The functional anatomy of impulse control disorders

Catharina C Probst, Thilo van Eimeren, Catharina C Probst, Thilo van Eimeren

Abstract

Impulsive-compulsive disorders such as pathological gambling, hypersexuality, compulsive eating, and shopping are side effects of the dopaminergic therapy for Parkinson's disease. With a lower prevalence, these disorders also appear in the general population. Research in the last few years has discovered that these pathological behaviors share features similar to those of substance use disorders (SUD), which has led to the term "behavioral addictions". As in SUDs, the behaviors are marked by a compulsive drive toward and impaired control over the behavior. Furthermore, animal and medication studies, research in the Parkinson's disease population, and neuroimaging findings indicate a common neurobiology of addictive behaviors. Changes associated with addictions are mainly seen in the dopaminergic system of a mesocorticolimbic circuit, the so-called reward system. Here we outline neurobiological findings regarding behavioral addictions with a focus on dopaminergic systems, relate them to SUD theories, and try to build a tentative concept integrating genetics, neuroimaging, and behavioral results.

Conflict of interest statement

Catharina C. Probst declares that she has no conflict of interest.

Thilo van Eimeren has been a consultant for the CHDI Foundation, is employed by the German government, and has received travel/accommodation expenses covered by several research organizations.

Figures

Fig. 1
Fig. 1
Heightened striatal dopamine release during gambling in Parkinson’s disease (PD) with pathological gambling (a) [35] and reduced activation of the orbitofrontal cortex (OFC) and rostral cingulate zone (RCZ) in pathological gambling after dopamine (DA) administration (b) [•]. a Ventral striatal DA release (indexed by a reduction of [11C]raclopride binding potential) during gambling as compared with that in a control task in PD patients with (top) and without (bottom) pathological gambling. b Differential effect of medication on brain activity in PD gamblers compared to controls. Gamblers showed a significant dopamine-induced reduction in the left lateral OFC (top) and right RCZ (bottom). (a With permission from: Steeves et al. [35]; b with permission from van Eimeren et al. [•])
Fig. 2
Fig. 2
Interacting factors associated with the development of behavioral addictions. AHDH attention deficit–hyperactivity disorder, OCD obsessive–compulsive disorders, SUD substance use disorders
Fig. 3
Fig. 3
A model of striatal DA level and subsequent influence of appetitive and inhibitory areas on executive control. Right panel, dotted line normal tonic and phasic DA release from the ventral tegmental area (VTA) to the nucleus accumbens (Nacc). Left panel, bottom the influences of inhibitory and appetitive areas are well balanced and adequately regulated. Right panel, solid line 1 vulnerable individuals have an increased tonic DA level, leading to reduced influence of inhibitory control areas via increased D2 receptor activation (left panel, middle) [, –, •]; 2 increased D2 receptor activation interferes with the dip following punishments [55]; 3 adequate reinforcing stimuli now lead to suprathreshold D1 receptor stimulation, which drives the formation of pathological habits [••]

