 24:2175–86. 10.1002/mds.22589
    1. Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, et al. . Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. (2010) 67:589–95. 10.1001/archneurol.2010.65
    1. Bastiaens J, Dorfman BJ, Christos PJ, Nirenberg MJ. Prospective cohort study of impulse control disorders in Parkinson's disease. Move Disord. (2013) 28:327–33. 10.1002/mds.25291
    1. Samuel M, Rodriguez-Oroz M, Antonini A, Brotchie JM, Ray Chaudhuri K, Brown RG, et al. . Management of impulse control disorders in Parkinson's disease: controversies and future approaches. Move Disord. (2015) 30:150–9. 10.1002/mds.26099
    1. Hutton C, Draganski B, Ashburner J, Weiskopf N. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. NeuroImage. (2009) 48:371–80. 10.1016/j.neuroimage.2009.06.043
    1. Camicioli R, Mooler M, Kinney A, Corbridge E, Glassberg K, Kaye J. Parkinson's disease is associated with hippocampal atrophy. Mov Disord. (2003) 18:784–90. 10.1002/mds.10444
    1. Brück A, Kurki T, Kaasinen V, Vahlberg T, Rinne JO. Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson's disease is related to cognitive impairment. J Neurol Neurosurg Psychiatry. (2004) 75:1467–9. 10.1136/jnnp.2003.031237
    1. Song SK, Lee JE, Park HJ, Sohn YH, Lee JD, Lee PH. The pattern of cortical atrophy in patients with Parkinson's disease according to cognitive status. Move Disord. (2011) 26:289–96. 10.1002/mds.23477
    1. Choi SH, Jung TM, Lee JE, Lee SK, Sohn YH, Lee PH. Volumetric analysis of the substantia innominata in patients with Parkinson's disease according to cognitive status. Neurobiol Aging. (2012) 33:1265–72. 10.1007/978-1-4614-1788-0
    1. Beyer MK, Bronnick KS, Hwang KS, Bergsland N, Tysnes OB, Larsen JP, et al. . Verbal memory is associated with structural hippocampal changes in newly diagnosed Parkinson's disease. J Neurol Neurosurg Psychiatry. (2013) 84:23–8. 10.1136/jnnp-2012-303054
    1. Pagonabarraga J, Corcuera-Solano I, Vives-Gilabert Y, Llebaria G, García-Sánchez C, Pascual-Sedano B, et al. . Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson's disease. PLoS ONE. (2013) 8:e54980. 10.1371/journal.pone.0054980
    1. Lee JE, Cho KH, Song SK, Kim HJ, Lee HS, Sohn YH, et al. . Exploratory analysis of neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in Parkinson's disease. J Neurol Neurosurg Psychiatry. (2014) 85:7–16. 10.1136/jnnp-2013-305062
    1. Filoteo JV, Reed JD, Litvan I, Harrington DL. Volumetric correlates of cognitive functioning in nondemented patients with Parkinson's disease. Move Disord. (2014) 29:360–7. 10.1002/mds.25633
    1. Kandiah N, Zainal NH, Narasimhalu K, Chander RJ, Ng A, Mak E, et al. . Hippocampal volume and white matter disease in the prediction of dementia in Parkinson's disease. Parkinsonism Relat Disord. (2014) 20:1203–8. 10.1016/j.parkreldis.2014.08.024
    1. Wen MC, Ng A, Chander RJ, Au WL, Tan LCS, Kandiah N. Longitudinal brain volumetric changes and their predictive effects on cognition among cognitively asymptomatic patients with Parkinson's disease. Parkinsonism Relat Disord. (2015) 21:483–8. 10.1016/j.parkreldis.2015.02.014
    1. Foo H, Mak E, Chander RJ, Ng A, Au WL, Sitoh YY, et al. . Associations of hippocampal subfields in the progression of cognitive decline related to Parkinson's disease. NeuroImage Clin. (2016) 14:37–42. 10.1016/j.nicl.2016.12.008
    1. Low A, Foo H, Yong TT, Tan LCS, Kandiah N. Hippocampal subfield atrophy of CA1 and subicular structures predict progression to dementia in idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry. (2019) 90:681–7. 10.1136/jnnp-2018-319592
    1. Zheng D, Chen C, Song WC, Yi ZQ, Zhao PW, Zhong JG, et al. . Regional gray matter reductions associated with mild cognitive impairment in Parkinson's disease: a meta-analysis of voxel-based morphometry studies. Behav Brain Res. (2019) 371:111973. 10.1016/j.bbr.2019.111973
    1. Gasca-Salas C, García-Lorenzo D, Garcia-Garcia D, Clavero P, Obeso JA, Lehericy S, et al. . Parkinson's disease with mild cognitive impairment: severe cortical thinning antedates dementia. Brain Imaging Behav. (2019) 13:180–8. 10.1007/s11682-017-9751-6
    1. Chung SJ, Yoo HS, Lee YH, Lee HS, Ye BS, Sohn YH, et al. . Frontal atrophy as a marker for dementia conversion in Parkinson's disease with mild cognitive impairment. Hum Brain Mapp. (2019) 40:3784–94. 10.1002/hbm.24631
    1. Xu R, Hu X, Jiang X, Zhang Y, Wang J, Zeng X. Longitudinal volume changes of hippocampal subfields and cognitive decline in Parkinson's disease. Quant Imaging Med Surg. (2020) 10:220–32. 10.21037/qims.2019.10.17
    1. Zhou C, Guan XJ, Guo T, Zeng QL, Gao T, Huang PY, et al. . Progressive brain atrophy in Parkinson's disease patients who convert to mild cognitive impairment. CNS Neurosci Ther. (2020) 26:117–25. 10.1111/cns.13188
    1. Donzuso G, Monastero R, Cicero CE, Luca A, Mostile G, Giuliano L, et al. . Neuroanatomical changes in early Parkinson's disease with mild cognitive impairment: a VBM study; the Parkinson's Disease Cognitive Impairment Study (PaCoS). Neurol Sci. (2021) 42:3723–31. 10.1007/s10072-020-05034-9
    1. Kamagata K, Motoi Y, Abe O, Shimoji K, Hori M, Nakanishi A, et al. . White matter alteration of the cingulum in Parkinson disease with and without dementia: evaluation by diffusion tensor tract-specific analysis. Am J Neuroradiol. (2012) 33:890–5. 10.3174/ajnr.A2860
    1. Hattori T, Orimo S, Aoki S, Ito K, Abe O, Amano A, et al. . Cognitive status correlates with white matter alteration in Parkinson's disease. Hum Brain Mapp. (2012) 33:727–39. 10.1002/hbm.21245
    1. Deng B, Zhang Y, Wang L, Peng K, Han L, Nie K, et al. . Diffusion tensor imaging reveals white matter changes associated with cognitive status in patients with Parkinson's disease. Am J Alzheimers Dis Other Dementias. (2013) 28:154–64. 10.1177/1533317512470207
