Antioxidant Supplementation in Renal Replacement Therapy Patients: Is There Evidence?

Vassilios Liakopoulos, Stefanos Roumeliotis, Andreas Bozikas, Theodoros Eleftheriadis, Evangelia Dounousi, Vassilios Liakopoulos, Stefanos Roumeliotis, Andreas Bozikas, Theodoros Eleftheriadis, Evangelia Dounousi

Abstract

The disruption of balance between production of reactive oxygen species and antioxidant systems in favor of the oxidants is termed oxidative stress (OS). To counteract the damaging effects of prooxidant free radicals, all aerobic organisms have antioxidant defense mechanisms that are aimed at neutralizing the circulating oxidants and repair the resulting injuries. Antioxidants are either endogenous (the natural defense mechanisms produced by the human body) or exogenous, found in supplements and foods. OS is present at the early stages of chronic kidney disease, augments progressively with renal function deterioration, and is further exacerbated by renal replacement therapy. End-stage renal disease patients, on hemodialysis (HD) or peritoneal dialysis (PD), suffer from accelerated OS, which has been associated with increased risk for mortality and cardiovascular disease. During HD sessions, the bioincompatibility of dialyzers and dialysate trigger activation of white blood cells and formation of free radicals, while a significant loss of antioxidants is also present. In PD, the bioincompatibility of solutions, including high osmolality, elevated lactate levels, low pH, and accumulation of advanced glycation end-products trigger formation of prooxidants, while there is significant loss of vitamins in the ultrafiltrate. A number of exogenous antioxidants have been suggested to ameliorate OS in dialysis patients. Vitamins B, C, D, and E, coenzyme Q10, L-carnitine, a-lipoic acid, curcumin, green tea, flavonoids, polyphenols, omega-3 polyunsaturated fatty acids, statins, trace elements, and N-acetylcysteine have been studied as exogenous antioxidant supplements in both PD and HD patients.

References

    1. Pavlakou P., Liakopoulos V., Eleftheriadis T., Mitsis M., Dounousi E. Oxidative stress and acute kidney injury in critical illness: pathophysiologic mechanisms-biomarkers-interventions, and future perspectives. Oxidative Medicine and Cellular Longevity. 2017;2017:11. doi: 10.1155/2017/6193694.6193694
    1. Locatelli F., Canaud B., Eckardt K. U., Stenvinkel P., Wanner C., Zoccali C. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrology Dialysis Transplantation. 2003;18(7):1272–1280. doi: 10.1093/ndt/gfg074.
    1. Sies H., Berndt C., Jones D. P. Oxidative stress. Annual Review of Biochemistry. 2017;86(1):715–748. doi: 10.1146/annurev-biochem-061516-045037.
    1. Galli F., Piroddi M., Annetti C., Aisa C., Floridi E., Floridi A. Oxidative stress and reactive oxygen species. Contributions to Nephrology. 2005;149:240–260. doi: 10.1159/000085686.
    1. Roumeliotis S., Roumeliotis A., Panagoutsos S., et al. Matrix Gla protein T-138C polymorphism is associated with carotid intima media thickness and predicts mortality in patients with diabetic nephropathy. Journal of Diabetes and its Complications. 2017;31(10):1527–1532. doi: 10.1016/j.jdiacomp.2017.06.012.
    1. Hasselwander O., Young I. S. Oxidative stress in chronic renal failure. Free Radical Research. 1998;29(1):1–11. doi: 10.1080/10715769800300011.
    1. Annuk M., Zilmer M., Lind L., Linde T., Fellstrom B. Oxidative stress and endothelial function in chronic renal failure. Journal of the American Society of Nephrology. 2001;12(12):2747–2752.
    1. Dounousi E., Papavasiliou E., Makedou A., et al. Oxidative stress is progressively enhanced with advancing stages of CKD. American Journal of Kidney Diseases. 2006;48(5):752–760. doi: 10.1053/j.ajkd.2006.08.015.
    1. Liakopoulos V., Roumeliotis S., Gorny X., Dounousi E., Mertens P. R. Oxidative stress in hemodialysis patients: a review of the literature. Oxidative Medicine and Cellular Longevity. 2017;2017:22. doi: 10.1155/2017/3081856.3081856
    1. Ferraro B., Galli F., Frei B., et al. Peroxynitrite-induced oxidation of plasma lipids is enhanced in stable hemodialysis patients. Kidney International. 2003;63(6):2207–2213. doi: 10.1046/j.1523-1755.2003.00008.x.
    1. Liakopoulos V., Roumeliotis S., Gorny X., Eleftheriadis T., Mertens P. R. Oxidative stress in patients undergoing peritoneal dialysis: a current review of the literature. Oxidative Medicine and Cellular Longevity. 2017;2017:14. doi: 10.1155/2017/3494867.3494867
    1. Liakopoulos V., Roumeliotis S., Zarogiannis S., Eleftheriadis T., Mertens P. R. Oxidative stress in hemodialysis: causative mechanisms, clinical implications, and possible therapeutic interventions. Seminars in Dialysis. 2018;32(1):58–71. doi: 10.1111/sdi.12745.
    1. Modaresi A., Nafar M., Sahraei Z. Oxidative stress in chronic kidney disease. Iranian Journal of Kidney Disease. 2015;9(3):165–179.
    1. Handelman G. J., Walter M. F., Adhikarla R., et al. Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. Kidney International. 2001;59(5):1960–1966. doi: 10.1046/j.1523-1755.2001.0590051960.x.
    1. Nguyen A. T., Lethias C., Zingraff J., Herbelin A., Naret C., Descamps-Latscha B. Hemodialysis membrane-induced activation of phagocyte oxidative metabolism detected in vivo and in vitro within microamounts of whole blood. Kidney International. 1985;28(2):158–167. doi: 10.1038/ki.1985.136.
    1. Chen M. F., Chang C. L., Liou S. Y. Increase in resting levels of superoxide anion in the whole blood of uremic patients on chronic hemodialysis. Blood Purification. 1998;16(5):290–300. doi: 10.1159/000014347.
    1. Yang C. C., Hsu S. P., Wu M. S., Hsu S. M., Chien C. T. Effects of vitamin C infusion and vitamin E-coated membrane on hemodialysis-induced oxidative stress. Kidney International. 2006;69(4):706–714. doi: 10.1038/sj.ki.5000109.
    1. Canaud B., Cristol J. P., Morena M., Leray-Moragues H., Bosc J. Y., Vaussenat F. Imbalance of oxidants and antioxidants in haemodialysis patients. Blood Purification. 1999;17(2-3):99–106. doi: 10.1159/000014381.
    1. Bayes B., Pastor M. C., Bonal J., Junca J., Romero R. Homocysteine and lipid peroxidation in haemodialysis: role of folinic acid and vitamin E. Nephrology Dialysis Transplantation. 2001;16(11):2172–2175. doi: 10.1093/ndt/16.11.2172.
    1. Morena M., Cristol J. P., Bosc J. Y., et al. Convective and diffusive losses of vitamin C during haemodiafiltration session: a contributive factor to oxidative stress in haemodialysis patients. Nephrology Dialysis Transplantation. 2002;17(3):422–427. doi: 10.1093/ndt/17.3.422.
    1. Clermont G., Lecour S., Cabanne J. F., et al. Vitamin E-coated dialyzer reduces oxidative stress in hemodialysis patients. Free Radical Biology & Medicine. 2001;31(2):233–241. doi: 10.1016/S0891-5849(01)00577-9.
    1. Galli F., Azzi A., Birringer M., et al. Vitamin E: emerging aspects and new directions. Free Radical Biology & Medicine. 2017;102:16–36. doi: 10.1016/j.freeradbiomed.2016.09.017.
    1. Giusepponi D., Torquato P., Bartolini D., et al. Determination of tocopherols and their metabolites by liquid-chromatography coupled with tandem mass spectrometry in human plasma and serum. Talanta. 2017;170:552–561. doi: 10.1016/j.talanta.2017.04.030.
    1. Schubert M., Kluge S., Schmölz L., et al. Long-chain metabolites of vitamin E: metabolic activation as a general concept for lipid-soluble vitamins? Antioxidants. 2018;7(1):p. 10. doi: 10.3390/antiox7010010.
    1. Galli F., Floridi A. G., Floridi A., Buoncristiani U. Accumulation of vitamin E metabolites in the blood of renal failure patients. Clinical Nutrition. 2004;23(2):205–212. doi: 10.1016/S0261-5614(03)00128-6.
    1. Galli F., Buoncristiani U., Conte C., Aisa C., Floridi A. Vitamin E in uremia and dialysis patients. Annals of the New York Academy of Sciences. 2004;1031(1):348–351. doi: 10.1196/annals.1331.041.
    1. Himmelfarb J., Kane J., Mcmonagle E., et al. Alpha and gamma tocopherol metabolism in healthy subjects and patients with end-stage renal disease. Kidney International. 2003;64(3):978–991. doi: 10.1046/j.1523-1755.2003.00151.x.
    1. Maccarrone M., Taccone-Gallucci M., Meloni C., et al. Activation of 5-lipoxygenase and related cell membrane lipoperoxidation in hemodialysis patients. Journal of the American Society of Nephrology. 1999;10(9):1991–1996.
    1. Rimm E. B., Stampfer M. J., Ascherio A., Giovannucci E., Colditz G. A., Willett W. C. Vitamin E consumption and the risk of coronary heart disease in men. The New England Journal of Medicine. 1993;328(20):1450–1456. doi: 10.1056/NEJM199305203282004.
    1. Stampfer M. J., Hennekens C. H., Manson J. A. E., Colditz G. A., Rosner B., Willett W. C. Vitamin E consumption and the risk of coronary disease in women. The New England Journal of Medicine. 1993;328(20):1444–1449. doi: 10.1056/NEJM199305203282003.
    1. Lubrano R., Taccone-Gallucci M., Piazza A., et al. Vitamin E supplementation and oxidative status of peripheral blood mononuclear cells and lymphocyte subsets in hemodialysis patients. Nutrition. 1992;8(2):94–97.
