Surgical Interventions for Inferior Turbinate Hypertrophy: A Comprehensive Review of Current Techniques and Technologies

Baharudin Abdullah, Sharanjeet Singh, Baharudin Abdullah, Sharanjeet Singh

Abstract

Surgical treatment of the inferior turbinates is required for hypertrophic inferior turbinates refractory to medical treatments. The main goal of surgical reduction of the inferior turbinate is to relieve the obstruction while preserving the function of the turbinate. There have been a variety of surgical techniques described and performed over the years. Irrespective of the techniques and technologies employed, the surgical techniques are classified into two types, the mucosal-sparing and non-mucosal-sparing, based on the preservation of the medial mucosa of the inferior turbinates. Although effective in relieving nasal block, the non-mucosal-sparing techniques have been associated with postoperative complications such as excessive bleeding, crusting, pain, and prolonged recovery period. These complications are avoided in the mucosal-sparing approach, rendering it the preferred option. Although widely performed, there is significant confusion and detachment between current practices and their basic objectives. This conflict may be explained by misperception over the myriad of available surgical techniques and misconception of the rationale in performing the turbinate reduction. A comprehensive review of each surgical intervention is crucial to better define each procedure and improve understanding of the principle and mechanism involved.

Keywords: coblation; cryotherapy; electrocautery; inferior turbinate hypertrophy; laser; microdebrider; radiofrequency; turbinectomy; turbinoplasty.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Nasoendoscopic grading system of inferior turbinate hypertrophy; grade 1 is 0–25% of total airway space occupied (A), grade 2 is 26–50% occupied (B), grade 3 is 51–75% occupied (C), and grade 4 is 76–100% occupied (D).
Figure 2
Figure 2
In conventional turbinoplasty, a freer elevator dissects the turbinate bone and soft erectile tissue (A) and a Blakeley’s forceps later removes part of the soft tissue and bone (B).
Figure 3
Figure 3
Microdebrider blade is placed at the lateral part of the left turbinate to dissect the lateral mucosal wall and turbinate bone from anterior (A) to posterior (B) direction.
Figure 4
Figure 4
Coblation turbinoplasy applied as an intraturbinoplasty technique (A) and extraturbinoplasty technique (B).
Figure 5
Figure 5
Radiofrequency probe is inserted at anterior head of the inferior turbinate and pushed in an anterior (A) to posterior (B) direction.