    1. Melzer TR, Watts R, Macaskill MR, Pitcher TL, Livingston L, Keenan RJ, et al. . White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology. (2013) 80:1841–9. 10.1212/WNL.0b013e3182929f62
    1. Agosta F, Canu E, Stefanova E, Sarro L, Tomić A, Špica V, et al. . Mild cognitive impairment in Parkinson's disease is associated with a distributed pattern of brain white matter damage. Hum Brain Mapp. (2014) 35:1921–9. 10.1002/hbm.22302
    1. Auning E, Kjærvik VK, Selnes P, Aarsland D, Haram A, Bjørnerud A, et al. . White matter integrity and cognition in Parkinson's disease: a cross-sectional study. BMJ Open. (2014) 4:e003976. 10.1136/bmjopen-2013-003976
    1. Chen B, Fan GG, Liu H, Wang S. Changes in anatomical and functional connectivity of Parkinson's disease patients according to cognitive status. Eur J Radiol. (2015) 84:1318–24. 10.1016/j.ejrad.2015.04.014
    1. Bledsoe IO, Stebbins GT, Merkitch D, Goldman JG. White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson disease. Neurology. (2018) 91:E2244-55. 10.1212/WNL.0000000000006646
    1. Chondrogiorgi M, Astrakas LG, Zikou AK, Weis L, Xydis VG, Antonini A, et al. . Multifocal alterations of white matter accompany the transition from normal cognition to dementia in Parkinson's disease patients. Brain Imaging Behav. (2019) 13:232–40. 10.1007/s11682-018-9863-7
    1. Beyer MK, Aarsland D, Greve OJ, Larsen JP. Visual rating of white matter hyperintensities in Parkinson's disease. Move Disord. (2006) 21:223–9. 10.1002/mds.20704
    1. Lee SJ, Kim JS, Yoo JY, Song IU, Kim BS, Jung SL, et al. . Influence of white matter hyperintensities on the cognition of patients with parkinson disease. Alzheimer Dis Assoc Disord. (2010) 24:227–33. 10.1097/WAD.0b013e3181d71a13
    1. Joki H, Higashiyama Y, Nakae Y, Kugimoto C, Doi H, Kimura K, et al. . White matter hyperintensities on MRI in dementia with Lewy bodies, Parkinson's disease with dementia, Alzheimer's disease. J Neurol Sci. (2018) 385:99–104. 10.1016/j.jns.2017.12.018
    1. Huang X, Wen MC, Ng SYE, Hartono S, Chia NSY, Choi X, et al. . Periventricular white matter hyperintensity burden and cognitive impairment in early Parkinson's disease. Eur J Neurol. (2020) 27:959–66. 10.1111/ene.14192
    1. Lewis SJG, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci. (2003) 23:6351–6. 10.1523/JNEUROSCI.23-15-06351.2003
    1. Monchi O, Petrides M, Mejia-Constain B, Strafella AP. Cortical activity in Parkinson's disease during executive processing depends on striatal involvement. Brain. (2007) 130:233–44. 10.1093/brain/awl326
    1. Seibert T, Murphy E, Kaestner E, Brewer J. Interregional correlations in parkinson disease and parkinson-related dementia with resting functional MR imaging. Radiology. (2012) 236:226–34. 10.1148/radiol.12111280
    1. Baggio HC, Sala-Llonch R, Segura B, Marti MJ, Valldeoriola F, Compta Y, et al. . Functional brain networks and cognitive deficits in Parkinson's disease. Hum Brain Mapp. (2014) 35:4620–34. 10.1002/hbm.22499
    1. Lebedev AV, Westman E, Simmons A, Lebedeva A, Siepel FJ, Pereira JB, et al. . Large-scale resting state network correlates of cognitive impairment in Parkinson's disease and related dopaminergic deficits. Front Syst Neurosci. (2014) 8:45. 10.3389/fnsys.2014.00045
    1. Amboni M, Tessitore A, Esposito F, Santangelo G, Picillo M, Vitale C, et al. . Resting-state functional connectivity associated with mild cognitive impairment in Parkinson's disease. J Neurol. (2015) 262:425–34. 10.1007/s00415-014-7591-5
    1. Baggio HC, Segura B, Sala-Llonch R, Marti MJ, Valldeoriola F, Compta Y, et al. . Cognitive impairment and resting-state network connectivity in Parkinson's disease. Hum Brain Mapp. (2015) 36:199–212. 10.1002/hbm.22622
    1. Gorges M, Müller HP, Lulé D, Pinkhardt EH, Ludolph AC, Kassubek J. To rise and to fall: functional connectivity in cognitively normal and cognitively impaired patients with Parkinson's disease. Neurobiol Aging. (2015) 36:1727–35. 10.1016/j.neurobiolaging.2014.12.026
    1. Shin NY, Shin YS, Lee PH, Yoon U, Han S, Kim DJ, et al. . Different functional and microstructural changes depending on duration of mild cognitive impairment in Parkinson disease. Am J Neuroradiol. (2016) 37:897–903. 10.3174/ajnr.A4626
    1. Chen B, Wang S, Sun W, Shang X, Liu H, Liu G, et al. . Functional and structural changes in gray matter of parkinson's disease patients with mild cognitive impairment. Eur J Radiol. (2017) 93:16–23. 10.1016/j.ejrad.2017.05.018
    1. Bezdicek O, Ballarini T, RuŽička F, Roth J, Mueller K, Jech R, et al. . Mild cognitive impairment disrupts attention network connectivity in Parkinson's disease: a combined multimodal MRI and meta-analytical study. Neuropsychologia. (2018) 112:105–15. 10.1016/j.neuropsychologia.2018.03.011
    1. Díez-Cirarda M, Strafella AP, Kim J, Peña J, Ojeda N, Cabrera-Zubizarreta A, et al. . Dynamic functional connectivity in Parkinson's disease patients with mild cognitive impairment and normal cognition. NeuroImage Clin. (2018) 17:847–55. 10.1016/j.nicl.2017.12.013
    1. Hou Y, Yang J, Luo C, Ou R, Zou Y, Song W, et al. . Resting-state network connectivity in cognitively unimpaired drug-naïve patients with rigidity-dominant Parkinson's disease. J Neurol Sci. (2018) 395:147–52. 10.1016/j.jns.2018.10.003
    1. Wolters AF, van de Weijer SCF, Leentjens AFG, Duits AA, Jacobs HIL, Kuijf ML. Resting-state fMRI in Parkinson's disease patients with cognitive impairment: a meta-analysis. Parkinsonism Relat Disord. (2019) 62:16-27. 10.1016/j.parkreldis.2018.12.016
    1. Fathy YY, Hepp DH, de Jong FJ, Geurts JJG, Foncke EMJ, Berendse HW, et al. . Anterior insular network disconnection and cognitive impairment in Parkinson's disease. NeuroImage Clin. (2020) 28:102364. 10.1016/j.nicl.2020.102364
    1. Pan C, Ren J, Li L, Li Y, Xu J, Xue C, et al. . Differential functional connectivity of insular subdivisions in de novo Parkinson's disease with mild cognitive impairment. Brain Imaging Behav. (2021). 10.1007/s11682-021-00471-2. [Epub ahead of print].