References

    1. Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67:589–95. doi: 10.1001/archneurol.2010.65.
    1. Task Force on DSM IV, American Psychiatric Association . Diagnostic and statistical manual of mental disorders: fourth edition text revision DSM-IV-TR. Washington: American Psychiatric Association; 2002.
    1. Grant JE, Potenza MN, Weinstein A, Gorelick DA. Introduction to behavioral addictions. Am J Drug Alcohol Abuse. 2010;36:233–41. doi: 10.3109/00952990.2010.491884.
    1. Holden C. Behavioral addictions debut in proposed DSM-V. Science. 2010;327:935. doi: 10.1126/science.327.5968.935.
    1. Volkow ND, Wang G-J, Fowler JS, Tomasi D. Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol. 2012;52:321–36. doi: 10.1146/annurev-pharmtox-010611-134625.
    1. Ikemoto S. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev. 2010;35:129–50. doi: 10.1016/j.neubiorev.2010.02.001.
    1. Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9. doi: 10.1038/nn1579.
    1. Dolan RJ. The human amygdala and orbital prefrontal cortex in behavioural regulation. Philos Trans R Soc B Biol Sci. 2007;362:787–99. doi: 10.1098/rstb.2007.2088.
    1. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69. doi: 10.1038/nrn3119.
    1. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202. doi: 10.1146/annurev.neuro.24.1.167.
    1. Smith KS, Berridge KC. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci. 2007;27:1594–605. doi: 10.1523/JNEUROSCI.4205-06.2007.
    1. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22:3306–11.
    1. Barrot M, Sesack SR, Georges F, Pistis M, Hong S, Jhou TC. Braking dopamine systems: a new GABA master structure for mesolimbic and nigrostriatal functions. J Neurosci. 2012;32:14094–101. doi: 10.1523/JNEUROSCI.3370-12.2012.
    1. Chiara GD. A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J Psychopharmacol. 1998;12:54–67. doi: 10.1177/026988119801200108.
    1. Robinson TE, Berridge KC. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc B Biol Sci. 2008;363:3137–46. doi: 10.1098/rstb.2008.0093.
    1. Ko C-H, Liu G-C, Hsiao S, Yen J-Y, Yang M-J, Lin W-C, et al. Brain activities associated with gaming urge of online gaming addiction. J Psychiatr Res. 2009;43:739–47. doi: 10.1016/j.jpsychires.2008.09.012.
    1. Van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling. Neurosci Biobehav Rev. 2010;34:87–107. doi: 10.1016/j.neubiorev.2009.07.007.
    1. Potenza MN, Steinberg MA, Skudlarski P, Fulbright RK, Lacadie CM, Wilber MK, et al. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2003;60:828–36. doi: 10.1001/archpsyc.60.8.828.
    1. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Neural correlates of food addiction. Arch Gen Psychiatry. 2011;68:808–16. doi: 10.1001/archgenpsychiatry.2011.32.
    1. Leyton M, Vezina P. On cue: striatal ups and downs in addictions. Biol Psychiatry. 2012;72:e21–2. doi: 10.1016/j.biopsych.2012.04.036.
    1. Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD. Images of desire: food-craving activation during fMRI. Neuroimage. 2004;23:1486–93. doi: 10.1016/j.neuroimage.2004.08.023.
    1. Potenza MN. Neurobiology of gambling behaviors. Curr Opin Neurobiol. 2013;23:660–7. doi: 10.1016/j.conb.2013.03.004.
    1. Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8:1458–63. doi: 10.1038/nn1584.
    1. Brewer JA, Potenza MN. The neurobiology and genetics of impulse control disorders: relationships to drug addictions. Biochem Pharmacol. 2008;75:63–75. doi: 10.1016/j.bcp.2007.06.043.
    1. Reuter J, Raedler T, Rose M, Hand I, Gläscher J, Büchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8:147–8. doi: 10.1038/nn1378.