    1. Taccone-Gallucci M., Giardini O., Ausiello C., et al. Vitamin E supplementation in hemodialysis patients: effects on peripheral blood mononuclear cells lipid peroxidation and immune response. Clinical Nephrology. 1986;25(2):81–86.
    1. Hodkova M., Dusilova-Sulkova S., Skalicka A., Kalousova M., Zima T., Bartunkova J. Influence of parenteral iron therapy and oral vitamin E supplementation on neutrophil respiratory burst in chronic hemodialysis patients. Renal Failure. 2005;27(2):135–141. doi: 10.1081/JDI-48245.
    1. Wieczorowska-Tobis K., Breborowicz A., Witowski J., Martis L., Oreopoulos D. G. Effect of vitamin E on peroxidation and permeability of the peritoneum. Journal of Physiology and Pharmacology. 1996;47(3):535–543.
    1. Taccone-Gallucci M., Lubrano R., Mazzarella V., et al. Red blood cell membrane lipid peroxidation and chronic haemolysis in haemodialysis patients. Life Support Systems. 1985;3(Supplement 1):41–44.
    1. Taccone-Gallucci M., Giardini O., Lubrano R., et al. Red blood cell membrane lipid peroxidation in continuous ambulatory peritoneal dialysis patients. American Journal of Nephrology. 1986;6(2):92–95. doi: 10.1159/000167061.
    1. Giardini O., Taccone-Gallucci M., Lubrano R., et al. Effects of alpha-tocopherol administration on red blood cell membrane lipid peroxidation in hemodialysis patients. Clinical Nephrology. 1984;21(3):174–177.
    1. Lubrano R., Taccone-Gallucci M., Mazzarella V., et al. Relationship between red blood cell lipid peroxidation, plasma hemoglobin, and red blood cell osmotic resistance before and after vitamin E supplementation in hemodialysis patients. Artificial Organs. 1986;10(3):245–248. doi: 10.1111/j.1525-1594.1986.tb02553.x.
    1. Ono K. Effects of large dose vitamin E supplementation on anemia in hemodialysis patients. Nephron. 1985;40(4):440–445. doi: 10.1159/000183516.
    1. Cristol J. P., Bosc J. Y., Badiou S., et al. Erythropoietin and oxidative stress in haemodialysis: beneficial effects of vitamin E supplementation. Nephrology Dialysis Transplantation. 1997;12(11):2312–2317. doi: 10.1093/ndt/12.11.2312.
    1. Nemeth I., Turi S., Haszon I., Bereczki C. Vitamin E alleviates the oxidative stress of erythropoietin in uremic children on hemodialysis. Pediatric Nephrology. 2000;14(1):13–17. doi: 10.1007/s004670050003.
    1. Roob J. M., Khoschsorur G., Tiran A., Horina J. H., Holzer H., Winklhofer-Roob B. M. Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. Journal of the American Society of Nephrology. 2000;11(3):539–549.
    1. Smith K. S., Lee C. L., Ridlington J. W., Leonard S. W., Devaraj S., Traber M. G. Vitamin E supplementation increases circulating vitamin E metabolites tenfold in end-stage renal disease patients. Lipids. 2003;38(8):813–819. doi: 10.1007/s11745-003-1130-9.
    1. Sinsakul V., Drake J. R., Leavitt J. N., Jr., Harrison B. R., Fitch C. D. Lack of effect of vitamin E therapy on the anemia of patients receiving hemodialysis. The American Journal of Clinical Nutrition. 1984;39(2):223–226. doi: 10.1093/ajcn/39.2.223.
    1. Lillo-Ferez M., Allain B., Dupommereulle C., Prieur P., Petrover M. Inefficacy of vitamin E supplementation on anemia in hemodialysis patients. Nephron. 1987;45(1):79–80. doi: 10.1159/000184082.
    1. Aguilera A., Teruel J. L., Villatruela J. J., Rivera M., Ortuno J. Effect of vitamin E administration on erythropoietin values and anaemia in hemodialysis patients. Nephrology Dialysis Transplantation. 1993;8(4):p. 379. doi: 10.1093/oxfordjournals.ndt.a092484.
    1. Upston J. M., Terentis A. C., Stocker R. Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. The FASEB Journal. 1999;13(9):977–994. doi: 10.1096/fasebj.13.9.977.
    1. Lu L., Erhard P., Salomon R. G., Weiss M. F. Serum vitamin E and oxidative protein modification in hemodialysis: a randomized clinical trial. American Journal of Kidney Diseases. 2007;50(2):305–313. doi: 10.1053/j.ajkd.2007.05.001.
    1. Islam K. N., O’Byrne D., Devaraj S., Palmer B., Grundy S. M., Jialal I. Alpha-tocopherol supplementation decreases the oxidative susceptibility of LDL in renal failure patients on dialysis therapy. Atherosclerosis. 2000;150(1):217–224. doi: 10.1016/S0021-9150(99)00410-4.
    1. Giray B., Kan E., Bali M., Hincal F., Basaran N. The effect of vitamin E supplementation on antioxidant enzyme activities and lipid peroxidation levels in hemodialysis patients. Clinica Chimica Acta. 2003;338(1-2):91–98. doi: 10.1016/j.cccn.2003.07.020.
    1. Inal M., Kanbak G., Sen S., Akyuz F., Sunal E. Antioxidant status and lipid peroxidation in hemodialysis patients undergoing erythropoietin and erythropoietin-vitamin E combined therapy. Free Radical Research. 1999;31(3):211–216. doi: 10.1080/10715769900300771.
    1. Galli F., Varga Z., Balla J., et al. Vitamin E, lipid profile, and peroxidation in hemodialysis patients. Kidney International. 2001;59:S148–S154. doi: 10.1046/j.1523-1755.2001.59780148.x.
    1. Domenici F. A., Vannucchi M. T. I., Jordão A. A., Jr, Meirelles M. S. S., Vannucchi H. DNA oxidative damage in patients with dialysis treatment. Renal Failure. 2005;27(6):689–694. doi: 10.1080/08860220500242678.
    1. Uzum A., Toprak O., Gumustas M. K., Ciftci S., Sen S. Effect of vitamin E therapy on oxidative stress and erythrocyte osmotic fragility in patients on peritoneal dialysis and hemodialysis. Journal of Nephrology. 2006;19(6):739–745.
    1. Boudouris G., Verginadis I. I., Simos Y. V., et al. Oxidative stress in patients treated with continuous ambulatory peritoneal dialysis (CAPD) and the significant role of vitamin C and E supplementation. International Urology and Nephrology. 2013;45(4):1137–1144. doi: 10.1007/s11255-012-0334-6.
    1. Badiou S., Cristol J. P., Morena M., et al. Vitamin E supplementation increases LDL resistance to ex vivo oxidation in hemodialysis patients. International Journal for Vitamin and Nutrition Research. 2003;73(4):290–296. doi: 10.1024/0300-9831.73.4.290.
    1. Khor B. H., Narayanan S. S., Sahathevan S., et al. Efficacy of nutritional interventions on inflammatory markers in haemodialysis patients: a systematic review and limited meta-analysis. Nutrients. 2018;10(4) doi: 10.3390/nu10040397.
    1. Diepeveen S. H. A., Verhoeven G. W. H. E., van der Palen J., et al. Effects of atorvastatin and vitamin E on lipoproteins and oxidative stress in dialysis patients: a randomised-controlled trial. Journal of Internal Medicine. 2005;257(5):438–445. doi: 10.1111/j.1365-2796.2005.01484.x.
    1. Kamgar M., Zaldivar F., Vaziri N. D., Pahl M. V. Antioxidant therapy does not ameliorate oxidative stress and inflammation in patients with end-stage renal disease. Journal of the National Medical Association. 2009;101(4):336–344. doi: 10.1016/S0027-9684(15)30881-6.
    1. O'Byrne D., Devaraj S., Islam K. N., et al. Low-density lipoprotein (LDL)-induced monocyte-endothelial cell adhesion, soluble cell adhesion molecules, and autoantibodies to oxidized-LDL in chronic renal failure patients on dialysis therapy. Metabolism. 2001;50(2):207–215. doi: 10.1053/meta.2001.19486.
    1. Sanaka T., Takahashi C., Sanaka M., et al. Accumulation of phosphatydilcholine-hydroperoxide in dialysis patients with diabetic nephropathy. Clinical Nephrology. 1995;44(Supplement 1):S33–S37.
    1. Antoniadi G., Eleftheriadis T., Liakopoulos V., et al. Effect of one-year oral alpha-tocopherol administration on the antioxidant defense system in hemodialysis patients. Therapeutic Apheresis and Dialysis. 2008;12(3):237–242. doi: 10.1111/j.1744-9987.2008.00580.x.
    1. Coombes J. S., Fassett R. G. Antioxidant therapy in hemodialysis patients: a systematic review. Kidney International. 2012;81(3):233–246. doi: 10.1038/ki.2011.341.
    1. Boaz M., Smetana S., Weinstein T., et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. The Lancet. 2000;356(9237):1213–1218. doi: 10.1016/S0140-6736(00)02783-5.
    1. Miller E. R., III, Pastor-Barriuso R., Dalal D., Riemersma R. A., Appel L. J., Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Annals of Internal Medicine. 2005;142(1):37–46. doi: 10.7326/0003-4819-142-1-200501040-00110.
    1. Mune M., Yukawa S., Kishino M., et al. Effect of vitamin E on lipid metabolism and atherosclerosis in ESRD patients. Kidney International. 1999;56(Supplement 71):S126–S129. doi: 10.1016/S0085-2538(15)46619-0.
    1. Usberti M., Gerardi G., Bufano G., et al. Effects of erythropoietin and vitamin E-modified membrane on plasma oxidative stress markers and anemia of hemodialyzed patients. American Journal of Kidney Diseases. 2002;40(3):590–599. doi: 10.1053/ajkd.2002.34919.