    1. Delgado-Alvarado M, Gago B, Navalpotro-Gomez I, Jiménez-Urbieta H, Rodriguez-Oroz MC. Biomarkers for dementia and mild cognitive impairment in Parkinson's disease. Move Disord. (2016) 31:861–81. 10.1002/mds.26662
    1. Sarasso E, Agosta F, Piramide N, Filippi M. Progression of grey and white matter brain damage in Parkinson's disease: a critical review of structural MRI literature. J Neurol. (2020) 268:3144–79. 10.1007/s00415-020-09863-8
    1. Wu L, Liu FT, Ge JJ, Zhao J, Tang YL, Yu WB, et al. . Clinical characteristics of cognitive impairment in patients with Parkinson's disease and its related pattern in 18F-FDG PET imaging. Hum Brain Mapp. (2018) 39:4652–62. 10.1002/hbm.24311
    1. Yoo HS, Yun HJ, Chung SJ, Sunwoo MK, Lee JM, Sohn YH, et al. . Patterns of neuropsychological profile cortical thinning in Parkinson's disease with punding. PLoS ONE. (2015) 10:e0134468. 10.1371/journal.pone.0134468
    1. Na Young S, Bang M, Yoo S-W, Kim JS, Yun E, Yoon U, et al. . Cortical thickness from MRI to predict conversion from mild cognitive impairment to dementia in Parkinson disease: a machine learning-based model. Radiology. (2021) 300:390–9. 10.1148/radiol.2021203383
    1. Smith C, Malek N, Grosset K, Cullen B, Gentleman S, Grosset DG. Neuropathology of dementia in patients with Parkinson's disease: a systematic review of autopsy studies. J Neurol Neurosurg Psychiatry. (2019) 90:1234–43. 10.1136/jnnp-2019-321111
    1. Morales DA, Vives-Gilabert Y, Gómez-Ansón B, Bengoetxea E, Larrañaga P, Bielza C, et al. . Predicting dementia development in Parkinson's disease using Bayesian network classifiers. Psychiatry Res Neuroimaging. (2013) 213:92–8. 10.1016/j.pscychresns.2012.06.001
    1. Leocadi M, Canu E, Donzuso G, Stojkovic T, Basaia S, Kresojević N, et al. . Longitudinal clinical, cognitive, and neuroanatomical changes over 5 years in GBA-positive Parkinson's disease patients. J Neurol. (2021). 10.1007/s00415-021-10713-4. [Epub ahead of print].
    1. Sampedro F, Marín-Lahoz J, Martínez-Horta S, Pagonabarraga J, Kulisevsky J. Reduced gray matter volume in cognitively preserved COMT 158Val/Val Parkinson's disease patients and its association with cognitive decline. Brain Imaging Behav. (2020) 14:321–8. 10.1007/s11682-018-0022-y
    1. Sampedro F, Marín-Lahoz J, Martínez-Horta S, Pagonabarraga J, Kulisevsky J. Early gray matter volume loss in MAPT H1H1 de Novo PD patients: a possible association with cognitive decline. Front Neurol. (2018) 9:394. 10.3389/fneur.2018.00394
    1. Gorges M, Müller HP, Liepelt-Scarfone I, Storch A, Dodel R, Hilker-Roggendorf R, et al. . Structural brain signature of cognitive decline in Parkinson's disease: DTI-based evidence from the LANDSCAPE study. Ther Adv Neurol Disord. (2019) 12:1756286419843447. 10.1177/1756286419843447
    1. Minett T, Su L, Mak E, Williams G, Firbank M, Lawson RA, et al. . Longitudinal diffusion tensor imaging changes in early Parkinson's disease: ICICLE-PD study. J Neurol. (2018) 265:1528–39. 10.1007/s00415-018-8873-0
    1. Agosta F, Kostic VS, Davidovic K, Kresojević N, Sarro L, Svetel M, et al. . White matter abnormalities in Parkinson's disease patients with glucocerebrosidase gene mutations. Move Disord. (2013) 28:772–8. 10.1002/mds.25397
    1. Kamagata K, Motoi Y, Tomiyama H, Abe O, Ito K, Shimoji K, et al. . Relationship between cognitive impairment and white-matter alteration in Parkinson's disease with dementia: tract-based spatial statistics and tract-specific analysis. Eur Radiol. (2013) 23:1946–55. 10.1007/s00330-013-2775-4
    1. Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Brooks DJ, Barker RA, et al. . Gray and white matter imaging: a biomarker for cognitive impairment in early Parkinson's disease? Move Disord. (2016) 31:103–10. 10.1002/mds.26312
    1. Dalaker TO, Larsen JP, Bergsland N, Beyer MK, Alves G, Dwyer MG, et al. . Brain atrophy and white matter hyperintensities in early Parkinson's disease. Move Disord. (2009) 24:2233–41. 10.1002/mds.22754
    1. González-Redondo R, Toledo J, Clavero P, Lamet I, García-García D, García-Eulate R, et al. . The impact of silent vascular brain burden in cognitive impairment in Parkinson's disease. Eur J Neurol. (2012) 19:1100–7. 10.1111/j.1468-1331.2012.03682.x
    1. Raichle ME. The brain's default mode network. Ann Rev Neurosci. (2015) 38:433–47. 10.1146/annurev-neuro-071013-014030
    1. Tessitore A, Esposito F, Vitale C, Santangelo G, Amboni M, Russo A, et al. . Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology. (2012) 79:2226–32. 10.1212/WNL.0b013e31827689d6
    1. Chen X, Liu M, Wu Z, Cheng H. Topological abnormalities of functional brain network in early-stage Parkinson's disease patients with mild cognitive impairment. Front Neurosci. (2020) 14:1298. 10.3389/fnins.2020.616872
    1. Hou Y, Yuan X, Wei Q, Ou R, Yang J, Gong Q, et al. . Primary disruption of the default mode network subsystems in drug-naïve Parkinson's disease with mild cognitive impairments. Neuroradiology. (2020) 62:685–92. 10.1007/s00234-020-02378-z
    1. Guo W, Jin W, Li N, Gao J, Wang J, Chang Y, et al. . Brain activity alterations in patients with Parkinson's disease with cognitive impairment based on resting-state functional MRI. Neurosci Lett. (2021) 747:135672. 10.1016/j.neulet.2021.135672
    1. Zarifkar P, Kim J, La C, Zhang K, YorkWilliams S, Levine TF, et al. . Cognitive impairment in Parkinson's disease is associated with Default Mode Network subsystem connectivity and cerebrospinal fluid Aβ. Parkinsonism Relat Disord. (2021) 83:71–8. 10.1016/j.parkreldis.2021.01.002