    1. Limbrick-Oldfield EH, van Holst RJ, Clark L. Fronto-striatal dysregulation in drug addiction and pathological gambling: consistent inconsistencies? Neuroimage Clin. 2013;2:385–93. doi: 10.1016/j.nicl.2013.02.005.
    1. Blum K, Gull JG, Braverman ER, Comings DE. Reward deficiency syndrome. Am Sci. 1996;84:132–45.
    1. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159:1642–52. doi: 10.1176/appi.ajp.159.10.1642.
    1. Enoch M-A. The influence of gene–environment interactions on the development of alcoholism and drug dependence. Curr Psychiatr Rep. 2012;14:150–8. doi: 10.1007/s11920-011-0252-9.
    1. Lin SAEN, Lyons MJ, Scherrer JF, Griffith K, True WR, Goldberg J, et al. Familial influences on gambling behavior: an analysis of 3359 twin pairs. Addiction. 1998;93:1375–84. doi: 10.1046/j.1360-0443.1998.93913758.x.
    1. Winters KC, Rich T. A twin study of adult gambling behavior. J Gambl Stud. 1998;14:213–25. doi: 10.1023/A:1022084924589.
    1. Beaver KM, Hoffman T, Shields RT, Vaughn MG, DeLisi M, Wright JP. Gender differences in genetic and environmental influences on gambling: results from a sample of twins from the National Longitudinal Study of Adolescent Health. Addiction. 2010;105:536–42. doi: 10.1111/j.1360-0443.2009.02803.x.
    1. Cilia R, van Eimeren T. Impulse control disorders in Parkinson’s disease: seeking a roadmap toward a better understanding. Brain Struct Funct. 2011;216:289–99. doi: 10.1007/s00429-011-0314-0.
    1. Cormier F, Muellner J, Corvol J-C. Genetics of impulse control disorders in Parkinson’s disease. J Neural Transm. 2013;120:665–71. doi: 10.1007/s00702-012-0934-4.
    1. Steeves TDL, Miyasaki J, Zurowski M, Lang AE, Pellecchia G, van Eimeren T, et al. Increased striatal dopamine release in parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain. 2009;132:1376–85. doi: 10.1093/brain/awp054.
    1. Wang G-J, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet. 2001;357:354–7. doi: 10.1016/S0140-6736(00)03643-6.
    1. Kim SH, Baik S-H, Park CS, Kim SJ, Choi SW, Kim SE. Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport. 2011;22:407–11. doi: 10.1097/WNR.0b013e328346e16e.
    1. Clark L, Stokes PR, Wu K, Michalczuk R, Benecke A, Watson BJ, et al. Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity. Neuroimage. 2012;63:40–6. doi: 10.1016/j.neuroimage.2012.06.067.
    1. Boileau I, Payer D, Chugani B, Lobo D, Behzadi A, Rusjan PM, et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction. 2013;108:953–63. doi: 10.1111/add.12066.
    1. O’Sullivan SS, Wu K, Politis M, Lawrence AD, Evans AH, Bose SK, et al. Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain. 2011;134:969–78. doi: 10.1093/brain/awr003.
    1. Raymond NC, Grant JE, Kim SW, Coleman E. Treatment of compulsive sexual behaviour with naltrexone and serotonin reuptake inhibitors: two case studies. Int Clin Psychopharmacol. 2002;17:201–5. doi: 10.1097/00004850-200207000-00008.
    1. Grant JE. Three cases of compulsive buying treated with naltrexone. Int J Psychiatry Clin Pract. 2003;7:223–5. doi: 10.1080/13651500310003219.
    1. Grant JE, Kim SW. Medication management of pathological gambling. Minn Med. 2006;89:44–8.
    1. Bosco D, Plastino M, Colica C, Bosco F, Arianna S, Vecchio A, et al. Opioid antagonist naltrexone for the treatment of pathological gambling in Parkinson disease. Clin Neuropharmacol. 2012;35:118–20. doi: 10.1097/WNF.0b013e31824d529b.
    1. Cools R, Nakamura K, Daw ND. Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology. 2011;36:98–113. doi: 10.1038/npp.2010.121.
    1. Kalivas PW, Volkow N, Seamans J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron. 2005;45:647–50. doi: 10.1016/j.neuron.2005.02.005.
    1. Olive MF, Cleva RM, Kalivas PW, Malcolm RJ. Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacol Biochem Behav. 2012;100:801–10. doi: 10.1016/j.pbb.2011.04.015.