References

    1. Aslan G. Postnasal drip due to inferior turbinate perforation after radiofrequency turbinate surgery: A case report. Allergy Rhinol. 2013;4:e17–e20. doi: 10.2500/ar.2013.4.0046.
    1. Lee K.C., Cho J.M., Kim S.K., Lim K.R., Lee S.Y., Park S.S. The Efficacy of Coblator in Turbinoplasty. Arch. Craniofac. Surg. 2017;18:82–88. doi: 10.7181/acfs.2017.18.2.82.
    1. Matthias C. Surgery of the nasal septum and turbinates. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2007;6:Doc10.
    1. Al-Shouk A.A.A.M., Tatar I. The blood supply of the inferior nasal concha (turbinate): A cadaveric anatomical study. Anat. Sci. Int. 2021;96:13–19. doi: 10.1007/s12565-020-00552-0.
    1. Friedman M., Tanyeri H., Lim J., Landsberg R., Caldarelli D. A safe, alternative technique for inferior turbinate reduction. Laryngoscope. 1999;109:1834–1837. doi: 10.1097/00005537-199911000-00021.
    1. Leitzen K.P., Brietzke S.E., Lindsay R.W. Correlation between nasal anatomy and objective obstructive sleep apnea severity. Otolaryngol. Head Neck Surg. 2014;150:325–331. doi: 10.1177/0194599813515838.
    1. Camacho M., Zaghi S., Certal V., Abdullatif J., Means C., Acevedo J., Liu S., Brietzke S.E., Kushida C.A., Capasso R. Inferior turbinate classification system, grades 1 to 4: Development and validation study. Laryngoscope. 2015;125:296–302. doi: 10.1002/lary.24923.
    1. Uzun L., Ugur M., Savranlar A., Mahmutyazicioglu K., Ozdemir H., Beder L.B. Classification of the inferior turbinate bones: A computed tomography study. Eur. J. Radiol. 2004;51:241–245. doi: 10.1016/j.ejrad.2004.02.013.
    1. Illum P. Septoplasty and compensatory inferior turbinate hypertrophy: Long-term results after randomized turbinoplasty. Eur. Arch. Otorhinolaryngol. 1997;254:S89–S92. doi: 10.1007/BF02439733.
    1. Silkoff P.E., Chakravorty S., Chapnik J., Cole P., Zamel N. Reproducibility of acoustic rhinometry and rhinomanometry in normal subjects. Am. J. Rhinol. 1999;13:131–135. doi: 10.2500/105065899782106689.
    1. Scheithauer M.O. Surgery of the turbinates and “empty nose” syndrome. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2010;9:Doc03.
    1. Elwany S., Harrison R. Inferior turbinectomy: Comparison of four techniques. J. Laryngol. Otol. 1990;104:206–209. doi: 10.1017/S0022215100112290.
    1. Passali D., Passali F.M., Damiani V., Passali G.C., Bellussi L. Treatment of inferior turbinate hypertrophy: A randomized clinical trial. Ann. Otol. Rhinol. Laryngol. 2003;112:683–688. doi: 10.1177/000348940311200806.
    1. Chhabra N., Houser S.M. The diagnosis and management of empty nose syndrome. Otolaryngol. Clin. N. Am. 2009;42:311–330. doi: 10.1016/j.otc.2009.02.001.
    1. Janda P., Sroka R., Baumgartner R., Grevers G., Leunig A. Laser treatment of hyperplastic inferior nasal turbinates: A review. Lasers Surg. Med. 2001;28:404–413. doi: 10.1002/lsm.1068.
    1. Sroka R., Janda P., Killian T., Vaz F., Betz C.S., Leunig A. Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates. Lasers Surg. Med. 2007;39:324–331. doi: 10.1002/lsm.20479.
    1. Kisser U., Stelter K., Gurkov R., Patscheider M., Schrotzlmair F., Bytyci R., Adderson-Kisser C., Berghaus A., Olzowy B. Diode laser versus radiofrequency treatment of the inferior turbinate—A randomized clinical trial. Rhinolary. 2014;52:424–430. doi: 10.4193/Rhin14.001.
    1. Prokopakis E.P., Koudounarakis E.I., Velegrakis G.A. Efficacy of inferior turbinoplasty with the use of CO (2) laser, radiofrequency, and electrocautery. Am. J. Rhinol. Allergy. 2014;28:269–272. doi: 10.2500/ajra.2014.28.4044.
    1. Lee J.Y. Efficacy of intra- and extraturbinal microdebrider turbinoplasty in perennial allergic rhinitis. Laryngoscope. 2013;123:2945–2949. doi: 10.1002/lary.24215.
    1. Mabry R.L. Inferior turbinoplasty: Patient selection, technique, and long-term consequences. Otolaryngol. Head Neck Surg. 1988;98:60–66. doi: 10.1177/019459988809800111.
    1. Puterman M.M., Segal N., Joshua B.Z. Endoscopic, assisted, modified turbinoplasty with mucosal flap. J. Laryngol. Otol. 2012;126:525–528. doi: 10.1017/S0022215112000163.
    1. Barham H.P., Knisely A., Harvey R.J., Sacks R. How I do it: Medial flap inferior turbinoplasty. Am. J. Rhinol. Allergy. 2015;29:314–315. doi: 10.2500/ajra.2015.29.4168.