    1. Disbrow EA, Carmichael O, He J, Lanni KE, Dressler EM, Zhang L, et al. . Resting state functional connectivity is associated with cognitive dysfunction in non-demented people with Parkinson's disease. J Parkinsons Dis. (2014) 4:453–65. 10.3233/JPD-130341
    1. Peraza LR, Nesbitt D, Lawson RA, Duncan GW, Yarnall AJ, Khoo TK, et al. . Intra- and inter-network functional alterations in Parkinson's disease with mild cognitive impairment. Hum Brain Mapp. (2017) 38:1702–15. 10.1002/hbm.23499
    1. Caminiti SP, Siri C, Guidi L, Antonini A, Perani D. The neural correlates of spatial and object working memory in elderly and Parkinson's disease subjects. Behav Neurol. (2015) 2015:10. 10.1155/2015/123636
    1. Giehl K, Tahmasian M, Eickhoff SB, van Eimeren T. Imaging executive functions in Parkinson's disease: an activation likelihood estimation meta-analysis. Parkinsonism Relat Disord. (2019) 63:137–42. 10.1016/j.parkreldis.2019.02.015
    1. Poston KL, Yorkwilliams S, Zhang K, Cai W, Everling D, Tayim FM, et al. . Compensatory neural mechanisms in cognitively unimpaired Parkinson disease. Ann Neurol. (2016) 79:448–63. 10.1002/ana.24585
    1. Pagonabarraga J, Kulisevsky J. Cognitive impairment and dementia in Parkinson's disease. Neurobiol Dis. (2012) 46:590–6. 10.1016/j.nbd.2012.03.029
    1. Lucas-Jiménez O, Díez-Cirard M, Ojeda N, Peña J, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N. Verbal memory in Parkinson's Disease: a combined DTI and fMRI study. J Parkinsons Dis. (2015) 5:793–804. 10.3233/JPD-150623
    1. Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. . Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med. (2011) 52:848–55. 10.2967/jnumed.111.089946
    1. Garcia-Garcia D, Clavero P, Salas CG, Lamet I, Arbizu J, Gonzalez-Redondo R, et al. . Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson's disease. Eur J Nucl Med Mol Imaging. (2012) 39:1767–77. 10.1007/s00259-012-2198-5
    1. Hosokai Y, Nishio Y, Hirayama K, Takeda A, Ishioka T, Sawada Y, et al. . Distinct patterns of regional cerebral glucose metabolism in Parkinson's disease with and without mild cognitive impairment. Move Disord. (2009) 24:854–62. 10.1002/mds.22444
    1. Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. (2008) 70:1470-7. 10.1212/01.wnl.0000304050.05332.9c
    1. Pappatá S, Santangelo G, Aarsland D, Vicidomini C, Longo K, Bronnick K, et al. . Mild cognitive impairment in drug-naive patients with PD is associated with cerebral hypometabolism. Neurology. (2011) 77:1357–62. 10.1212/WNL.0b013e3182315259
    1. González-Redondo R, García-García D, Clavero P, Gasca-Salas C, García-Eulate R, García-Eulate R, et al. . Grey matter hypometabolism and atrophy in Parkinson's disease with cognitive impairment: a two-step process. Brain. (2014) 137:2356-67. 10.1093/brain/awu159
    1. Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D, et al. . Metabolic brain networks associated with cognitive function in Parkinson's disease. NeuroImage. (2007) 34:714–23. 10.1016/j.neuroimage.2006.09.003
    1. Tard C, Demailly F, Delval A, Semah F, Defebvre L, Dujardin K, et al. . Hypometabolism in posterior and temporal areas of the brain is associated with cognitive decline in Parkinson's disease. J Parkinsons Dis. (2015) 5:569–74. 10.3233/JPD-150583
    1. Baba T, Hosokai Y, Nishio Y, Kikuchi A, Hirayama K, Suzuki K, et al. . Longitudinal study of cognitive and cerebral metabolic changes in Parkinson's disease. J Neurol Sci. (2017) 15:288–93. 10.1016/j.jns.2016.11.068
    1. Rinne JO, Portin R, Ruottinen H, Nurmi E, Bergman J, Haaparanta M, et al. . Cognitive impairment and the brain dopaminergic system in Parkinson disease. Arch Neurol. (2000) 57:470–5. 10.1001/archneur.57.4.470
    1. Walker Z, Costa DC, Walker RWH, Shaw K, Gacinovic S, Stevens T, et al. . Differentiation of dementia with Lewy bodies from Alzheimer's disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry. (2002) 73:134–40. 10.1136/jnnp.73.2.134
    1. Ito K, Nagano-Saito A, Kato T, Arahata Y, Nakamura A, Kawasumi Y, et al. . Striatal and extrastriatal dysfunction in Parkinson's disease with dementia: a 6-[18F]fluoro-L-dopa PET study. Brain. (2002) 125:1358-65. 10.1093/brain/awf134
    1. Nagano-Saito A, Kato T, Arahata Y, Washimi Y, Nakamura A, Abe Y, et al. . Cognitive- and motor-related regions in Parkinson's disease: FDOPA and FDG PET studies. NeuroImage. (2004) 22:553–61. 10.1016/j.neuroimage.2004.01.030
    1. van Beilen M, Portman AT, Kiers HAL, Maguire RP, Kaasinen V, Koning M, et al. . Striatal FDOPA uptake and cognition in advanced non-demented Parkinson's disease: a clinical and FDOPA-PET study. Parkinsonism Relat Disord. (2008) 14:224–8. 10.1016/j.parkreldis.2007.08.011
    1. Nobili F, Campus C, Arnaldi D, De Carli F, Cabassi G, Brugnolo A, et al. . Cognitive-nigrostriatal relationships in de novo, drug-naïve Parkinson's disease patients: a [I-123]FP-CIT SPECT Study. Move Disord. (2010) 25:35–43. 10.1002/mds.22899
    1. Polito C, Berti V, Ramat S, Vanzi E, De Cristofaro MT, Pellicanò G, et al. . Interaction of caudate dopamine depletion and brain metabolic changes with cognitive dysfunction in early Parkinson's disease. Neurobiol Aging. (2012) 33:206.e29-39. 10.1016/j.neurobiolaging.2010.09.004
    1. Niethammer M, Tang CC, Ma Y, Mattis PJ, Ko JH, Dhawan V, et al. . Parkinson's disease cognitive network correlates with caudate dopamine. NeuroImage. (2013) 78:204–9. 10.1016/j.neuroimage.2013.03.070
    1. Sawamoto N, Piccini P, Hotton G, Pavese N, Thielemans K, Brooks DJ. Cognitive deficits and striato-frontal dopamine release in Parkinson's disease. Brain. (2008) 131:1294-302. 10.1093/brain/awn054
    1. Christopher L, Duff-Canning S, Koshimori Y, Segura B, Boileau I, Chen R, et al. . Salience network and parahippocampal dopamine dysfunction in memory-impaired parkinson disease. Ann Neurol. (2015) 77:269–80. 10.1002/ana.24323
