Nectin-4 is a new histological and serological tumor associated marker for breast cancer

Stéphanie Fabre-Lafay, Florence Monville, Sarah Garrido-Urbani, Carole Berruyer-Pouyet, Christophe Ginestier, Nicolas Reymond, Pascal Finetti, Richard Sauvan, José Adélaïde, Jeannine Geneix, Eric Lecocq, Cornel Popovici, Patrice Dubreuil, Patrice Viens, Anthony Gonçalves, Emmanuelle Charafe-Jauffret, Jocelyne Jacquemier, Daniel Birnbaum, Marc Lopez, Stéphanie Fabre-Lafay, Florence Monville, Sarah Garrido-Urbani, Carole Berruyer-Pouyet, Christophe Ginestier, Nicolas Reymond, Pascal Finetti, Richard Sauvan, José Adélaïde, Jeannine Geneix, Eric Lecocq, Cornel Popovici, Patrice Dubreuil, Patrice Viens, Anthony Gonçalves, Emmanuelle Charafe-Jauffret, Jocelyne Jacquemier, Daniel Birnbaum, Marc Lopez

Abstract

Introduction: Breast cancer is a complex and heterogeneous disease at the molecular level. Evolution is difficult to predict according to classical histoclinical prognostic factors. Different studies highlight the importance of large-scale molecular expression analyses to improve taxonomy of breast cancer and prognostic classification. Identification of new molecular markers that refine this taxonomy and improve patient management is a priority in the field of breast cancer research.Nectins are cell adhesion molecules involved in the regulation of epithelial physiology. We present here Nectin-4/PVRL4 as a new histological and serological tumor associated marker for breast carcinoma.

Methods: Expression of Nectin-4 protein was measured on a panel of 78 primary cells and cell lines from different origins and 57 breast tumors by FACS analysis and immunohistochemistry (IHC), respectively. mRNA expression was measured by quantitative PCR. Serum Nectin-4 was detected by ELISA and compared with CEA and CA15.3 markers, on panels of 45 sera from healthy donors, 53 sera from patients with non-metastatic breast carcinoma (MBC) at diagnosis, and 182 sera from patients with MBC. Distribution of histological/serological molecular markers and histoclinical parameters were compared using the standard Chi-2 test.

Results: Nectin-4 was not detected in normal breast epithelium. By contrast, Nectin-4 was expressed in 61% of ductal breast carcinoma vs 6% in lobular type. Expression of Nectin-4 strongly correlated with the basal-like markers EGFR, P53, and P-cadherin, and negatively correlated with the luminal-like markers ER, PR and GATA3. All but one ER/PR-negative tumors expressed Nectin-4. The detection of Nectin-4 in serum improves the follow-up of patients with MBC: the association CEA/CA15.3/Nectin-4 allowed to monitor 74% of these patients compared to 67% with the association CEA/CA15.3. Serum Nectin-4 is a marker of disease progression, and levels correlate with the number of metastases (P = 0.038). Serum Nectin-4 is also a marker of therapeutic efficiency and correlates, in 90% of cases, with clinical evolution.

Conclusion: Nectin-4 is a new tumor-associated antigen for breast carcinoma. Nectin-4 is a new bio-marker whose use could help refine breast cancer taxonomy and improve patients' follow-up. Nectin-4 emerges as a potential target for breast cancer immunotherapy.