    1. Bargnoux A.-S., Cristol J.-P., Jaussent I., et al. Vitamin E-coated polysulfone membrane improved red blood cell antioxidant status in hemodialysis patients. Journal of Nephrology. 2013;26(3):556–563. doi: 10.5301/jn.5000195.
    1. Locatelli F., Andrulli S., Viganò S. M., et al. Evaluation of the impact of a new synthetic vitamin E-bonded membrane on the hypo-responsiveness to the erythropoietin therapy in hemodialysis patients: a multicenter study. Blood Purification. 2017;43(4):338–345. doi: 10.1159/000453442.
    1. Sosa M. A., Balk E. M., Lau J., et al. A systematic review of the effect of the Excebrane dialyser on biomarkers of lipid peroxidation. Nephrology Dialysis Transplantation. 2006;21(10):2825–2833. doi: 10.1093/ndt/gfl376.
    1. Yang S. K., Xiao L., Xu B., Xu X. X., Liu F. Y., Sun L. Effects of vitamin E-coated dialyzer on oxidative stress and inflammation status in hemodialysis patients: a systematic review and meta-analysis. Renal Failure. 2014;36(5):722–731. doi: 10.3109/0886022X.2014.890858.
    1. D'Arrigo G., Baggetta R., Tripepi G., Galli F., Bolignano D. Effects of vitamin E-coated versus conventional membranes in chronic hemodialysis patients: a systematic review and meta-analysis. Blood Purification. 2017;43(1-3):101–122. doi: 10.1159/000453444.
    1. Piroddi M., Pilolli F., Aritomi M., Galli F. Vitamin E as a functional and biocompatibility modifier of synthetic hemodialyzer membranes: an overview of the literature on vitamin E-modified hemodialyzer membranes. American Journal of Nephrology. 2012;35(6):559–572. doi: 10.1159/000338807.
    1. Abdollahzad H., Eghtesadi S., Nourmohammadi I., Khadem-Ansari M., Nejad-Gashti H., Esmaillzadeh A. Effect of vitamin C supplementation on oxidative stress and lipid profiles in hemodialysis patients. International Journal for Vitamin and Nutrition Research. 2009;79(56):281–287. doi: 10.1024/0300-9831.79.56.281.
    1. Candan F., Gultekin F., Candan F. Effect of vitamin C and zinc on osmotic fragility and lipid peroxidation in zinc-deficient haemodialysis patients. Cell Biochemistry and Function. 2002;20(2):95–98. doi: 10.1002/cbf.947.
    1. Ghiadoni L., Cupisti A., Huang Y., et al. Endothelial dysfunction and oxidative stress in chronic renal failure. Journal of Nephrology. 2004;17(4):512–519.
    1. Sato M., Matsumoto Y., Morita H., Takemura H., Shimoi K., Amano I. Effects of vitamin supplementation on microcirculatory disturbance in hemodialysis patients without peripheral arterial disease. Clinical Nephrology. 2003;60(07):28–34. doi: 10.5414/CNP60028.
    1. Shi X.-F. Use of ascorbate-rich dialysate to attenuate oxidative stress in maintenance hemodialysis patients. Renal Failure. 2005;27(2):213–219. doi: 10.1081/JDI-49533.
    1. Ferretti G., Bacchetti T., Masciangelo S., Pallotta G. Lipid peroxidation in hemodialysis patients: effect of vitamin C supplementation. Clinical Biochemistry. 2008;41(6):381–386. doi: 10.1016/j.clinbiochem.2007.12.011.
    1. Tarng D.-C., Liu T.-Y., Huang T.-P. Protective effect of vitamin C on 8-hydroxy-2′-deoxyguanosine level in peripheral blood lymphocytes of chronic hemodialysis patients. Kidney International. 2004;66(2):820–831. doi: 10.1111/j.1523-1755.2004.00809.x.
    1. Chan D., Irish A., Croft K. D., Dogra G. Effect of ascorbic acid supplementation on plasma isoprostanes in haemodialysis patients. Nephrology, Dialysis, Transplantation. 2006;21(1):234–235. doi: 10.1093/ndt/gfi154.
    1. Washio K., Inagaki M., Tsuji M., et al. Oral vitamin C supplementation in hemodialysis patients and its effect on the plasma level of oxidized ascorbic acid and Cu/Zn superoxide dismutase, an oxidative stress marker. Nephron Clinical Practice. 2008;109(2):c49–c54. doi: 10.1159/000137628.
    1. Ramos R., Martinez-Castelao A. Lipoperoxidation and hemodialysis. Metabolism. 2008;57(10):1369–1374. doi: 10.1016/j.metabol.2008.05.004.
    1. Fumeron C., Nguyen-Khoa T., Saltiel C., et al. Effects of oral vitamin C supplementation on oxidative stress and inflammation status in haemodialysis patients. Nephrology, Dialysis, Transplantation. 2005;20(9):1874–1879. doi: 10.1093/ndt/gfh928.
    1. De Vriese A. S., Borrey D., Mahieu E., et al. Oral vitamin C administration increases lipid peroxidation in hemodialysis patients. Nephron Clinical Practice. 2008;108(1):c28–c34. doi: 10.1159/000112526.
    1. Eiselt J., Racek J., Opatrny K., Jr., Trefil L., Stehlik P. The effect of intravenous iron on oxidative stress in hemodialysis patients at various levels of vitamin C. Blood Purification. 2006;24(5-6):531–537. doi: 10.1159/000096474.
    1. Tsapas G., Magoula I., Paletas K., Concouris L. Effect of peritoneal dialysis on plasma levels of ascorbic acid. Nephron. 1983;33(1):34–37. doi: 10.1159/000182901.
    1. Sundl I., Roob J. M., Meinitzer A., et al. Antioxidant status of patients on peritoneal dialysis: associations with inflammation and glycoxidative stress. Peritoneal Dialysis International. 2009;29(1):89–101.
    1. Zhang K., Liu L., Cheng X., Dong J., Geng Q., Zuo L. Low levels of vitamin C in dialysis patients is associated with decreased prealbumin and increased C-reactive protein. BMC Nephrology. 2011;12(1):p. 18. doi: 10.1186/1471-2369-12-18.
    1. Finkelstein F. O., Juergensen P., Wang S., et al. Hemoglobin and plasma vitamin C levels in patients on peritoneal dialysis. Peritoneal Dialysis International. 2011;31(1):74–79. doi: 10.3747/pdi.2009.00154.
    1. Bostom A. G., Carpenter M. A., Kusek J. W., et al. Rationale and design of the Folic Acid for Vascular Outcome Reduction in Transplantation (FAVORIT) trial. American Heart Journal. 2006;152(3):448.e1–448.e7. doi: 10.1016/j.ahj.2006.03.004.
    1. Nanayakkara P. W., van Guldener C., ter Wee P. M., et al. Effect of a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on carotid intima-media thickness, endothelial function, and renal function in patients with mild to moderate chronic kidney disease: results from the Anti-Oxidant Therapy in Chronic Renal Insufficiency (ATIC) Study. Archives of Internal Medicine. 2007;167(12):1262–1270. doi: 10.1001/archinte.167.12.1262.
    1. Stopper H., Treutlein A. T., Bahner U., et al. Reduction of the genomic damage level in haemodialysis patients by folic acid and vitamin B12 supplementation. Nephrology, Dialysis, Transplantation. 2008;23(10):3272–3279. doi: 10.1093/ndt/gfn254.
    1. Alderson N. L., Chachich M. E., Youssef N. N., et al. The AGE inhibitor pyridoxamine inhibits lipemia and development of renal and vascular disease in Zucker obese rats. Kidney International. 2003;63(6):2123–2133. doi: 10.1046/j.1523-1755.2003.00027.x.
    1. Metz T. O., Alderson N. L., Thorpe S. R., Baynes J. W. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Archives of Biochemistry and Biophysics. 2003;419(1):41–49. doi: 10.1016/j.abb.2003.08.021.
    1. Metz T. O., Alderson N. L., Chachich M. E., Thorpe S. R., Baynes J. W. Pyridoxamine traps intermediates in lipid peroxidation reactions in vivo: evidence on the role of lipids in chemical modification of protein and development of diabetic complications. Journal of Biological Chemistry. 2003;278(43):42012–42019. doi: 10.1074/jbc.M304292200.
    1. Zheng F., Zeng Y. J., Plati A. R., et al. Combined AGE inhibition and ACEi decreases the progression of established diabetic nephropathy in B6 db/db mice. Kidney International. 2006;70(3):507–514. doi: 10.1038/sj.ki.5001578.
    1. Williams M. E., Bolton W. K., Khalifah R. G., Degenhardt T. P., Schotzinger R. J., McGill J. B. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. American Journal of Nephrology. 2007;27(6):605–614. doi: 10.1159/000108104.
    1. Apeland T., Mansoor M. A., Seljeflot I., Bronstad I., Goransson L., Strandjord R. E. Homocysteine, malondialdehyde and endothelial markers in dialysis patients during low-dose folinic acid therapy. Journal of Internal Medicine. 2002;252(5):456–464. doi: 10.1046/j.1365-2796.2002.01056.x.
    1. Delfino V. D. A., de Andrade Vianna A. C., Mocelin A. J., Barbosa D. S., Mise R. A., Matsuo T. Folic acid therapy reduces plasma homocysteine levels and improves plasma antioxidant capacity in hemodialysis patients. Nutrition. 2007;23(3):242–247. doi: 10.1016/j.nut.2007.01.002.
    1. Nascimento M. M., Suliman M. E., Murayama Y., et al. Effect of high-dose thiamine and pyridoxine on advanced glycation end products and other oxidative stress markers in hemodialysis patients: a randomized placebo-controlled study. Journal of Renal Nutrition. 2006;16(2):119–124. doi: 10.1053/j.jrn.2006.01.002.
    1. Nigwekar S. U., Kang A., Zoungas S., et al. Interventions for lowering plasma homocysteine levels in dialysis patients. Cochrane Database of Systematic Reviews. 2016;31(5) doi: 10.1002/14651858.cd004683.pub4.