    1. Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, et al. . Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer disease. Arch Neurol. (2003) 60:1745–8. 10.1001/archneur.60.12.1745
    1. Hilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L, et al. . Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology. (2005) 65:1716–22. 10.1212/01.wnl.0000191154.78131.f6
    1. Gilman S, Koeppe RA, Nan B, Wang CN, Wang X, Junck L, et al. . Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. Neurology. (2010) 74:1416–23. 10.1212/WNL.0b013e3181dc1a55
    1. Klein JC, Eggers C, Kalbe E, Weisenbach S, Hohmann C, Vollmar S, et al. . Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology. (2010) 74:885–92. 10.1212/WNL.0b013e3181d55f61
    1. Kotagal V, Müller MLTM, Kaufer DI, Koeppe RA, Bohnen NI. Thalamic cholinergic innervation is spared in Alzheimer disease compared to parkinsonian disorders. Neurosci Lett. (2012) 514:169–72. 10.1016/j.neulet.2012.02.083
    1. Shimada H, Hirano S, Sinotoh H, Ota T, Tanaka N, Sato K, et al. . Dementia with lewy bodies can be well-differentiated from Alzheimer's disease by measurement of brain acetylcholinesterase activity - a [11C]MP4A PET study. Int J Geriatr Psychiatry. (2015) 30:1105–13. 10.1002/gps.4338
    1. Meyer PM, Strecker K, Kendziorra K, Becker G, Hesse S, Woelpl D, et al. . Reduced α4β2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease. Arch Gen Psychiatry. (2009) 66:866–77. 10.1001/archgenpsychiatry.2009.106
    1. Colloby S, Pery E, Pakrasi S, Pimlott S, Wyper D, McKeith I, et al. . Nicotinic 123I-5IA-85380 single photon emission computed tomography as a predictor of cognitive progression in Alzheimer's disease and dementia with Lewy bodies. Am J Geriatr Psychiatry. (2010) 18:86–90. 10.1097/JGP.0b013e3181b972aa
    1. Edison P, Rowe CC, Rinne JO, Ng S, Ahmed I, Kemppainen N, et al. . Amyloid load in Parkinson's disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry. (2008) 79:1331–8. 10.1136/jnnp.2007.127878
    1. Jokinen P, Scheinin N, Aalto S, Någren K, Savisto N, Parkkola R, et al. . [11C]PIB-, [18F]FDG-PET and MRI imaging in patients with Parkinson's disease with and without dementia. Parkinsonism Relat Disord. (2010) 16:666–70. 10.1016/j.parkreldis.2010.08.021
    1. Gomperts SN, Locascio JJ, Rentz D, Santarlasci A, Marquie M, Johnson KA, et al. . Amyloid is linked to cognitive decline in patients with Parkinson disease without dementia. Neurology. (2013) 80:85–91. 10.1212/WNL.0b013e31827b1a07
    1. Petrou M, Dwamena BA, Foerster BR, Maceachern MP, Bohnen NI, Müller ML, et al. . Amyloid deposition in Parkinson's disease and cognitive impairment: a systematic review. Move Disord. (2015) 30:928–35. 10.1002/mds.26191
    1. Shah N, Frey KA, Müller MLTM, Petrou M, Kotagal V, Koeppe RA, et al. . Striatal and cortical β-Amyloidopathy and cognition in Parkinson's disease. Move Disord. (2016) 31:111–7. 10.1002/mds.26369
    1. Ahktar R, Xie S, Chen Y, Rick J, Gross R, Nasrallah I, et al. . Regional brain amyloid-β Accumulation associates with domain-specific cognitive performance in Parkinson disease without dementia. PLoS ONE. (2017) 12:e0177924. 10.1371/journal.pone.0177924
    1. Fiorenzato E, Biundo R, Cecchin D, Frigo AC, Kim J, Weis L, et al. . Brain amyloid contribution to cognitive dysfunction in early-stage Parkinson's disease: the PPMI dataset. J Alzheimers Dis. (2018) 66:229–37. 10.3233/JAD-180390
    1. Melzer TR, Stark MR, Keenan RJ, Myall DJ, MacAskill MR, Pitcher TL, et al. . Beta amyloid deposition is not associated with cognitive impairment in Parkinson's disease. Front Neurol. (2019) 10:391. 10.3389/fneur.2019.00391
    1. Na S, Jeong H, Park JS, Chung YA, Song IU. The impact of amyloid-beta positivity with 18f-florbetaben pet on neuropsychological aspects in parkinson's disease dementia. Metabolites. (2020) 10:380. 10.3390/metabo10100380
    1. Biundo R, Weis L, Fiorenzato E, Pistonesi F, Cagnin A, Bertoldo A, et al. . The contribution of beta-amyloid to dementia in Lewy body diseases: a 1-year follow-up study. Brain Commun. (2021) 3:fcab180. 10.1093/braincomms/fcab180
    1. Gomperts SN, Locascio JJ, Makaretz SJ, Schultz A, Caso C, Vasdev N, et al. . Tau positron emission tomographic imaging in the lewy body diseases. JAMA Neurol. (2016) 73:1334–41. 10.1001/jamaneurol.2016.3338
    1. Kantarci K, Lowe VJ, Boeve BF, Senjem ML, Tosakulwong N, Lesnick TG, et al. . AV-1451 tau and β-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann Neurol. (2017) 81:58–67. 10.1002/ana.24825
    1. Buongiorno M, Antonelli F, Compta Y, Fernandez Y, Pavia J, Lomeña F, et al. . Cross-sectional and longitudinal cognitive correlates of FDDNP PET and CSF amyloid-β and tau in Parkinson's disease. J Alzheimers Dis. (2017) 55:1261–72. 10.3233/JAD-160698
    1. Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, et al. . Microglia, amyloid, and glucose metabolism in parkinson's disease with and without dementia. Neuropsychopharmacology. (2013) 38:938–49. 10.1038/npp.2012.255
    1. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, et al. . Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia. Alzheimers Dement. (2015) 11:608–21.e7. 10.1016/j.jalz.2014.06.016
    1. Femminella GD, Ninan S, Atkinson R, Fan Z, Brooks DJ, Edison P. Does microglial activation influence hippocampal volume and neuronal function in Alzheimer's disease and Parkinson's disease dementia? J Alzheimers Dis. (2016) 51:1275–89. 10.3233/JAD-150827