Figures

Figure 1
Figure 1
Analysis of Nectin-4 expression in normal and tumor cells. A: Cell surface expression of Nectin-4 was assessed by FACS analysis using the N4.61 mAb. The level of cell surface expressed Nectin-4 (L) was calculated in arbitrary units based on fluorescence intensity: L = MFI N4.61/MFI control IgG1. Similar results were obtained with the N4.40 mAb. L = 1 corresponds to negative cell lines, 2 < L < 15: low expression, 16 < L < 50: intermediate expression, L > 50 high expression. These results are representative of at least three independant experiments. *, non cancerous breast cell lines. B: Nectin-4 expression level on breast tumor cell lines was monitored by FACS analysis using the anti-Nectin-4 N4.61 mAb (black line) and compared with a mouse irrelevant IgG1 (gray line). Examples of a negative cell line (MDA-MB-231) and two intermediate expressing cell lines (T47D and MCF-7). C: Correlation between Nectin-4 cell surface expression and Nectin-4 transcriptional expression. Quantitative PCR was performed on 17 breast tumor cell lines. Values were calculated as described in material and methods. The results are representative of at least two experiments.
Figure 2
Figure 2
Nectin-4 expression in breast carcinoma. A: Normal breast epithelium does not express Nectin-4. No expression was detected in luminal, myoepithelial and stromal cells. Nectin-4 expression was found prominently in ductal carcinoma. Bar 50 μm. Magnification: × 200. B: Both invasive (black arrow) and in situ (white arrow) components of ductal carcinoma are immunostained by Nectin-4. C: Immunofluorescence analysis revealed that Nectin-4 expression is cytoplasmic (arrowhead) and junctional (arrow). Similar results were obtained with both mAbs Magnification: × 640.
Figure 3
Figure 3
Nectin-4 expression correlates with basal-like breast markers. Graphical representation of hierarchical clustering results based on expression profiles of 9 proteins in 52 early breast cancer samples measured by immunohistochemistry. Rows: proteins; columns: samples. Protein expression scores are depicted according to a color scale: red, positive staining; green, negative staining; grey, missing data. Dendrograms represent overall similarities in protein expression profiles. Two clusters of proteins are described. A group of proteins, including Nectin-4, which present high expression profile similarities with basal breast markers. A group of proteins, including luminal markers, which negatively correlate with Nectin-4 expression and basal-like markers.
Figure 4
Figure 4
Detection of Nectin-4 in serum from patients with MBC. Serum Nectin-4 was detected by ELISA using a pair of anti-Nectin-4 mAbs. A: Percentage of Nectin-4 positive sera in healthy donors (n = 45), and in patients with non-metastatic breast tumors compared with CEA and CA15.3 levels (n = 53). B: Percentage of sera positive for Nectin-4, CEA and CA15.3 and combinations of markers. The association of Nectin-4 with CEA and CA15.3 increases the percentage of patients detected. White bars; patients with metachronous MBC. Grey bars; patients with synchronous MBC. Black bars; percentage including both groups. C: ROC curves were calculated to estimate the accuracy of the association of these markers in breast cancer diagnosis.
Figure 5
Figure 5
Serum Nectin-4 and disease progression. Nectin-4, CEA and CA15.3 serum levels were determined during disease progression of a patient with a ductal carcinoma. The three markers were not detected at the time of diagnosis (white bar). During the progression of the disease, Nectin-4 serum levels increased to reach 402 pM. Grey, detection of pulmonary metastasis 32 months post-diagnosis; black, detection of brain metastasis 39 months post-diagnosis. Ordinates represent pM for Nectin-4 and International Units for CEA and CA15.3.
Figure 6
Figure 6
Serum Nectin-4 and therapeutic efficiency. Nectin-4, CEA and CA15.3 levels were determined in the serum of patients at the time of metastasis diagnosis and after therapy. Results are represented by arrows that symbolize increased, apparition, decreased, extinction, or unchanged () levels of Nectin-4, CEA and CA15.3. Patient outcome was evaluated according to clinical and histoclinical criteria.