    1. Wu C. C., Chang J. H., Chen C. C., et al. Calcitriol treatment attenuates inflammation and oxidative stress in hemodialysis patients with secondary hyperparathyroidism. The Tohoku Journal of Experimental Medicine. 2011;223(3):153–159. doi: 10.1620/tjem.223.153.
    1. Tanaka M., Tokunaga K., Komaba H., et al. Vitamin D receptor activator reduces oxidative stress in hemodialysis patients with secondary hyperparathyroidism. Therapeutic Apheresis and Dialysis. 2011;15(2):161–168. doi: 10.1111/j.1744-9987.2010.00890.x.
    1. Izquierdo M. J., Cavia M., Muñiz P., et al. Paricalcitol reduces oxidative stress and inflammation in hemodialysis patients. BMC Nephrology. 2012;13(1):p. 159. doi: 10.1186/1471-2369-13-159.
    1. Tamadon M. R., Soleimani A., Keneshlou F., et al. Clinical trial on the effects of vitamin D supplementation on metabolic profiles in diabetic hemodialysis. Hormone and Metabolic Research. 2018;50(01):50–55. doi: 10.1055/s-0043-119221.
    1. Yang L., Wu L., Du S., Hu Y., Fan Y., Ma J. 1,25(OH)2D3 inhibits high glucose-induced apoptosis and ROS production in human peritoneal mesothelial cells via the MAPK/P38 pathway. Molecular Medicine Reports. 2016;14(1):839–844. doi: 10.3892/mmr.2016.5323.
    1. Yang L., Fan Y., Zhang X., Liu J., Ma J. Effect of 1,25(OH)2D3 on high glucose-induced autophagy inhibition in peritoneum. Molecular Medicine Reports. 2017;16(5):7080–7085. doi: 10.3892/mmr.2017.7408.
    1. Yang L., Fan Y., Zhang X., Huang W., Ma J. 1,25(OH)2D3 treatment attenuates high glucose-induced peritoneal epithelial to mesenchymal transition in mice. Molecular Medicine Reports. 2017;16(4):3817–3824. doi: 10.3892/mmr.2017.7096.
    1. Lass A., Forster M. J., Sohal R. S. Effects of coenzyme Q10 and α-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial α-tocopherol by coenzyme Q10. Free Radical Biology & Medicine. 1999;26(11-12):1375–1382. doi: 10.1016/S0891-5849(98)00330-X.
    1. Morotomi Y., Oniki H., Onoyama K., Fukiyama K., Omae T. Effects of coenzyme Q10 on the blood pressure and renal renin content in spontaneously hypertensive rats. Igaku Kenkyu. 1975;45(5):303–308.
    1. Igarashi T., Nakajima Y., Tanaka M., Otake S. Effect of coenzyme Q10 on experimental hypertension in rats and dogs. The Journal of Pharmacology and Experimental Therapeutics. 1974;189(1):149–156.
    1. Rauscher F. M., Sanders R. A., Watkins J. B. Effects of coenzyme Q10 treatment on antioxidant pathways in normal and streptozotocin-induced diabetic rats. Journal of Biochemical and Molecular Toxicology. 2001;15(1):41–46. doi: 10.1002/1099-0461(2001)15:1<41::AID-JBT5>;2-Z.
    1. Farswan M., Rathod S., Upaganlawar A., Semwal A. Protective effect of coenzyme Q10 in simvastatin and gemfibrozil induced rhabdomyolysis in rats. Indian Journal of Experimental Biology. 2005;43(10):845–848.
    1. Upaganlawar A., Farswan M., Rathod S., Balaraman R. Modification of biochemical parameters of gentamicin nephrotoxicity by coenzyme Q10 and green tea in rats. Indian Journal of Experimental Biology. 2006;44(5):416–418.
    1. Sakata T., Furuya R., Shimazu T., Odamaki M., Ohkawa S., Kumagai H. Coenzyme Q10 administration suppresses both oxidative and antioxidative markers in hemodialysis patients. Blood Purification. 2008;26(4):371–378. doi: 10.1159/000135605.
    1. Yeung C. K., Billings F. T., Claessens A. J., et al. Coenzyme Q10 dose-escalation study in hemodialysis patients: safety, tolerability, and effect on oxidative stress. BMC Nephrology. 2015;16(1):p. 183. doi: 10.1186/s12882-015-0178-2.
    1. Gokbel H., Turk S., Okudan N., et al. Effects of coenzyme Q10 supplementation on exercise performance and markers of oxidative stress in hemodialysis patients: a double-blind placebo-controlled crossover trial. American Journal of Therapeutics. 2016;23(6):e1736–e1743. doi: 10.1097/MJT.0000000000000166.
    1. Rivara M. B., Yeung C. K., Robinson-Cohen C., et al. Effect of coenzyme Q10 on biomarkers of oxidative stress and cardiac function in hemodialysis patients: the CoQ10 biomarker trial. American Journal of Kidney Diseases. 2017;69(3):389–399. doi: 10.1053/j.ajkd.2016.08.041.
    1. Matera M., Bellinghieri G., Costantino G., Santoro D., Calvani M., Savica V. History of L-carnitine: implications for renal disease. Journal of Renal Nutrition. 2003;13(1):2–14. doi: 10.1053/jren.2003.50010.
    1. Sloan R. S., Kastan B., Rice S. I., et al. Quality of life during and between hemodialysis treatments: role of L-carnitine supplementation. American Journal of Kidney Diseases. 1998;32(2):265–272. doi: 10.1053/ajkd.1998.v32.pm9708611.
    1. Brass E. P., Adler S., Sietsema K. E., et al. Intravenous l-carnitine increases plasma carnitine, reducesfatigue, and may preserve exercise capacity in hemodialysis patients. American Journal of Kidney Diseases. 2001;37(5):1018–1028. doi: 10.1016/S0272-6386(05)80019-8.
    1. Hurot J. M., Cucherat M., Haugh M., Fouque D. Effects of L-carnitine supplementation in maintenance hemodialysis patients: a systematic review. Journal of the American Society of Nephrology. 2002;13(3):708–714.
    1. Chen Y., Abbate M., Tang L., et al. L-Carnitine supplementation for adults with end-stage kidney disease requiring maintenance hemodialysis: a systematic review and meta-analysis. The American Journal of Clinical Nutrition. 2014;99(2):408–422. doi: 10.3945/ajcn.113.062802.
    1. Yang S. K., Xiao L., Song P. A., Xu X., Liu F. Y., Sun L. Effect of L-carnitine therapy on patients in maintenance hemodialysis: a systematic review and meta-analysis. Journal of Nephrology. 2014;27(3):317–329. doi: 10.1007/s40620-013-0002-7.
    1. Friedman A., Moe S. Review of the effects of omega-3 supplementation in dialysis patients. Clinical Journal of the American Society of Nephrology. 2006;1(2):182–192. doi: 10.2215/CJN.00740805.
    1. Peake J. M., Gobe G. C., Fassett R. G., Coombes J. S. The effects of dietary fish oil on inflammation, fibrosis and oxidative stress associated with obstructive renal injury in rats. Molecular Nutrition & Food Research. 2011;55(3):400–410. doi: 10.1002/mnfr.201000195.
    1. Hung A. M., Booker C., Ellis C. D., et al. Omega-3 fatty acids inhibit the up-regulation of endothelial chemokines in maintenance hemodialysis patients. Nephrology, Dialysis, Transplantation. 2015;30(2):266–274. doi: 10.1093/ndt/gfu283.
    1. Tayyebi-Khosroshahi H., Houshyar J., Tabrizi A., Vatankhah A.-M., Zonouz N. R., Dehghan-Hesari R. Effect of omega-3 fatty acid on oxidative stress in patients on hemodialysis. Iranian Journal of Kidney Diseases. 2010;4(4):322–326.
    1. Ando M., Sanaka T., Nihei H. Eicosapentanoic acid reduces plasma levels of remnant lipoproteins and prevents in vivo peroxidation of LDL in dialysis patients. Journal of the American Society of Nephrology. 1999;10(10):2177–2184.
    1. de Mattos A. M., da Costa J. A. C., Jordão Júnior A. A., Chiarello P. G. Omega-3 fatty acid supplementation is associated with oxidative stress and dyslipidemia, but does not contribute to better lipid and oxidative status on hemodialysis patients. Journal of Renal Nutrition. 2017;27(5):333–339. doi: 10.1053/j.jrn.2017.02.006.
    1. Daud Z. A., Tubie B., Adams J., et al. Effects of protein and omega-3 supplementation, provided during regular dialysis sessions, on nutritional and inflammatory indices in hemodialysis patients. Vascular Health and Risk Management. 2012;8:187–195. doi: 10.2147/VHRM.S28739.
    1. Perunicic-Pekovic G. B., Rasic Z. R., Pljesa S. I., et al. Effect of n-3 fatty acids on nutritional status and inflammatory markers in haemodialysis patients. Nephrology. 2007;12(4):331–336. doi: 10.1111/j.1440-1797.2007.00777.x.
    1. Taheri S., Keyvandarian N., Moeinzadeh F., Mortazavi M., Naini A. E. The effect of omega-3 fatty acid supplementation on oxidative stress in continuous ambulatory peritoneal dialysis patients. Advanced Biomedical Research. 2014;3(1):p. 142. doi: 10.4103/2277-9175.135160.
    1. Naini A. E., Asiabi R. E., Keivandarian N., Moeinzadeh F. Effect of omega-3 supplementation on inflammatory parameters in patients on chronic ambulatory peritoneal dialysis. Advanced Biomedical Research. 2015;4(1):p. 167. doi: 10.4103/2277-9175.162544.
    1. Naini A. E., Keyvandarian N., Mortazavi M., Taheri S., Hosseini S. M. Effect of omega-3 fatty acids on blood pressure and serum lipids in continuous ambulatory peritoneal dialysis patients. Journal of Research in Pharmacy Practice. 2015;4(3):135–141. doi: 10.4103/2279-042X.162356.