    1. Wilson H, Dervenoulas G, Pagano G, Tyacke RJ, Polychronis S, Myers J, et al. . Imidazoline 2 binding sites reflecting astroglia pathology in Parkinson's disease: an in vivo 11C-BU99008 PET study. Brain. (2019) 142:3116–28. 10.1093/brain/awz260
    1. Meyer PT, Frings L, Hellwig S. Update on SPECT and PET in parkinsonism - part 2: biomarker imaging of cognitive impairment in Lewy-body diseases. Curr Opin Neurol. (2014) 27:398–404. 10.1097/WCO.0000000000000107
    1. Gasca-Salas C, Clavero P, García-García D, Obeso JA, Rodríguez-Oroz MC. Significance of visual hallucinations and cerebral hypometabolism in the risk of dementia in Parkinson's disease patients with mild cognitive impairment. Hum Brain Mapp. (2016) 37:968–77. 10.1002/hbm.23080
    1. Tang CC, Poston KL, Dhawan V, Eidelberg D. Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson's disease. J Neurosci. (2010) 30:1049–56. 10.1523/JNEUROSCI.4188-09.2010
    1. Meles SK, Renken RJ, Pagani M, Teune LK, Arnaldi D, Morbelli S, et al. . Abnormal pattern of brain glucose metabolism in Parkinson's disease: replication in three European cohorts. Eur J Nucl Med Mol Imaging. (2020) 47:437–50. 10.1007/s00259-019-04570-7
    1. Schrag A, Siddiqui UF, Anastasiou Z, Weintraub D, Schott JM. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson's disease: a cohort study. Lancet Neurol. (2017) 16:66–75. 10.1016/S1474-4422(16)30328-3
    1. Sampedro F, Marín-Lahoz J, Martínez-Horta S, Pagonabarraga J, Kulisevsky J. Dopaminergic degeneration induces early posterior cortical thinning in Parkinson's disease. Neurobiol Dis. (2019) 124:29–35. 10.1016/j.nbd.2018.11.001
    1. Müller MLTM, Bohnen NI. Cholinergic dysfunction in parkinson's disease. Curr Neurol Neurosci Rep. (2013) 13:377. 10.1007/s11910-013-0377-9
    1. Bohnen NI, Kanel P, Müller MLTM. Molecular imaging of the cholinergic system in Parkinson's disease. Int Rev Neurobiol. (2018) 141:211–50. 10.1016/bs.irn.2018.07.027
    1. Bohnen NI, Albin RL, Müller MLTM, Petrou M, Kotagal V, Koeppe NI, et al. . Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of parkinson disease and evidence of interaction effects. JAMA Neurol. (2015) 72:194–200. 10.1001/jamaneurol.2014.2757
    1. Pimlott SL, Piggott M, Owens J, Greally E, Court JA, Jaros E, et al. . Nicotinic acetylcholine receptor distribution in Alzheimer's disease, dementia with lewy bodies, Parkinson's disease, and vascular dementia: in vitro binding study using 5-[125I]-A-85380. Neuropsychopharmacology. (2004) 29:108–16. 10.1038/sj.npp.1300302
    1. Kehagia AA, Barker RA, Robbins TW. Cognitive impairment in Parkinson's disease: the dual syndrome hypothesis. Neurodegenerat Dis. (2012) 11:79–92. 10.1159/000341998
    1. Winer JR, Maass A, Pressman P, Stiver J, Schonhaut DR, Baker SL, et al. . Associations between Tau, β-amyloid, and cognition in Parkinson disease. JAMA Neurol. (2018) 75:227–35. 10.1001/jamaneurol.2017.3713
    1. Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson's disease and its potential as therapeutic target. Transl Neurodegenerat. (2015) 4:19. 10.1186/s40035-015-0042-0
    1. Le W, Wu J, Tang Y. Protective microglia and their regulation in Parkinson's disease. Front Mol Neurosci. (2016) 9:89. 10.3389/fnmol.2016.00089
    1. McGeer PL, McGeer EG. Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat Disord. (2004) 10(Suppl 1):S3–7. 10.1016/j.parkreldis.2004.01.005
    1. Kouli A, Camacho M, Allinson K, Williams-Gray CH. Neuroinflammation and protein pathology in Parkinson's disease dementia. Acta Neuropathol Commun. (2020) 8:211. 10.1186/s40478-020-01083-5
    1. Best L, Ghadery C, Pavese N, Tai YF, Strafella AP. New and Old TSPO PET radioligands for imaging brain microglial activation in neurodegenerative disease. Curr Neurol Neurosci Rep. (2019) 19:24. 10.1007/s11910-019-0934-y
    1. Terada T, Yokokura M, Yoshikawa E, Futatsubashi M, Kono S, Konishi T, et al. . Extrastriatal spreading of microglial activation in Parkinson's disease: a positron emission tomography study. Annal Nucl Med. (2016) 30:579–87. 10.1007/s12149-016-1099-2
    1. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. (2005) 6:626–40. 10.1038/nrn1722
    1. Olmos G, Alemany R, Escriba PV, García-Sevilla JA. The effects of chronic imidazoline drug treatment on glial fibrillary acidic protein concentrations in rat brain. Br J Pharmacol. (1994) 111:997–1002. 10.1111/j.1476-5381.1994.tb14842.x
    1. Booth HDE, Hirst WD, Wade-Martins R. The role of astrocyte dysfunction in Parkinson's disease pathogenesis. Trends Neurosci. (2017) 40:358–70. 10.1016/j.tins.2017.04.001
    1. Hammes J, Theis H, Giehl K, Hoenig MC, Greuel A, Tittgemeyer M, et al. . Dopamine metabolism of the nucleus accumbens and fronto-striatal connectivity modulate impulse control. Brain. (2019) 142:733–43. 10.1093/brain/awz007
    1. Pellicano C, Niccolini F, Wu K, O'Sullivan SS, Lawrence AD, Lees AJ, et al. . Morphometric changes in the reward system of Parkinson's disease patients with impulse control disorders. J Neurol. (2015) 262:2653–61. 10.1007/s00415-015-7892-3
    1. Tessitore A, Santangelo G, De Micco R, Vitale C, Giordano A, Raimo S, et al. . Cortical thickness changes in patients with Parkinson's disease and impulse control disorders. Parkinsonism Relat Disord. (2016) 24:119–25. 10.1016/j.parkreldis.2015.10.013
    1. Biundo R, Weis L, Facchini S, Formento-Dojot P, Vallelunga A, Pilleri M, et al. . Patterns of cortical thickness associated with impulse control disorders in Parkinson's disease. Move Disord. (2015) 30:688–95. 10.1002/mds.26154
    1. Imperiale F, Agosta F, Canu E, Markovic V, Inuggi A, Jecmenica-Lukic M, et al. . Brain structural and functional signatures of impulsive-compulsive behaviours in Parkinson's disease. Mol Psychiatry. (2018) 23:459–66. 10.1038/mp.2017.18