    1. Tyacke RJ, Lingford-Hughes A, Reed LJ, Nutt DJ. GABAB receptors in addiction and its treatment. Adv Pharmacol. 2010;58:373–96.
    1. Dannon PN, Rosenberg O, Schoenfeld N, Kotler M. Acamprosate and baclofen were not effective in the treatment of pathological gambling: preliminary blind rater comparison study. Front Psychiatry. 2011;2:33. doi: 10.3389/fpsyt.2011.00033.
    1. Hicks CW, Pandya MM, Itin I, Fernandez HH. Valproate for the treatment of medication-induced impulse-control disorders in three patients with Parkinson’s disease. Parkinsonism Relat Disord. 2011;17:379–81. doi: 10.1016/j.parkreldis.2011.03.003.
    1. Schultz W. Potential vulnerabilities of neuronal reward, risk, and decision mechanisms to addictive drugs. Neuron. 2011;69:603–17. doi: 10.1016/j.neuron.2011.02.014.
    1. Frank MJ. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science. 2004;306:1940–3. doi: 10.1126/science.1102941.
    1. Balodis IM, Kober H, Worhunsky PD, White MA, Stevens MC, Pearlson GD, et al. Monetary reward processing in obese individuals with and without binge eating disorder. Biol Psychiatry. 2013;73:877–86. doi: 10.1016/j.biopsych.2013.01.014.
    1. Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71:749–57. doi: 10.1016/j.biopsych.2012.01.006.
    1. van Eimeren T, Ballanger B, Pellecchia G, Miyasaki JM, Lang AE, Strafella AP. Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson’s disease? Neuropsychopharmacology. 2009;34:2758–66. doi: 10.1038/npp.2009.124.
    1. Dong G, Huang J, Du X. Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: an fMRI study during a guessing task. J Psychiatr Res. 2011;45:1525–9. doi: 10.1016/j.jpsychires.2011.06.017.
    1. Cavedini P, Riboldi G, Keller R, D’Annucci A, Bellodi L. Frontal lobe dysfunction in pathological gambling patients. Biol Psychiatry. 2002;51:334–41. doi: 10.1016/S0006-3223(01)01227-6.
    1. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cogn Brain Res. 2005;23:137–51. doi: 10.1016/j.cogbrainres.2005.01.017.
    1. Danner UN, Ouwehand C, van Haastert NL, Hornsveld H, de Ridder DTD. Decision-making impairments in women with binge eating disorder in comparison with obese and normal weight women. Eur Eat Disord Rev. 2012;20:e56–62. doi: 10.1002/erv.1098.
    1. Linnet J, Møller A, Peterson E, Gjedde A, Doudet D. Inverse association between dopaminergic neurotransmission and Iowa Gambling Task performance in pathological gamblers and healthy controls. Scand J Psychol. 2011;52:28–34. doi: 10.1111/j.1467-9450.2010.00837.x.
    1. Power Y, Goodyear B, Crockford D. Neural correlates of pathological gamblers preference for immediate rewards during the Iowa Gambling Task: an fMRI study. J Gambl Stud. 2012;28:623–36. doi: 10.1007/s10899-011-9278-5.
    1. Politis M, Loane C, Wu K, O’Sullivan SS, Woodhead Z, Kiferle L, et al. Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson’s disease. Brain. 2013;136:400–11. doi: 10.1093/brain/aws326.
    1. Wang G-J, Geliebter A, Volkow ND, Telang FW, Logan J, Jayne MC, et al. Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity. 2011;19:1601–8. doi: 10.1038/oby.2011.27.
    1. Goudriaan AE, De Ruiter MB, Van Den Brink W, Oosterlaan J, Veltman DJ. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol. 2010;15:491–503. doi: 10.1111/j.1369-1600.2010.00242.x.
    1. Crockford DN, Goodyear B, Edwards J, Quickfall J, el-Guebaly N. Cue-induced brain activity in pathological gamblers. Biol Psychiatry. 2005;58:787–95. doi: 10.1016/j.biopsych.2005.04.037.
    1. Sun Y, Ying H, Seetohul RM, Xuemei W, Ya Z, Qian L, et al. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents) Behav Brain Res. 2012;233:563–76. doi: 10.1016/j.bbr.2012.05.005.