    1. Abdelhamid A. S., Brown T. J., Brainard J. S., et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews. 2018;7, article CD003177 doi: 10.1002/14651858.CD012345.pub2.
    1. Aung T., Halsey J., Kromhout D., et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77917 individuals. JAMA Cardiology. 2018;3(3):225–234. doi: 10.1001/jamacardio.2017.5205.
    1. Taccone-Gallucci M., Noce A., Bertucci P., et al. Chronic treatment with statins increases the availability of selenium in the antioxidant defence systems of hemodialysis patients. Journal of Trace Elements in Medicine and Biology. 2010;24(1):27–30. doi: 10.1016/j.jtemb.2009.06.005.
    1. Nishikawa O., Mune M., Miyano M., et al. Effect of simvastatin on the lipid profile of hemodialysis patients. Kidney International. 1999;71:S219–S221.
    1. Kishimoto N., Hayashi T., Sakuma I., et al. A hydroxymethylglutaryl coenzyme a reductase inhibitor improves endothelial function within 7 days in patients with chronic hemodialysis. International Journal of Cardiology. 2010;145(1):21–26. doi: 10.1016/j.ijcard.2009.05.023.
    1. Navaneethan S. D., Nigwekar S. U., Perkovic V., Johnson D. W., Craig J. C., Strippoli G. F. HMG CoA reductase inhibitors (statins) for dialysis patients. Cochrane Database of Systematic Reviews. 2009;8(3) doi: 10.1002/14651858.cd004289.pub4.
    1. Deng J., Wu Q., Liao Y., Huo D., Yang Z. Effect of statins on chronic inflammation and nutrition status in renal dialysis patients: a systematic review and meta-analysis. Nephrology. 2012;17(6):545–551. doi: 10.1111/j.1440-1797.2012.01597.x.
    1. Sigel H., Prijs B., McCormick D. B., Shih J. C. H. Stability and structure of binary and ternary complexes of α-lipoate and lipoate derivatives with Mn2+, Cu2+, and Zn2+ in solution. Archives of Biochemistry and Biophysics. 1978;187(1):208–214. doi: 10.1016/0003-9861(78)90025-5.
    1. Liu J. The effects and mechanisms of mitochondrial nutrient α-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochemical Research. 2008;33(1):194–203. doi: 10.1007/s11064-007-9403-0.
    1. Petersen Shay K., Moreau R. F., Smith E. J., Hagen T. M. Is α-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life. 2008;60(6):362–367. doi: 10.1002/iub.40.
    1. Kim H., Kim H. J., Lee K., et al. α-Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway. Journal of Cellular and Molecular Medicine. 2012;16(2):273–286. doi: 10.1111/j.1582-4934.2011.01294.x.
    1. Takaoka M., Ohkita M., Kobayashi Y., Yuba M., Matsumura Y. Protective effect of α-LIPOIC acid against ischaemic acute renal failure in rats. Clinical and Experimental Pharmacology and Physiology. 2002;29(3):189–194. doi: 10.1046/j.1440-1681.2002.03624.x.
    1. Şehirli Ö., Şener E., Çetinel Ş., Yüksel M., Gedik N., Şener G. α-Lipoic acid protects against renal ischaemia–reperfusion injury in rats. Clinical and Experimental Pharmacology and Physiology. 2008;35(3):249–255. doi: 10.1111/j.1440-1681.2007.04810.x.
    1. Wang L., Wu C.-G., Fang C.-Q., et al. The protective effect of α-lipoic acid on mitochondria in the kidney of diabetic rats. International Journal of Clinical and Experimental Medicine. 2013;6(2):90–97.
    1. Melhem M. F., Craven P. A., Liachenko J., DeRubertis F. R. α-Lipoic acid attenuates hyperglycemia and prevents glomerular mesangial matrix expansion in diabetes. Journal of the American Society of Nephrology. 2002;13(1):108–116.
    1. Bhatti F., Mankhey R. W., Asico L., Quinn M. T., Welch W. J., Maric C. Mechanisms of antioxidant and pro-oxidant effects of α-lipoic acid in the diabetic and nondiabetic kidney. Kidney International. 2005;67(4):1371–1380. doi: 10.1111/j.1523-1755.2005.00214.x.
    1. Malarkodi K. P., Balachandar A. V., Varalakshmi P. Protective effect of lipoic acid on adriamycin induced lipid peroxidation in rat kidney. Molecular and Cellular Biochemistry. 2003;247(1/2):9–13. doi: 10.1023/A:1024164608148.
    1. Malarkodi D. P., Balachandar A. V., Varalakshmi P. The influence of lipoic acid on adriamycin induced nephrotoxicity in rats. Molecular and Cellular Biochemistry. 2003;247(1/2):15–22. doi: 10.1023/A:1024118519596.
    1. Amudha G., Josephine A., Mythili Y., Sundarapandiyan R., Varalakshmi P. Therapeutic efficacy of dl-α-lipoic acid on cyclosporine A induced renal alterations. European Journal of Pharmacology. 2007;571(2-3):209–214. doi: 10.1016/j.ejphar.2007.05.047.
    1. Amudha G., Josephine A., Varalakshmi P. Role of lipoic acid in reducing the oxidative stress induced by cyclosporine A. Clinica Chimica Acta. 2006;372(1-2):134–139. doi: 10.1016/j.cca.2006.03.036.
    1. Abdel-Zaher A. O., Abdel-Hady R. H., Mahmoud M. M., Farrag M. M. Y. The potential protective role of alpha-lipoic acid against acetaminophen-induced hepatic and renal damage. Toxicology. 2008;243(3):261–270. doi: 10.1016/j.tox.2007.10.010.
    1. Khabbazi T., Mahdavi R., Safa J., Pour-Abdollahi P. Effects of alpha-lipoic acid supplementation on inflammation, oxidative stress, and serum lipid profile levels in patients with end-stage renal disease on hemodialysis. Journal of Renal Nutrition. 2012;22(2):244–250. doi: 10.1053/j.jrn.2011.06.005.
    1. Safa J., Ardalan M. R., Rezazadehsaatlou M., Mesgari M., Mahdavi R., Jadid M. P. Effects of alpha lipoic acid supplementation on serum levels of IL-8 and TNF-α in patient with ESRD undergoing hemodialysis. International Urology and Nephrology. 2014;46(8):1633–1638. doi: 10.1007/s11255-014-0688-z.
    1. Chang J. W., Lee E. K., Kim T. H., et al. Effects of α-lipoic acid on the plasma levels of asymmetric dimethylarginine in diabetic end-stage renal disease patients on hemodialysis: a pilot study. American Journal of Nephrology. 2007;27(1):70–74. doi: 10.1159/000099035.
    1. El-Nakib G. A., Mostafa T. M., Abbas T. M., El-Shishtawy M. M., Mabrouk M. M., Sobh M. A. Role of alpha-lipoic acid in the management of anemia in patients with chronic renal failure undergoing hemodialysis. International Journal of Nephrology and Renovascular Disease. 2013;6:161–168. doi: 10.2147/IJNRD.S49066.
    1. Ahmadi A., Mazooji N., Roozbeh J., Mazloom Z., Hasanzade J. Effect of alpha-lipoic acid and vitamin E supplementation on oxidative stress, inflammation, and malnutrition in hemodialysis patients. Iranian Journal of Kidney Diseases. 2013;7(6):461–467.
    1. Himmelfarb J., Ikizler T. A., Ellis C., et al. Provision of antioxidant therapy in hemodialysis (PATH): a randomized clinical trial. Journal of the American Society of Nephrology. 2014;25(3):623–633. doi: 10.1681/ASN.2013050545.
    1. Fujishima Y., Ohsawa M., Itai K., et al. Serum selenium levels are inversely associated with death risk among hemodialysis patients. Nephrology, Dialysis, Transplantation. 2011;26(10):3331–3338. doi: 10.1093/ndt/gfq859.
    1. Tonelli M., Wiebe N., Bello A., et al. Concentrations of trace elements and clinical outcomes in hemodialysis patients: a prospective cohort study. Clinical Journal of the American Society of Nephrology. 2018;13(6):907–915. doi: 10.2215/CJN.11451017.
    1. Kalantar-Zadeh K., Kopple J. D. Trace elements and vitamins in maintenance dialysis patients. Advances in Renal Replacement Therapy. 2003;10(3):170–182. doi: 10.1053/j.arrt.2003.09.002.
    1. Zima T., Mestek O., Němeček K., et al. Trace elements in hemodialysis and continuous ambulatory peritoneal dialysis patients. Blood Purification. 1998;16(5):253–260. doi: 10.1159/000014342.
    1. Fujishima Y., Ohsawa M., Itai K., et al. Serum selenium levels in hemodialysis patients are significantly lower than those in healthy controls. Blood Purification. 2011;32(1):43–47. doi: 10.1159/000323538.
    1. Rucker D., Thadhani R., Tonelli M. Trace element status in hemodialysis patients. Seminars in Dialysis. 2010;23(4):389–395. doi: 10.1111/j.1525-139X.2010.00746.x.
    1. Pakfetrat M., Malekmakan L., Hasheminasab M. Diminished selenium levels in hemodialysis and continuous ambulatory peritoneal dialysis patients. Biological Trace Element Research. 2010;137(3):335–339. doi: 10.1007/s12011-009-8588-2.
    1. Tonelli M., Wiebe N., Hemmelgarn B., et al. Trace elements in hemodialysis patients: a systematic review and meta-analysis. BMC Medicine. 2009;7(1):p. 25. doi: 10.1186/1741-7015-7-25.
    1. Rashidi A. A., Salehi M., Piroozmand A., Sagheb M. M. Effects of zinc supplementation on serum zinc and C-reactive protein concentrations in hemodialysis patients. Journal of Renal Nutrition. 2009;19(6):475–478. doi: 10.1053/j.jrn.2009.04.005.
    1. Rahimi-Ardabili B., Argani H., Ghorbanihaghjo A., et al. Paraoxonase enzyme activity is enhanced by zinc supplementation in hemodialysis patients. Renal Failure. 2012;34(9):1123–1128. doi: 10.3109/0886022X.2012.717479.