    1. Hamerschmidt R., Hamerschmidt R., Moreira A.T., Tenorio S.B., Timi J.R. Comparison of turbinoplasty surgery efficacy in patients with and without allergic rhinitis. Braz. J. Otorhinolaryngol. 2016;82:131–139. doi: 10.1016/j.bjorl.2015.10.010.
    1. Sindwani R., Manz R. Technological innovations in tissue removal during rhinologic surgery. Am. J. Rhinol. Allergy. 2012;26:65–69. doi: 10.2500/ajra.2012.26.3722.
    1. Joniau S., Wong I., Rajapaksa S., Carney S.A., Wormald P.J. Long-term comparison between submucosal cauterization and powered reduction of the inferior turbinates. Laryngoscope. 2006;116:1612–1616. doi: 10.1097/01.mlg.0000227999.76713.d3.
    1. Huang T.W., Cheng P.W. Changes in nasal resistance and quality of life after endoscopic microdebrider-assisted inferior turbinoplasty in patients with perennial allergic rhinitis. Arch. Otolaryngol. Head Neck Surg. 2006;132:990–993. doi: 10.1001/archotol.132.9.990.
    1. Lee C.F., Chen T.A. Power microdebrider-assisted modification of endoscopic inferior turbinoplasty: A preliminary report. Chang. Gung Med. J. 2004;27:359–365.
    1. El Henawi Del D., Ahmed M.R., Madian Y.T. Comparison between power-assisted turbinoplasty and submucosal resection in the treatment of inferior turbinate hypertrophy. Orl. J. Otorhinolaryngol. Relat. Spec. 2011;73:151–155. doi: 10.1159/000327607.
    1. Cingi C., Ure B., Cakli H., Ozudogru E. Microdebrider-assisted versus radiofrequency-assisted inferior turbinoplasty: A prospective study with objective and subjective outcome measures. Acta Otorhinolaryngol. Ital. 2010;30:138–143.
    1. Woloszko J., Gilbride C. Coblation technology: Plasma-mediated ablation for otolaryngology applications. In: Anderson R.R., Bartels K.E., Bass L.S., editors. Proceedings of the SPIE: Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems X. Volume 3907. SPIE–The International Society for Optical Engineering; Bellingham, WA, USA: 2000. pp. 306–316.
    1. Passali D., Loglisci M., Politi L., Passali G.C., Kern E. Managing turbinate hypertrophy: Coblation vs. radiofrequency treatment. Eur. Arch. Otorhinolaryngol. 2016;273:1449–1453. doi: 10.1007/s00405-015-3759-6.
    1. Di Rienzo Businco L., Di Rienzo Businco A., Lauriello M. Comparative study on the effectiveness of Coblation-assisted turbinoplasty in allergic rhinitis. Rhinology. 2010;48:174–178. doi: 10.4193/Rhin09.149.
    1. Bitar M.A., Kanaan A.A., Sinno S. Efficacy and safety of inferior turbinates coblation in children. J. Laryngol. Otol. 2014;128:S48–S54. doi: 10.1017/S0022215114000206.
    1. Farmer S.E., Quine S.M., Eccles R. Efficacy of inferior turbinate coblation for treatment of nasal obstruction. J. Laryngol. Otol. 2009;123:309–314. doi: 10.1017/S0022215108002818.
    1. Leong S.C., Farmer S.E., Eccles R. Coblation inferior turbinate reduction: A long-term follow-up with subjective and objective assessment. Rhinology. 2010;48:108–112.
    1. Mehta N., Mehta S., Mehta N. Coblation-Assisted Turbinoplasty: A Comparative Analysis of Reflex Ultra and Turbinator Wand. Ear Nose Throat J. 2019;98:E51–E57. doi: 10.1177/0145561319840102.
    1. Utley D.S., Goode R.L., Hakim I. Radiofrequency energy tissue ablation for the treatment of nasal obstruction secondary to turbinate hypertrophy. Laryngoscope. 1999;109:683–686. doi: 10.1097/00005537-199905000-00001.
    1. Li K.K., Powell N.B., Riley R.W., Troell R.J., Guilleminault C. Radiofrequency volumetric tissue reduction for treatment of turbinate hypertrophy: A pilot study. Otolaryngol. Head Neck Surg. 1998;119:569–573. doi: 10.1016/S0194-5998(98)70013-0.
    1. Bakshi S.S., Shankar Manoharan K., Gopalakrishnan S. Comparison of the long-term efficacy of radiofrequency ablation and surgical turbinoplasty in inferior turbinate hypertrophy: A randomized clinical study. Acta Otolaryngol. 2017;137:856–861. doi: 10.1080/00016489.2017.1294764.
    1. Vijay Kumar K., Kumar S., Garg S. A comparative study of radiofrequency assisted versus microdebrider assisted turbinoplasty in cases of inferior turbinate hypertrophy. Indian J. Otolaryngol. Head Neck Surg. 2014;66:35–39. doi: 10.1007/s12070-013-0657-3.