    1. Tessitore A, De Micco R, Giordano A, di Nardo F, Caiazzo G, Siciliano M, et al. . Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson's disease. Move Disord. (2017) 32:1710–9. 10.1002/mds.27139
    1. Ye Z, Hammer A, Münte TF. Pramipexole modulates interregional connectivity within the sensorimotor network. Brain Connect. (2017) 7:258–63. 10.1089/brain.2017.0484
    1. Ricciardi L, Lambert C, De Micco R, Morgante F, Edwards M. Can we predict development of impulsive-compulsive behaviours in Parkinson's disease? J Neurol Neurosurg Psychiatry. (2018) 89:476–81. 10.1136/jnnp-2017-317007
    1. Yoo HB, Lee JY, Lee JS, Kang H, Kim YK, Song IC, et al. . Whole-brain diffusion-tensor changes in parkinsonian patients with impulse control disorders. J Clin Neurol. (2015) 11:42–7. 10.3988/jcn.2015.11.1.42
    1. Canu E, Agosta F, Markovic V, Petrovic I, Stankovic I, Imperiale F, et al. . White matter tract alterations in Parkinson's disease patients with punding. Parkinsonism Relat Disord. (2017) 43:85–91. 10.1016/j.parkreldis.2017.07.025
    1. Zadeh MM, Ashraf-Ganjouei A, Sherbaf FG, Haghshomar M, Aarabi MH. White matter tract alterations in drug-Naïve Parkinson's disease patients with impulse control disorders. Front Neurol. (2018) 9:163. 10.3389/fneur.2018.00163
    1. Carriere N, Lopes R, Defebvre L, Delmaire C, Dujardin K. Impaired corticostriatal connectivity in impulse control disorders in Parkinson disease. Neurology. (2015) 84:2116–23. 10.1212/WNL.0000000000001619
    1. Tessitore A, Santangelo G, De Micco R, Giordano A, Raimo S, Amboni M, et al. . Resting-state brain networks in patients with Parkinson's disease and impulse control disorders. Cortex. (2017) 94:63–72. 10.1016/j.cortex.2017.06.008
    1. Petersen K, Van Wouwe N, Stark A, Lin YC, Kang H, Trujillo-Diaz P, et al. . Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease. Hum Brain Mapp. (2018) 39:509–21. 10.1002/hbm.23860
    1. Navalpotro-Gomez I, Kim J, Paz-Alonso PM, Delgado-Alvarado M, Quiroga-Varela A, Jimenez-Urbieta H, et al. . Disrupted salience network dynamics in Parkinson's disease patients with impulse control disorders. Parkinsonism Relat Disord. (2020) 70:74–81. 10.1016/j.parkreldis.2019.12.009
    1. Koh J, Kaneoke Y, Donishi T, Ishida T, Sakata M, Hiwatani Y, et al. . Increased large-scale inter-network connectivity in relation to impulsivity in Parkinson's disease. Sci Rep. (2020) 10:11418. 10.1038/s41598-020-68266-x
    1. Mata-Marín D, Pineda-Pardo JÁ, Molina JA, Alonso-Frech F, Vela L, Obeso I. Aberrant salient and corticolimbic connectivity in hypersexual Parkinson's disease. Brain Connect. (2021). 10.1089/brain.2020.0868. [Epub ahead of print].
    1. Rao H, Mamikonyan E, Detre JA, Siderowf AD, Stern MB, Potenza MN, et al. . Decreased ventral striatal activity with impulse control disorders in Parkinson's Disease. Move Disord. (2010) 25:1660–9. 10.1002/mds.23147
    1. Frosini D, Pesaresi I, Cosottini M, Belmonte G, Rossi C, Dell'Osso L, et al. . Parkinson's disease and pathological gambling: results from a functional MRI study. Move Disord. (2010) 25:2449–53. 10.1002/mds.23369
    1. Voon V, Gao J, Brezing C, Symmonds M, Ekanayake V, Fernandez H, et al. . Dopamine agonists and risk: Impulse control disorders in Parkinson's; Disease. Brain. (2011) 134:1438-46. 10.1093/brain/awr080
    1. Politis M, Loane C, Wu K, O'Sullivan SS, Woodhead Z, Kiferle L, et al. . Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson's disease. Brain. (2013) 136:400-11. 10.1093/brain/aws326
    1. Girard R, Obeso I, Thobois S, Park SA, Vidal T, Favre E, et al. . Wait and you shall see: sexual delay discounting in hypersexual Parkinson's disease. Brain. (2019) 142:146–62. 10.1093/brain/awy298
    1. Paz-Alonso PM, Navalpotro-Gomez I, Boddy P, Dacosta-Aguayo R, Delgado-Alvarado M, Quiroga-Varela A, et al. . Functional inhibitory control dynamics in impulse control disorders in Parkinson's disease. Move Disord. (2020) 35:316–25. 10.1002/mds.27885
    1. Haagensen BN, Herz DM, Meder D, Madsen KH, Løkkegaard A, Siebner HR. Linking brain activity during sequential gambling to impulse control in Parkinson's disease. NeuroImage Clin. (2020) 27:102330. 10.1016/j.nicl.2020.102330
    1. Tahmasian M, Rochhausen L, Maier F, Williamson KL, Drzezga A, Timmermann L, et al. . Impulsivity is associated with increased metabolism in the fronto-insular network in Parkinson's Disease. Front Behav Neurosci. (2015) 9:317. 10.3389/fnbeh.2015.00317
    1. Verger A, Klesse E, Chawki MB, Witjas T, Azulay JP, Eusebio A, et al. . Brain PET substrate of impulse control disorders in Parkinson's disease: a metabolic connectivity study. Hum Brain Mapp. (2018) 39:3178–86. 10.1002/hbm.24068
    1. Marín-Lahoz J, Sampedro F, Horta-Barba A, Martínez-Horta S, Aracil-Bolaños I, Camacho V, et al. . Preservation of brain metabolism in recently diagnosed Parkinson's impulse control disorders. Eur J Nucl Med Mol Imaging. (2020) 47:2165–74. 10.1007/s00259-019-04664-2
    1. Cilia R, Ko JH, Cho SS, van Eimeren T, Marotta G, Pellecchia G, et al. . Reduced dopamine transporter density in the ventral striatum of patients with Parkinson's disease and pathological gambling. Neurobiol Dis. (2010) 39:98–104. 10.1016/j.nbd.2010.03.013
    1. Joutsa J, Martikainen K, Niemelä S, Johansson J, Forsback S, Rinne JO, et al. . Increased medial orbitofrontal [18F]fluorodopa uptake in Parkinsonian impulse control disorders. Move Disord. (2012) 27:778–82. 10.1002/mds.24941
    1. Voon V, Rizos A, Chakravartty R, Hulholland N, Robinson S, Howell N, et al. . Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels. J Neurol Neurosurg Psychiatry. (2014) 85:148–52.