    1. Mazani M., Argani H., Rashtchizadeh N., et al. Effects of zinc supplementation on antioxidant status and lipid peroxidation in hemodialysis patients. Journal of Renal Nutrition. 2013;23(3):180–184. doi: 10.1053/j.jrn.2012.08.012.
    1. Guo C. H., Chen P. C., Hsu G. S., Wang C. L. Zinc supplementation alters plasma aluminum and selenium status of patients undergoing dialysis: a pilot study. Nutrients. 2013;5(4):1456–1470. doi: 10.3390/nu5041456.
    1. Wang L. J., Wang M. Q., Hu R., et al. Effect of zinc supplementation on maintenance hemodialysis patients: a systematic review and meta-analysis of 15 randomized controlled trials. BioMed Research International. 2017;2017:11. doi: 10.1155/2017/1024769.1024769
    1. Zachara B. A., Adamowicz A., Trafikowska U., Trafikowska A., Manitius J., Nartowicz E. Selenium and glutathione levels, and glutathione peroxidase activities in blood components of uremic patients on hemodialysis supplemented with selenium and treated with erythropoietin. Journal of Trace Elements in Medicine and Biology. 2001;15(4):201–208. doi: 10.1016/S0946-672X(01)80034-1.
    1. Zachara B. A., Gromadzinska J., Palus J., et al. The effect of selenium supplementation in the prevention of DNA damage in white blood cells of hemodialyzed patients: a pilot study. Biological Trace Element Research. 2011;142(3):274–283. doi: 10.1007/s12011-010-8776-0.
    1. Salehi M., Sohrabi Z., Ekramzadeh M., et al. Selenium supplementation improves the nutritional status of hemodialysis patients: a randomized, double-blind, placebo-controlled trial. Nephrology, Dialysis, Transplantation. 2013;28(3):716–723. doi: 10.1093/ndt/gfs170.
    1. Ardalan M. R., Tubbs R. S., Shoja M. M. Vitamin E and selenium co-supplementation attenuates oxidative stress in haemodialysis patients receiving intra-dialysis iron infusion. Nephrology, Dialysis, Transplantation. 2007;22(3):973–975. doi: 10.1093/ndt/gfl650.
    1. Hatcher H., Planalp R., Cho J., Torti F. M., Torti S. V. Curcumin: from ancient medicine to current clinical trials. Cellular and Molecular Life Sciences. 2008;65(11):1631–1652. doi: 10.1007/s00018-008-7452-4.
    1. Joe B., Lokesh B. R. Role of capsaicin, curcumin and dietary n—3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1994;1224(2):255–263. doi: 10.1016/0167-4889(94)90198-8.
    1. Sreejayan, Rao M. N. A. Curcuminoids as potent inhibitors of lipid peroxidation. Journal of Pharmacy and Pharmacology. 1994;46(12):1013–1016. doi: 10.1111/j.2042-7158.1994.tb03258.x.
    1. Savitha D., Mani I., Ravikumar G., Avadhany S. T. Effect of curcumin in experimental peritonitis. The Indian Journal of Surgery. 2015;77(6):502–507. doi: 10.1007/s12262-015-1303-y.
    1. Soetikno V., Watanabe K., Sari F. R., et al. Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1 activity in streptozotocin-induced type I diabetic rats. Molecular Nutrition & Food Research. 2011;55(11):1655–1665. doi: 10.1002/mnfr.201100080.
    1. Soetikno V., Sari F. R., Veeraveedu P. T., et al. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutrition & Metabolism. 2011;8(1):p. 35. doi: 10.1186/1743-7075-8-35.
    1. Chiu J., Khan Z. A., Farhangkhoee H., Chakrabarti S. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-κB. Nutrition. 2009;25(9):964–972. doi: 10.1016/j.nut.2008.12.007.
    1. Lu M., Yin N., Liu W., Cui X., Chen S., Wang E. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. BioMed Research International. 2017;2017:10. doi: 10.1155/2017/1516985.1516985
    1. Ghosh S. S., Massey H. D., Krieg R., et al. Curcumin ameliorates renal failure in 5/6 nephrectomized rats: role of inflammation. American Journal of Physiology-Renal Physiology. 2009;296(5):F1146–F1157. doi: 10.1152/ajprenal.90732.2008.
    1. Ghosh S. S., Gehr T. W., Ghosh S. Curcumin and chronic kidney disease (CKD): major mode of action through stimulating endogenous intestinal alkaline phosphatase. Molecules. 2014;19(12):20139–20156. doi: 10.3390/molecules191220139.
    1. Jacob A., Chaves L., Eadon M. T., Chang A., Quigg R. J., Alexander J. J. Curcumin alleviates immune-complex-mediated glomerulonephritis in factor-H-deficient mice. Immunology. 2013;139(3):328–337. doi: 10.1111/imm.12079.
    1. Tapia E., Soto V., Ortiz-Vega K. M., et al. Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. Oxidative Medicine and Cellular Longevity. 2012;2012:14. doi: 10.1155/2012/269039.269039
    1. Tapia E., Zatarain-Barrón Z. L., Hernández-Pando R., et al. Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats. Phytomedicine. 2013;20(3-4):359–366. doi: 10.1016/j.phymed.2012.11.014.
    1. Venkatesan N., Punithavathi D., Arumugam V. Curcumin prevents adriamycin nephrotoxicity in rats. British Journal of Pharmacology. 2000;129(2):231–234. doi: 10.1038/sj.bjp.0703067.
    1. Bayrak O., Uz E., Bayrak R., et al. Curcumin protects against ischemia/reperfusion injury in rat kidneys. World Journal of Urology. 2008;26(3):285–291. doi: 10.1007/s00345-008-0253-4.
    1. Soetikno V., Sari F. R., Lakshmanan A. P., et al. Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2–keap1 pathway. Molecular Nutrition & Food Research. 2013;57(9):1649–1659. doi: 10.1002/mnfr.201200540.
    1. Kuhad A., Pilkhwal S., Sharma S., Tirkey N., Chopra K. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. Journal of Agricultural and Food Chemistry. 2007;55(25):10150–10155. doi: 10.1021/jf0723965.
    1. Shoskes D., Lapierre C., Cruz-Corerra M., et al. Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial. Transplantation. 2005;80(11):1556–1559. doi: 10.1097/01.tp.0000183290.64309.21.
    1. Pakfetrat M., Akmali M., Malekmakan L., Dabaghimanesh M., Khorsand M. Role of turmeric in oxidative modulation in end-stage renal disease patients. Hemodialysis International. 2015;19(1):124–131. doi: 10.1111/hdi.12204.
    1. Seddik A. A. The effect of turmeric and ginger on oxidative modulation in end stage renal disease (ESRD) patients. International Journal. 2015;3(11):657–670.
    1. Zahmatkesh M., Tamadon M. Administration of turmeric (curcumin) in chronic renal failure; a narrative review on current knowledge. Journal of Renal Endocrinology. 2016;2, article e06
    1. Signorini L., Granata S., Lupo A., Zaza G. Naturally occurring compounds: new potential weapons against oxidative stress in chronic kidney disease. International Journal of Molecular Sciences. 2017;18(7) doi: 10.3390/ijms18071481.
    1. Bertelli A. A. E., Migliori M., Panichi V., et al. Resveratrol, a component of wine and grapes, in the prevention of kidney disease. Annals of the New York Academy of Sciences. 2002;957(1):230–238. doi: 10.1111/j.1749-6632.2002.tb02919.x.
    1. Giovannini L., Migliori M., Longoni B. M., et al. Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. Journal of Cardiovascular Pharmacology. 2001;37(3):262–270. doi: 10.1097/00005344-200103000-00004.
    1. Kolgazi M., Şener G., Çetinel Ş., Gedik N., Alican İ. Resveratrol reduces renal and lung injury caused by sepsis in rats. Journal of Surgical Research. 2006;134(2):315–321. doi: 10.1016/j.jss.2005.12.027.
    1. Aydın S., Şahin T. T., Bacanlı M., et al. Resveratrol protects sepsis-induced oxidative DNA damage in liver and kidney of rats. Balkan Medical Journal. 2016;33(6):594–601. doi: 10.5152/balkanmedj.2016.15516.
    1. Silan C., Uzun Ö., Çomunoglu N. Ü., Gokçen S., Bedirhan S., Cengiz M. Gentamicin-induced nephrotoxicity in rats ameliorated and healing effects of resveratrol. Biological and Pharmaceutical Bulletin. 2007;30(1):79–83. doi: 10.1248/bpb.30.79.
    1. Do Amaral C. L., Francescato H. D. C., Coimbra T. M., et al. Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Archives of Toxicology. 2008;82(6):363–370. doi: 10.1007/s00204-007-0262-x.
    1. Chander V., Tirkey N., Chopra K. Resveratrol, a polyphenolic phytoalexin protects against cyclosporine-induced nephrotoxicity through nitric oxide dependent mechanism. Toxicology. 2005;210(1):55–64. doi: 10.1016/j.tox.2005.01.011.
    1. Sharma S., Anjaneyulu M., Kulkarni S. K., Chopra K. Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology. 2006;76(2):69–75. doi: 10.1159/000089720.
    1. Castilla P., Dávalos A., Teruel J. L., et al. Comparative effects of dietary supplementation with red grape juice and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in hemodialysis patients. The American Journal of Clinical Nutrition. 2008;87(4):1053–1061. doi: 10.1093/ajcn/87.4.1053.
    1. Castilla P., Echarri R., Dávalos A., et al. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. The American Journal of Clinical Nutrition. 2006;84(1):252–262. doi: 10.1093/ajcn/84.1.252.
    1. Spormann T. M., Albert F. W., Rath T., et al. Anthocyanin/polyphenolic-rich fruit juice reduces oxidative cell damage in an intervention study with patients on hemodialysis. Cancer Epidemiology, Biomarkers & Prevention. 2008;17(12):3372–3380. doi: 10.1158/1055-9965.EPI-08-0364.