    1. Liu C.M., Tan C.D., Lee F.P., Lin K.N., Huang H.M. Microdebrider-assisted versus radiofrequency assisted-inferior turbinoplasty. Laryngoscope. 2009;119:414–418. doi: 10.1002/lary.20088.
    1. Means C., Camacho M., Capasso R. Long-Term Outcomes of Radiofrequency Ablation of the Inferior Turbinates. Indian J. Otolaryngol. Head Neck Surg. 2016;68:424–428. doi: 10.1007/s12070-015-0912-x.
    1. Acevedo J.L., Camacho M., Brietzke S.E. Radiofrequency Ablation Turbinoplasty versus Microdebrider-Assisted Turbinoplasty: A Systematic Review and Meta-analysis. Otolaryngol. Head Neck Surg. 2015;153:951–956. doi: 10.1177/0194599815607211.
    1. Garzaro M., Landolfo V., Pezzoli M., Defilippi S., Campisi P., Giordano C., Pecorari G. Radiofrequency volume turbinate reduction versus partial turbinectomy: Clinical and histological features. Am. J. Rhinol. Allergy. 2012;26:321–325. doi: 10.2500/ajra.2012.26.3788.
    1. Harrill W.C., Pillsbury H.C., 3rd, McGuirt W.F., Stewart M.G. Radiofrequency turbinate reduction: A NOSE evaluation. Laryngoscope. 2007;117:1912–1919. doi: 10.1097/MLG.0b013e3181271414.
    1. Gindros G., Kantas I., Balatsouras D.G., Kaidoglou A., Kandiloros D. Comparison of ultrasound turbinate reduction, radiofrequency tissue ablation and submucosal cauterization in inferior turbinate hypertrophy. Eur. Arch. Otorhinolaryngol. 2010;267:1727–1733. doi: 10.1007/s00405-010-1260-9.
    1. Thompson A.C. Surgical reduction of the inferior turbinate in children: Extended follow-up. J. Laryngol. Otol. 1989;103:577–579. doi: 10.1017/S0022215100109375.
    1. Ophir D., Shapira A., Marshak G. Total inferior turbinectomy for nasal airway obstruction. Arch. Otolaryngol. 1985;111:93–95. doi: 10.1001/archotol.1985.00800040057006.
    1. Segal S., Eviatar E., Berenholz L., Kessler A., Shlamkovitch N. Inferior turbinectomy in children. Am. J. Rhinol. 2003;17:69–73. doi: 10.1177/194589240301700201.
    1. Komshian S.R., Cohen M.B., Brook C., Levi J.R. Inferior Turbinate Hypertrophy: A Review of the Evolution of Management in Children. Am. J. Rhinol. Allergy. 2019;33:212–219. doi: 10.1177/1945892418815351.
    1. Yuen S.N., Leung P.P., Funamura J., Kawai K., Roberson D.W., Adil E.A. Complications of turbinate reduction surgery in combination with tonsillectomy in pediatric patients. Laryngoscope. 2017;127:1920–1923. doi: 10.1002/lary.26421.
    1. Berger G., Gass S., Ophir D. The histopathology of the hypertrophic inferior turbinate. Arch. Otolaryngol. Head Neck Surg. 2006;132:588–594. doi: 10.1001/archotol.132.6.588.
    1. Berger G., Ophir D., Pitaro K., Landsberg R. Histopathological changes after coblation inferior turbinate reduction. Arch. Otolaryngol. Head Neck Surg. 2008;134:819–823. doi: 10.1001/archotol.134.8.819.
    1. Neri G., Cazzato F., Mastronardi V., Pugliese M., Centurione M.A., Di Pietro R., Centurione L. Ultrastructural regenerating features of nasal mucosa following microdebrider-assisted turbinoplasty are related to clinical recovery. J. Transl. Med. 2016;14:164. doi: 10.1186/s12967-016-0931-8.
    1. Kiliç E., Batioglu-Karaaltin A., Ugurlar M., Erdur Z.B., Inci E. Effect of Turbinate Intervention on Nasal Functions in Septorhinoplasty Surgery. J. Craniofac. Surg. 2018;29:e782–e785. doi: 10.1097/SCS.0000000000004752.
    1. Pelen A., Tekin M., Ozbilen Acar G., Ozdamar O.I. Comparison of the effects of radiofrequency ablation and microdebrider reduction on nasal physiology in lower turbinate surgery. Kulak Burun Bogaz Ihtis Derg. 2016;26:325–332. doi: 10.5606/kbbihtisas.2016.26964.
    1. Larrabee Y.C., Kacker A. Which inferior turbinate reduction technique best decreases nasal obstruction? Laryngoscope. 2014;124:814–815. doi: 10.1002/lary.24182.
    1. Singh S., Ramli R.R., Wan Mohammad Z., Abdullah B. Coblation versus microdebrider-assisted turbinoplasty for endoscopic inferior turbinates reduction. Auris Nasus Larynx. 2020;47:593–601. doi: 10.1016/j.anl.2020.02.003.
    1. Feldman E.M., Koshy J.C., Chike-Obi C.J., Hatef D.A., Bullocks J.M., Stal S. Contemporary techniques in inferior turbinate reduction: Survey results of the American Society for Aesthetic Plastic Surgery. Aesthet Surg. J. 2010;30:672–679. doi: 10.1177/1090820X10381988.

Source: PubMed

3
購読する