References

    1. Baselga J, Norton L. Focus on breast cancer. Cancer Cell. 2002;1:319–322. doi: 10.1016/S1535-6108(02)00066-1.
    1. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5:845–856. doi: 10.1038/nrc1739.
    1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000;406:747–752. doi: 10.1038/35021093.
    1. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100:8418–8423. doi: 10.1073/pnas.0932692100.
    1. Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Cervera N, Tarpin C, Nguyen C, Xerri L, Houlgatte R, Jacquemier J, Viens P, Birnbaum D. Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res. 2005;65:2170–2178. doi: 10.1158/0008-5472.CAN-04-4115.
    1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–10874. doi: 10.1073/pnas.191367098.
    1. Troester MA, Hoadley KA, Sorlie T, Herbert BS, Borresen-Dale AL, Lonning PE, Shay JW, Kaufmann WK, Perou CM. Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res. 2004;64:4218–4226. doi: 10.1158/0008-5472.CAN-04-0107.
    1. Simpson PT, Reis-Filho JS, Gale T, Lakhani SR. Molecular evolution of breast cancer. J Pathol. 2005;205:248–254. doi: 10.1002/path.1691.
    1. Lopez M, Eberle F, Mattei MG, Gabert J, Birg F, Bardin F, Maroc C, Dubreuil P. Complementary DNA characterization and chromosomal localization of a human gene related to the poliovirus receptor-encoding gene. Gene. 1995;155:261–265. doi: 10.1016/0378-1119(94)00842-G.
    1. Lopez M, Aoubala M, Jordier F, Isnardon D, Gomez S, Dubreuil P. The human poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic adhesion molecule. Blood. 1998;92:4602–4611.
    1. Reymond N, Borg JP, Lecocq E, Adelaide J, Campadelli-Fiume G, Dubreuil P, Lopez M. Human nectin3/PRR3: a novel member of the PVR/PRR/nectin family that interacts with afadin. Gene. 2000;255:347–355. doi: 10.1016/S0378-1119(00)00316-4.
    1. Reymond N, Fabre S, Lecocq E, Adelaide J, Dubreuil P, Lopez M. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J Biol Chem. 2001;276:43205–43215. doi: 10.1074/jbc.M103810200.
    1. Ikeda W, Nakanishi H, Miyoshi J, Mandai K, Ishizaki H, Tanaka M, Togawa A, Takahashi K, Nishioka H, Yoshida H, Mizoguchi A, Nishikawa S, Takai Y. Afadin: A key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J Cell Biol. 1999;146:1117–1132. doi: 10.1083/jcb.146.5.1117.
    1. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med. 2003;198:557–567. doi: 10.1084/jem.20030788.
    1. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, Falco M, Lanino E, Pierri I, Zambello R, Bacigalupo A, Mingari MC, Moretta A, Moretta L. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112) Blood. 2005;105:2066–2073. doi: 10.1182/blood-2004-09-3548.
    1. Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, Bottino C, Moretta A. Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res. 2004;64:9180–9184. doi: 10.1158/0008-5472.CAN-04-2682.
    1. Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, Denis MG. Overexpression of the CD155 gene in human colorectal carcinoma. Gut. 2001;49:236–240. doi: 10.1136/gut.49.2.236.
    1. Yu Z, Chan MK, P O, Eisenberg DP, Shah JP, Singh B, Fong Y, Wong RJ. Enhanced nectin-1 expression and herpes oncolytic sensitivity in highly migratory and invasive carcinoma. Clin Cancer Res. 2005;11:4889–4897. doi: 10.1158/1078-0432.CCR-05-0309.
    1. Letessier A, Garrido-Urbani S, Ginestier C, Fournier G, Esterni B, Monville F, Adelaide J, Geneix J, Xerri L, Dubreuil P, Viens P, Charafe-Jauffret E, Jacquemier J, Birnbaum D, Lopez M, Chaffanet M. Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene. 2006
    1. Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C, Xerri L, Farnarier C, Cantoni C, Bottino C, Moretta A, Dubreuil P, Lopez M. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med. 2004;199:1331–1341. doi: 10.1084/jem.20032206.
    1. Lopez S, Stuhl L, Fichelson S, Dubart-Kupperschmitt A, St Arnaud R, Galindo JR, Murati A, Berda N, Dubreuil P, Gomez S. NACA is a positive regulator of human erythroid-cell differentiation. J Cell Sci. 2005;118:1595–1605. doi: 10.1242/jcs.02295.