    1. Wu P. T., Fitschen P. J., Kistler B. M., et al. Effects of pomegranate extract supplementation on cardiovascular risk factors and physical function in hemodialysis patients. Journal of Medicinal Food. 2015;18(9):941–949. doi: 10.1089/jmf.2014.0103.
    1. Corredor Z., Rodríguez-Ribera L., Coll E., et al. Unfermented grape juice reduce genomic damage on patients undergoing hemodialysis. Food and Chemical Toxicology. 2016;92:1–7. doi: 10.1016/j.fct.2016.03.016.
    1. Lin C.-T., Sun X.-Y., Lin A.-X. Supplementation with high-dose trans-resveratrol improves ultrafiltration in peritoneal dialysis patients: a prospective, randomized, double-blind study. Renal Failure. 2016;38(2):214–221. doi: 10.3109/0886022X.2015.1128236.
    1. Cabrera C., Artacho R., Giménez R. Beneficial effects of green tea—a review. Journal of the American College of Nutrition. 2006;25(2):79–99. doi: 10.1080/07315724.2006.10719518.
    1. Park C. S., Kim W., Woo J. S., et al. Green tea consumption improves endothelial function but not circulating endothelial progenitor cells in patients with chronic renal failure. International Journal of Cardiology. 2010;145(2):261–262. doi: 10.1016/j.ijcard.2009.09.471.
    1. Hsu S. P., Wu M. S., Yang C. C., et al. Chronic green tea extract supplementation reduces hemodialysis-enhanced production of hydrogen peroxide and hypochlorous acid, atherosclerotic factors, and proinflammatory cytokines. The American Journal of Clinical Nutrition. 2007;86(5):1539–1547. doi: 10.1093/ajcn/86.5.1539.
    1. Ellinger S., Muller N., Stehle P., Ulrich-Merzenich G. Consumption of green tea or green tea products: is there an evidence for antioxidant effects from controlled interventional studies? Phytomedicine. 2011;18(11):903–915. doi: 10.1016/j.phymed.2011.06.006.
    1. Bao H., Peng A. The green tea polyphenol (—)-epigallocatechin-3-gallate and its beneficial roles in chronic kidney disease. Journal of Translational Internal Medicine. 2016;4(3):99–103. doi: 10.1515/jtim-2016-0031.
    1. Peng A., Ye T., Rakheja D., et al. The green tea polyphenol (−)-epigallocatechin-3-gallate ameliorates experimental immune-mediated glomerulonephritis. Kidney International. 2011;80(6):601–611. doi: 10.1038/ki.2011.121.
    1. Ye T., Zhen J., du Y., et al. Green tea polyphenol (−)-epigallocatechin-3-gallate restores Nrf2 activity and ameliorates crescentic glomerulonephritis. PLoS One. 2015;10(3, article e0119543) doi: 10.1371/journal.pone.0119543.
    1. Tsai P.-Y., Ka S.-M., Chang J.-M., et al. Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation. Free Radical Biology & Medicine. 2011;51(3):744–754. doi: 10.1016/j.freeradbiomed.2011.05.016.
    1. Yamabe N., Yokozawa T., Oya T., Kim M. Therapeutic potential of (-)-epigallocatechin 3-O-gallate on renal damage in diabetic nephropathy model rats. Journal of Pharmacology and Experimental Therapeutics. 2006;319(1):228–236. doi: 10.1124/jpet.106.107029.
    1. Zhou P., Yu J. F., Zhao C. G., Sui F. X., Teng X., Wu Y. B. Therapeutic potential of EGCG on acute renal damage in a rat model of obstructive nephropathy. Molecular Medicine Reports. 2013;7(4):1096–1102. doi: 10.3892/mmr.2013.1296.
    1. Calo L. A., Vertolli U., Davis P. A., et al. Molecular biology based assessment of green tea effects on oxidative stress and cardiac remodelling in dialysis patients. Clinical Nutrition. 2014;33(3):437–442. doi: 10.1016/j.clnu.2013.06.010.
    1. Vogel G., Tuchweber B., Trost W., Mengs U. Protection by silibinin against Amanita phalloides intoxication in beagles. Toxicology and Applied Pharmacology. 1984;73(3):355–362. doi: 10.1016/0041-008X(84)90087-5.
    1. Vogel G., Braatz R., Mengs U. On the nephrotoxicity of α-amanitin and the antagonistic effects of silymarin in rats. Agents and Actions. 1979;9(2):221–226. doi: 10.1007/BF02024739.
    1. Floersheim G. Experimental basis for the therapy of Amanita phalloides poisoning. Schweizerische Medizinische Wochenschrift. 1978;108(6):185–197.
    1. Ninsontia C., Pongjit K., Chaotham C., Chanvorachote P. Silymarin selectively protects human renal cells from cisplatin-induced cell death. Pharmaceutical Biology. 2011;49(10):1082–1090. doi: 10.3109/13880209.2011.568506.
    1. Shahbazi F., Sadighi S., Dashti-Khavidaki S., et al. Effect of silymarin administration on cisplatin nephrotoxicity: report from a pilot, randomized, double-blinded, placebo-controlled clinical trial. Phytotherapy Research. 2015;29(7):1046–1053. doi: 10.1002/ptr.5345.
    1. El-Shitany N. A., El-Haggar S., El-Desoky K. Silymarin prevents adriamycin-induced cardiotoxicity and nephrotoxicity in rats. Food and Chemical Toxicology. 2008;46(7):2422–2428. doi: 10.1016/j.fct.2008.03.033.
    1. Surai P. F. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants. 2015;4(1):204–247. doi: 10.3390/antiox4010204.
    1. Wenzel S., Stolte H., Soose M. Effects of silibinin and antioxidants on high glucose-induced alterations of fibronectin turnover in human mesangial cell cultures. Journal of Pharmacology and Experimental Therapeutics. 1996;279(3):1520–1526.
    1. Sonnenbichler J., Scalera F., Sonnenbichler I., Weyhenmeyer R. Stimulatory effects of silibinin and silicristin from the milk thistle Silybum marianum on kidney cells. The Journal of Pharmacology and Experimental Therapeutics. 1999;290(3):1375–1383.
    1. Täger M., Dietzmann J., Thiel U., Neumann K. H., Ansorge S. Restoration of the cellular thiol status of peritoneal macrophages from CAPD patients by the flavonoids silibinin and silymarin. Free Radical Research. 2001;34(2):137–151. doi: 10.1080/10715760100300131.
    1. Dietzmann J., Thiel U., Ansorge S., Neumann K. H., Tüger M. Thiol-inducing and immunoregulatory effects of flavonoids in peripheral blood mononuclear cells from patients with end-stage diabetic nephropathy. Free Radical Biology & Medicine. 2002;33(10):1347–1354. doi: 10.1016/S0891-5849(02)01043-2.
    1. Homsi E., de Brito S. M., Janino P. Silymarin exacerbates p53-mediated tubular apoptosis in glycerol-induced acute kidney injury in rats. Renal Failure. 2010;32(5):623–632. doi: 10.3109/08860221003778064.
    1. Senturk H., Kabay S., Bayramoglu G., et al. Silymarin attenuates the renal ischemia/reperfusion injury-induced morphological changes in the rat kidney. World Journal of Urology. 2008;26(4):401–407. doi: 10.1007/s00345-008-0256-1.
    1. Turgut F., Bayrak O., Catal F., et al. Antioxidant and protective effects of silymarin on ischemia and reperfusion injury in the kidney tissues of rats. International Urology and Nephrology. 2008;40(2):453–460. doi: 10.1007/s11255-008-9365-4.
    1. Fallahzadeh M. K., Dormanesh B., Sagheb M. M., et al. Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: a randomized, double-blind, placebo-controlled trial. American Journal of Kidney Diseases. 2012;60(6):896–903. doi: 10.1053/j.ajkd.2012.06.005.
    1. Roozbeh J., Shahriyari B., Akmali M., et al. Comparative effects of silymarin and vitamin E supplementation on oxidative stress markers, and hemoglobin levels among patients on hemodialysis. Renal Failure. 2011;33(2):118–123. doi: 10.3109/0886022X.2010.541579.
    1. Nazemian F., Karimi G., Moatamedi M., Charkazi S., Shamsara J., Mohammadpour A. H. Effect of silymarin administration on TNF-α serum concentration in peritoneal dialysis patients. Phytotherapy Research. 2010;24(11):1654–1657. doi: 10.1002/ptr.3175.
    1. Firuzi O., Khajehrezaei S., Ezzatzadegan S., Nejati M., Jahanshahi K. A., Roozbeh J. Effects of silymarin on biochemical and oxidative stress markers in end-stage renal disease patients undergoing peritoneal dialysis. Hemodialysis International. 2016;20(4):558–563. doi: 10.1111/hdi.12413.
    1. Galli F., Canestrari F., Bellomo G. Pathophysiology of the oxidative stress and its implication in uremia and dialysis. Contributions to Nephrology. 1999;127:1–31. doi: 10.1159/000060009.
    1. Khazim K., Giustarini D., Rossi R., et al. Glutathione redox potential is low and glutathionylated and cysteinylated hemoglobin levels are elevated in maintenance hemodialysis patients. Translational Research. 2013;162(1):16–25. doi: 10.1016/j.trsl.2012.12.014.
    1. Galli F., Piroddi M., Bartolini D., et al. Blood thiol status and erythrocyte glutathione-S-transferase in chronic kidney disease patients on treatment with frequent (daily) hemodialysis. Free Radical Research. 2014;48(3):273–281. doi: 10.3109/10715762.2013.861901.
    1. Aruoma O. I., Halliwell B., Hoey B. M., Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology & Medicine. 1989;6(6):593–597. doi: 10.1016/0891-5849(89)90066-X.
    1. Drager L. F., Andrade L., Barros de Toledo J. F., Laurindo F. R. M., Machado Cesar L. A., Seguro A. C. Renal effects of N-acetylcysteine in patients at risk for contrast nephropathy: decrease in oxidant stress-mediated renal tubular injury. Nephrology, Dialysis, Transplantation. 2004;19(7):1803–1807. doi: 10.1093/ndt/gfh261.