    1. Choi J-S, Shin Y-C, Jung WH, Jang JH, Kang D-H, Choi C-H, et al. Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder. PLoS ONE. 2012;7:e45938. doi: 10.1371/journal.pone.0045938.
    1. Holt DD, Green L, Myerson J. Is discounting impulsive?: evidence from temporal and probability discounting in gambling and non-gambling college students. Behav Process. 2003;64:355–67. doi: 10.1016/S0376-6357(03)00141-4.
    1. Madden GJ, Petry NM, Johnson PS. Pathological gamblers discount probabilistic rewards less steeply than matched controls. Exp Clin Psychopharmacol. 2009;17:283–90. doi: 10.1037/a0016806.
    1. Voon V, Gao J, Brezing C, Symmonds M, Ekanayake V, Fernandez H, et al. Dopamine agonists and risk: impulse control disorders in Parkinson’s disease. Brain. 2011;134:1438–46. doi: 10.1093/brain/awr080.
    1. Miedl SF, Peters J, Büchel C. Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry. 2012;69:177–86. doi: 10.1001/archgenpsychiatry.2011.1552.
    1. Brand M, Kalbe E, Labudda K, Fujiwara E, Kessler J, Markowitsch HJ. Decision-making impairments in patients with pathological gambling. Psychiatry Res. 2005;133:91–9. doi: 10.1016/j.psychres.2004.10.003.
    1. Svaldi J, Brand M, Tuschen-Caffier B. Decision-making impairments in women with binge eating disorder. Appetite. 2010;54:84–92. doi: 10.1016/j.appet.2009.09.010.
    1. Housden CR, O’Sullivan SS, Joyce EM, Lees AJ, Roiser JP. Intact reward learning but elevated delay discounting in Parkinson’s disease patients with impulsive-compulsive spectrum behaviors. Neuropsychopharmacology. 2010;35:2155–64. doi: 10.1038/npp.2010.84.
    1. Alessi S, Petry N. Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behav Process. 2003;64:345–54. doi: 10.1016/S0376-6357(03)00150-5.
    1. MacKillop J, Amlung MT, Few LR, Ray LA, Sweet LH, Munafò MR. Delayed reward discounting and addictive behavior: a meta-analysis. Psychopharmacology (Berl) 2011;216:305–21. doi: 10.1007/s00213-011-2229-0.
    1. Djamshidian A, Jha A, O’Sullivan SS, Silveira-Moriyama L, Jacobson C, Brown P, et al. Risk and learning in impulsive and nonimpulsive patients with Parkinson’s disease. Mov Disord. 2010;25:2203–10. doi: 10.1002/mds.23247.
    1. Voon V, Sohr M, Lang AE, Potenza MN, Siderowf AD, Whetteckey J, et al. Impulse control disorders in parkinson disease: a multicenter case–control study. Ann Neurol. 2011;69:986–96. doi: 10.1002/ana.22356.
    1. Peters J, Büchel C. The neural mechanisms of inter-temporal decision-making: understanding variability. Trends Cogn Sci. 2011;15:227–39. doi: 10.1016/j.tics.2011.03.002.
    1. Aron AR. The neural basis of inhibition in cognitive control. Neuroscientist. 2007;13:214–28. doi: 10.1177/1073858407299288.
    1. Verdejo-García A, Lawrence AJ, Clark L. Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev. 2008;32:777–810. doi: 10.1016/j.neubiorev.2007.11.003.
    1. Voon V, Reynolds B, Brezing C, Gallea C, Skaljic M, Ekanayake V, et al. Impulsive choice and response in dopamine agonist-related impulse control behaviors. Psychopharmacology (Berl) 2009;207:645–59. doi: 10.1007/s00213-009-1697-y.
    1. Thomsen KR, Joensson M, Lou HC, Møller A, Gross J, Kringelbach ML, et al. Altered paralimbic interaction in behavioral addiction. Proc Natl Acad Sci U S A. 2013
    1. Forbush KT, Shaw M, Graeber MA, Hovick L, Meyer VJ, Moser DJ, et al. Neuropsychological characteristics and personality traits in pathological gambling. CNS Spectrums. 2008;13:306–15.
    1. Potenza MN. An fMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. Am J Psychiatry. 2003;160:1990–4. doi: 10.1176/appi.ajp.160.11.1990.
    1. Lawrence AJ, Luty J, Bogdan NA, Sahakian BJ, Clark L. Impulsivity and response inhibition in alcohol dependence and problem gambling. Psychopharmacology (Berl) 2009;207:163–72. doi: 10.1007/s00213-009-1645-x.