    1. Vriend C, Nordbeck AH, Booij J, van der Werf YD, Pattij T, Voorn P, et al. . Reduced dopamine transporter binding predates impulse control disorders in Parkinson's disease. Move Disord. (2014) 29:904–11. 10.1002/mds.25886
    1. Smith KM, Xie SX, Weintraub D. Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease. J Neurol Neurosurg Psychiatry. (2016) 87:864–70. 10.1136/jnnp-2015-311827
    1. Premi E, Pilotto A, Garibotto V, Bigni B, Turrone R, Alberici A, et al. . Impulse control disorder in PD: a lateralized monoaminergic frontostriatal disconnection syndrome? Parkinsonism Relat Disord. (2016) 30:62–6. 10.1016/j.parkreldis.2016.05.028
    1. Navalpotro-Gomez I, Dacosta-Aguayo R, Molinet-Dronda F, Martin-Bastida A, Botas-Peñin A, Jimenez-Urbieta H, et al. . Nigrostriatal dopamine transporter availability, and its metabolic and clinical correlates in Parkinson's disease patients with impulse control disorders. Eur J Nucl Med Mol Imaging. (2019) 46:2065–76. 10.1007/s00259-019-04396-3. [Epub ahead of print].
    1. Hinkle JT, Mills KA, Perepezko K, Pontone GM. Bidirectional correlations between dopaminergic function and motivation in Parkinson's disease. J Geriatr Psychiatry Neurol. (2021) 891988721996802. 10.1177/0891988721996802
    1. Boileau I, Guttman M, Rusjan P, Adams J, Houle S, Tong J, et al. . Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson's disease. Brain. (2009) 132(Pt 5):1366–75. 10.1093/brain/awn337
    1. Payer D, Guttman M, Kish S, Tong J, Strafella A, Zack M, et al. . [11C]-(+)-PHNO PET imaging of dopamine D(2/3) receptors in Parkinson's disease with impulse control disorders. Mov Disord. (2015) 30:160–6. 10.1002/mds.26135
    1. Stark AJ, Smith CT, Petersen KJ, Trujillo P, Van Wouwe NC, Donahue MJ, et al. . [18F]fallypride characterization of striatal and extrastriatal D2/3 receptors in Parkinson's disease. Neuroimage Clin. (2018) 18:433–42. 10.1016/j.nicl.2018.02.010
    1. Van Eimeren T, Pellecchia G, Cilia R, Ballanger B, Steeves TDL, Houle S, et al. . Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD. Neurology. (2010) 75:1711-6. 10.1212/WNL.0b013e3181fc27fa
    1. Antonelli F, Ko J, Miyaski J, Lang A, Houle S, Valzania F, et al. . Dopamine-agonists and impulsivity in Parkinson's disease: Impulsive choices vs. impulsive actions. Hum Brain Mapp. (2014) 35:2499–506. 10.1002/hbm.22344
    1. Steeves TDL, Miyasaki J, Zurowski M, Lang AE, Pellecchia G, Van Eimeren T, et al. . Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain. (2009) 132:1376-85. 10.1093/brain/awp054
    1. O'Sullivan SS, Wu K, Politis M, Lawrence AD, Evans AH, Bose SK, et al. . Cue-induced striatal dopamine release in Parkinson's disease-associated impulsive-compulsive behaviours. Brain. (2011) 134:969-78. 10.1093/brain/awr003
    1. Ray N, Miyaski J, Zurowski M, Ko J, Choo S, Pellecchia G, Antonelli F, et al. . Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson's patients with medication-induced pathological gambling: A [11C] FLB-457 and PET study. Neurobiol Dis. (2012) 48:519–25. 10.1016/j.nbd.2012.06.021
    1. Wu K, Politis M, O'Sullivan SS, Lawrence AD, Warsi S, Bose S, et al. . Single versus multiple impulse control disorders in Parkinson's disease: an 11C-raclopride positron emission tomography study of reward cue-evoked striatal dopamine release. J Neurol. (2015) 262:1504–14. 10.1007/s00415-015-7722-7
    1. Cilia R, Siri C, Marotta G, Isaias IU, De Gaspari D, Canesi M, et al. . Functional abnormalities underlying pathological gambling in parkinson disease. Arch Neurol. (2008) 65:1604–11. 10.1001/archneur.65.12.1604
    1. Martini A, Tamburin S, Biundo R, Weis L, Antonini A, Pizzolo C, et al. . Incentive-driven decision-making networks in de novo and drug-treated Parkinson's disease patients with impulsive-compulsive behaviors: a systematic review of neuroimaging studies. Parkinsonism Relat Disord. (2020) 78:165–77. 10.1016/j.parkreldis.2020.07.020
    1. Seibyl JP, Marchek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, et al. . Decreased single-photon emission computed tomographic {123I}β-CIT striatal uptake correlates with symptom severity in parkinson's disease. Annal Neurol. (1995) 38:589–98. 10.1002/ana.410380407
    1. Lee JY, Seo SH, Kim YK, Yoo HB, Kim YE, Song IC, et al. . Extrastriatal dopaminergic changes in Parkinson's disease patients with impulse control disorders. J Neurol Neurosurg Psychiatry. (2014) 85:23–30. 10.1136/jnnp-2013-305549
    1. Voon V, Napier TC, Frank MJ, Sgambato-Faure V, Grace AA, Rodriguez-Oroz M, et al. . Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet Neurol. (2017) 16:238–50. 10.1016/S1474-4422(17)30004-2
    1. Honkanen EA, Saari L, Orte K, Gardberg M, Noponen T, Joutsa J, et al. . No link between striatal dopaminergic axons and dopamine transporter imaging in Parkinson's disease. Move Disord. (2019) 34:1562–6. 10.1002/mds.27777
    1. Majuri J, Joutsa J. Molecular imaging of impulse control disorders in Parkinson's disease. Eur J Nucl Med Mol Imaging. (2019) 46:2220–22. 10.1007/s00259-019-04459-5
    1. Brittain JS, Watkins KE, Joundi RA, Ray NJ, Holland P, Green AL, et al. . A role for the subthalamic nucleus in response inhibition during conflict. J Neurosci. (2012) 32:13396-401. 10.1523/JNEUROSCI.2259-12.2012

Source: PubMed

3
購読する