    1. Witko-Sarsat V., Gausson V., Nguyen A. T., et al. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney International. 2003;64(1):82–91. doi: 10.1046/j.1523-1755.2003.00044.x.
    1. Amore A., Formica M., Giacchino F., et al. N-Acetylcysteine in hemodialysis diabetic patients resets the activation of NF-kB in lymphomonocytes to normal values. Journal of Nephrology. 2013;26(4):778–786. doi: 10.5301/jn.5000167.
    1. Giustarini D., Galvagni F., Dalle Donne I., et al. N-Acetylcysteine ethyl ester as GSH enhancer in human primary endothelial cells: a comparative study with other drugs. Free Radical Biology & Medicine. 2018;126:202–209. doi: 10.1016/j.freeradbiomed.2018.08.013.
    1. Sajwani S. H., Bargman J. M. Novel ways to preserve the peritoneal membrane. Advances in Peritoneal Dialysis. 2012;28:37–41.
    1. Nakayama M., Izumi G., Nemoto Y., et al. Suppression of N(epsilon)-(carboxymethyl)lysine generation by the antioxidant N-acetylcysteine. Peritoneal Dialysis International. 1999;19(3):207–210.
    1. Kuo H. T., Lee J. J., Hsiao H. H., Chen H. W., Chen H. C. N-Acetylcysteine prevents mitochondria from oxidative injury induced by conventional peritoneal dialysate in human peritoneal mesothelial cells. American Journal of Nephrology. 2009;30(3):179–185. doi: 10.1159/000213502.
    1. Hung K. Y., Liu S. Y., Yang T. C., Liao T. L., Kao S. H. High-dialysate-glucose-induced oxidative stress and mitochondrial-mediated apoptosis in human peritoneal mesothelial cells. Oxidative Medicine and Cellular Longevity. 2014;2014:12. doi: 10.1155/2014/642793.642793
    1. Cuzzocrea S., Mazzon E., Costantino G., Serraino I., De Sarro A., Caputi A. P. Effects of n-acetylcysteine in a rat model of ischemia and reperfusion injury. Cardiovascular Research. 2000;47(3):537–548. doi: 10.1016/S0008-6363(00)00018-3.
    1. DiMari J., Megyesi J., Udvarhelyi N., Price P., Davis R., Safirstein R. N-Acetyl cysteine ameliorates ischemic renal failure. American Journal of Physiology-Renal Physiology. 1997;272(3):F292–F298. doi: 10.1152/ajprenal.1997.272.3.F292.
    1. Luo J., Tsuji T., Yasuda H., Sun Y., Fujigaki Y., Hishida A. The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrology, Dialysis, Transplantation. 2008;23(7):2198–2205. doi: 10.1093/ndt/gfn090.
    1. Ivanovski O., Szumilak D., Nguyen-Khoa T., et al. The antioxidant N-acetylcysteine prevents accelerated atherosclerosis in uremic apolipoprotein E knockout mice. Kidney International. 2005;67(6):2288–2294. doi: 10.1111/j.1523-1755.2005.00332.x.
    1. Bozkurt D., Hur E., Ulkuden B., et al. Can N-acetylcysteine preserve peritoneal function and morphology in encapsulating peritoneal sclerosis? Peritoneal Dialysis International. 2009;29(Supplement 2):S202–S205.
    1. Noh H., Kim J. S., Han K. H., et al. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney International. 2006;69(11):2022–2028. doi: 10.1038/sj.ki.5001506.
    1. Trimarchi H., Mongitore M. R., Baglioni P., et al. N-Acetylcysteine reduces malondialdehyde levels in chronic hemodialysis patients - a pilot study. Clinical Nephrology. 2003;59(06):441–446. doi: 10.5414/CNP59441.
    1. Thaha M., Widodo, Pranawa W., Yogiantoro M., Tomino Y. Intravenous N-acetylcysteine during hemodialysis reduces asymmetric dimethylarginine level in end-stage renal disease patients. Clinical Nephrology. 2008;69(1):24–32. doi: 10.5414/CNP69024.
    1. Hsu S. P., Chiang C. K., Yang S. Y., Chien C. T. N-Acetylcysteine for the management of anemia and oxidative stress in hemodialysis patients. Nephron Clinical Practice. 2010;116(3):c207–c216. doi: 10.1159/000317201.
    1. Giannikouris I. The effect of N-acetylcysteine on oxidative serum biomarkers of hemodialysis patients. Hippokratia. 2015;19(2):131–135.
    1. Saddadi F., Alatab S., Pasha F., Ganji M. R., Soleimanian T. The effect of treatment with N-acetylcysteine on the serum levels of C-reactive protein and interleukin-6 in patients on hemodialysis. Saudi Journal of Kidney Diseases and Transplantation. 2014;25(1):66–72. doi: 10.4103/1319-2442.124489.
    1. Shahbazian H., Shayanpour S., Ghorbani A. Evaluation of administration of oral N-acetylcysteine to reduce oxidative stress in chronic hemodialysis patients: a double-blind, randomized, controlled clinical trial. Saudi Journal of Kidney Diseases and Transplantation. 2016;27(1):88–93. doi: 10.4103/1319-2442.174084.
    1. Modarresi A., Ziaie S., Salamzadeh J., et al. Study of the effects of N-acetylcysteine on oxidative stress status of patients on maintenance-hemodialysis undergoing cadaveric kidney transplantation. Iranian Journal of Pharmaceutical Research. 2017;16(4):1631–1638.
    1. Friedman A. N., Bostom A. G., Laliberty P., Selhub J., Shemin D. The effect of N-acetylcysteine on plasma total homocysteine levels in hemodialysis: a randomized, controlled study. American Journal of Kidney Diseases. 2003;41(2):442–446. doi: 10.1053/ajkd.2003.50054.
    1. Bostom A. G., Shemin D., Yoburn D., Fisher D. H., Nadeau M. R., Selhub J. Lack of effect of oral N-acetylcysteine on the acute dialysis-related lowering of total plasma homocysteine in hemodialysis patients. Atherosclerosis. 1996;120(1-2):241–244. doi: 10.1016/0021-9150(95)05705-6.
    1. Scholze A., Rinder C., Beige J., Riezler R., Zidek W., Tepel M. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure. Circulation. 2004;109(3):369–374. doi: 10.1161/.
    1. Tsai J.-P., Yang F.-L., Wang C.-H., Fang T.-C., Lee R.-P., Hsu B.-G. Effect of intravenous N-acetylcysteine on plasma total homocysteine and inflammatory cytokines during high flux hemodialysis. Tzu Chi Medical Journal. 2010;22(2):90–95. doi: 10.1016/S1016-3190(10)60047-X.
    1. Thaha M., Yogiantoro M., Tomino Y. Intravenous N-acetylcysteine during haemodialysis reduces the plasma concentration of homocysteine in patients with end-stage renal disease. Clinical Drug Investigation. 2006;26(4):195–202. doi: 10.2165/00044011-200626040-00003.
    1. Swarnalatha G., Ram R., Neela P., Naidu M. U., Dakshina Murty K. V. Oxidative stress in hemodialysis patients receiving intravenous iron therapy and the role of N-acetylcysteine in preventing oxidative stress. Saudi Journal of Kidney Diseases and Transplantation. 2010;21(5):852–858.
    1. Garcia-Fernandez N., Echeverria A., Sanchez-Ibarrola A., Paramo J. A., Coma-Canella I. Randomized clinical trial on acute effects of i.v. iron sucrose during haemodialysis. Nephrology. 2010;15(2):178–183. doi: 10.1111/j.1440-1797.2009.01174.x.
    1. Purwanto B., Prasetyo D. H. Effect of oral N-acetylcysteine treatment on immune system in continuous ambulatory peritoneal dialysis patients. Acta Medica Indonesiana. 2012;44(2):140–144.
    1. Bargman J. M., Thorpe K. E., Churchill D. N., Group CPDS Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. Journal of the American Society of Nephrology. 2001;12(10):2158–2162.
    1. Furuya R., Kumagai H., Odamaki M., Takahashi M., Miyaki A., Hishida A. Impact of residual renal function on plasma levels of advanced oxidation protein products and pentosidine in peritoneal dialysis patients. Nephron Clinical Practice. 2009;112(4):c255–c261. doi: 10.1159/000224792.
    1. Ignace S., Fouque D., Arkouche W., Steghens J. P., Guebre-Egziabher F. Preserved residual renal function is associated with lower oxidative stress in peritoneal dialysis patients. Nephrology Dialysis Transplantation. 2009;24(5):1685–1689. doi: 10.1093/ndt/gfp077.
    1. Feldman L., Shani M., Efrati S., et al. N-Acetylcysteine improves residual renal function in peritoneal dialysis patients: a pilot study. Peritoneal Dialysis International. 2011;31(5):545–550. doi: 10.3747/pdi.2009.00263.
    1. Feldman L., Shani M., Sinuani I., Beberashvili I., Weissgarten J. N-Acetylcysteine may improve residual renal function in hemodialysis patients: a pilot study. Hemodialysis International. 2012;16(4):512–516. doi: 10.1111/j.1542-4758.2012.00702.x.
    1. Ahmadi F., Abbaszadeh M., Razeghi E., et al. Effectiveness of N-acetylcysteine for preserving residual renal function in patients undergoing maintenance hemodialysis: multicenter randomized clinical trial. Clinical and Experimental Nephrology. 2017;21(2):342–349. doi: 10.1007/s10157-016-1277-5.
    1. Sahin G., Yalcin A. U., Akcar N. Effect of N-acetylcysteine on endothelial dysfunction in dialysis patients. Blood Purification. 2007;25(4):309–315. doi: 10.1159/000106103.
    1. Tepel M., van der Giet M., Statz M., Jankowski J., Zidek W. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation. 2003;107(7):992–995. doi: 10.1161/01.CIR.0000050628.11305.30.

Source: PubMed

3
購読する