    1. Dong G, Lu Q, Zhou H, Zhao X. Impulse inhibition in people with Internet addiction disorder: electrophysiological evidence from a Go/NoGo study. Neurosci Lett. 2010;485:138–42. doi: 10.1016/j.neulet.2010.09.002.
    1. Dong G, DeVito EE, Du X, Cui Z. Impaired inhibitory control in ‘internet addiction disorder’: a functional magnetic resonance imaging study. Psychiatry Res Neuroimaging. 2012;203:153–8. doi: 10.1016/j.pscychresns.2012.02.001.
    1. Djamshidian A, O’Sullivan SS, Lees A, Averbeck BB. Stroop test performance in impulsive and non impulsive patients with Parkinson’s disease. Parkinsonism Relat Disord. 2011;17:212–4. doi: 10.1016/j.parkreldis.2010.12.014.
    1. De Ruiter MB, Oosterlaan J, Veltman DJ, van den Brink W, Goudriaan AE. Similar hyporesponsiveness of the dorsomedial prefrontal cortex in problem gamblers and heavy smokers during an inhibitory control task. Drug Alcohol Depend. 2012;121:81–9. doi: 10.1016/j.drugalcdep.2011.08.010.
    1. van Eimeren T, Pellecchia G, Cilia R, Ballanger B, Steeves TDL, Houle S, et al. Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD. Neurology. 2010;75:1711–6. doi: 10.1212/WNL.0b013e3181fc27fa.
    1. Cools R, Robbins TW. Chemistry of the adaptive mind. Philos Trans A Math Phys Eng Sci. 2004;362:2871–88. doi: 10.1098/rsta.2004.1468.
    1. Ersche KD, Roiser JP, Abbott S, Craig KJ, Müller U, Suckling J, et al. Response perseveration in stimulant dependence is associated with striatal dysfunction and can be ameliorated by a D2/3 receptor agonist. Biol Psychiatry. 2011;70:754–62. doi: 10.1016/j.biopsych.2011.06.033.
    1. Leeman RF, Potenza MN. Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology (Berl) 2012;219:469–90. doi: 10.1007/s00213-011-2550-7.
    1. De Ruiter MB, Veltman DJ, Goudriaan AE, Oosterlaan J, Sjoerds Z, van den Brink W. Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology. 2009;34:1027–38. doi: 10.1038/npp.2008.175.
    1. Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic network differences in human impulsivity. Science. 2010;329:532. doi: 10.1126/science.1185778.
    1. Kreek MJ, Nielsen DA, Butelman ER, LaForge KS. Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci. 2005;8:1450–7. doi: 10.1038/nn1583.
    1. Schinka JA, Letsch EA, Crawford FC. DRD4 and novelty seeking: results of meta-analyses. Am J Med Genet. 2002;114:643–8. doi: 10.1002/ajmg.10649.
    1. Reid RC, Carpenter BN, Spackman M, Willes DL. Alexithymia, emotional instability, and vulnerability to stress proneness in patients seeking help for hypersexual behavior. J Sex Marital Ther. 2008;34:133–49. doi: 10.1080/00926230701636197.
    1. Bonnaire C, Bungener C, Varescon I. Alexithymia and gambling: a risk factor for all gamblers? J Gambl Stud. 2013;29:83–96. doi: 10.1007/s10899-012-9297-x.
    1. Carano A, De Berardis D, Gambi F, Di Paolo C, Campanella D, Pelusi L, et al. Alexithymia and body image in adult outpatients with binge eating disorder. Int J Eat Disord. 2006;39:332–40. doi: 10.1002/eat.20238.
    1. Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Lai M-C, Taylor K, et al. Fetal programming effects of testosterone on the reward system and behavioral approach tendencies in humans. Biol Psychiatry. 2012;72:839–47. doi: 10.1016/j.biopsych.2012.05.027.
    1. Voon V, Pessiglione M, Brezing C, Gallea C, Fernandez HH, Dolan RJ, et al. Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron. 2010;65:135–42. doi: 10.1016/j.neuron.2009.12.027.
    1. Goto Y, Otani S, Grace AA. The yin and yang of dopamine release: a new perspective. Neuropharmacology. 2007;53:583–7. doi: 10.1016/j.neuropharm.2007.07.007.

Source: PubMed

3
購読する