    1. Jacquemier J, Ginestier C, Rougemont J, Bardou VJ, Charafe-Jauffret E, Geneix J, Adelaide J, Koki A, Houvenaeghel G, Hassoun J, Maraninchi D, Viens P, Birnbaum D, Bertucci F. Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res. 2005;65:767–779.
    1. Provencher DM, Lounis H, Champoux L, Tetrault M, Manderson EN, Wang JC, Eydoux P, Savoie R, Tonin PN, Mes-Masson AM. Characterization of four novel epithelial ovarian cancer cell lines. In Vitro Cell Dev Biol Anim. 2000;36:357–361. doi: 10.1290/1071-2690(2000)036<0357:COFNEO>;2.
    1. Theillet C, Adelaide J, Louason G, Bonnet-Dorion F, Jacquemier J, Adnane J, Longy M, Katsaros D, Sismondi P, Gaudray P, et al. FGFRI and PLAT genes and DNA amplification at 8p12 in breast and ovarian cancers. Genes Chromosomes Cancer. 1993;7:219–226. doi: 10.1002/gcc.2870070407.
    1. Fabre S, Reymond N, Cocchi F, Menotti L, Dubreuil P, Campadelli-Fiume G, Lopez M. Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C-C'-C"-D beta-strands of the nectin1 V domain. J Biol Chem. 2002;277:27006–27013. doi: 10.1074/jbc.M203228200.
    1. Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N, Fekairi S, Xerri L, Jacquemier J, Birnbaum D, Bertucci F. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene. 2006;25:2273–2284. doi: 10.1038/sj.onc.1209254.
    1. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006;19:264–271. doi: 10.1038/modpathol.3800528.
    1. Fabre-Lafay S, Garrido-Urbani S, Reymond N, Goncalves A, Dubreuil P, Lopez M. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM-17. J Biol Chem. 2005;280:19543–19550. doi: 10.1074/jbc.M410943200.
    1. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–5374. doi: 10.1158/1078-0432.CCR-04-0220.
    1. Jacquemier J, Padovani L, Rabayrol L, Lakhani SR, Penault-Llorca F, Denoux Y, Fiche M, Figueiro P, Maisongrosse V, Ledoussal V, Martinez Penuela J, Udvarhely N, El Makdissi G, Ginestier C, Geneix J, Charafe-Jauffret E, Xerri L, Eisinger F, Birnbaum D, Sobol H. Typical medullary breast carcinomas have a basal/myoepithelial phenotype. J Pathol. 2005;207:260–268. doi: 10.1002/path.1845.
    1. Lauro S, Trasatti L, Bordin F, Lanzetta G, Bria E, Gelibter A, Reale MG, Vecchione A. Comparison of CEA, MCA, CA 15-3 and CA 27-29 in follow-up and monitoring therapeutic response in breast cancer patients. Anticancer Res. 1999;19:3511–3515.
    1. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R, Jr., Badve S, Nakshatri H. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties, an early step necessary for metastasis. Breast Cancer Res. 2006;8:R59. doi: 10.1186/bcr1610.
    1. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24:4660–4671. doi: 10.1038/sj.onc.1208561.
    1. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–536. doi: 10.1038/415530a.
    1. Takahashi K, Nakanishi H, Miyahara M, Mandai K, Satoh K, Satoh A, Nishioka H, Aoki J, Nomoto A, Mizoguchi A, Takai Y. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol. 1999;145:539–549. doi: 10.1083/jcb.145.3.539.
    1. Jacquemier J, Eisinger F, Nogues C, Sun ZZ, Guinebretiere JM, Peyrat JP, Geneix J, Lidereau R, Birnbaum D, Sobol H. Histological type and syncytial growth pattern affect E-cadherin expression in a multifactorial analysis of a combined panel of sporadic and BRCA1-associated breast cancers. Int J Cancer. 1999;83:45–49. doi: 10.1002/(SICI)1097-0215(19990924)83:1<45::AID-IJC9>;2-G.
    1. Borrell-Pages M, Rojo F, Albanell J, Baselga J, Arribas J. TACE is required for the activation of the EGFR by TGF-alpha in tumors. Embo J. 2003;22:1114–1124. doi: 10.1093/emboj/cdg111.
    1. Bernstein JL, Godbold JH, Raptis G, Watson MA, Levinson B, Aaronson SA, Fleming TP. Identification of mammaglobin as a novel serum marker for breast cancer. Clin Cancer Res. 2005;11:6528–6535. doi: 10.1158/1078-0432.CCR-05-0415.

Source: PubMed

3
購読する