Predicting the important enzymes in human breast milk digestion

Nora Khaldi, Vaishnavi Vijayakumar, David C Dallas, Andrés Guerrero, Saumya Wickramasinghe, Jennifer T Smilowitz, Juan F Medrano, Carlito B Lebrilla, Denis C Shields, J Bruce German, Nora Khaldi, Vaishnavi Vijayakumar, David C Dallas, Andrés Guerrero, Saumya Wickramasinghe, Jennifer T Smilowitz, Juan F Medrano, Carlito B Lebrilla, Denis C Shields, J Bruce German

Abstract

Human milk is known to contain several proteases, but little is known about whether these enzymes are active, which proteins they cleave, and their relative contribution to milk protein digestion in vivo. This study analyzed the mass spectrometry-identified protein fragments found in pooled human milk by comparing their cleavage sites with the enzyme specificity patterns of an array of enzymes. The results indicate that several enzymes are actively taking part in the digestion of human milk proteins within the mammary gland, including plasmin and/or trypsin, elastase, cathepsin D, pepsin, chymotrypsin, a glutamyl endopeptidase-like enzyme, and proline endopeptidase. Two proteins were most affected by enzyme hydrolysis: β-casein and polymeric immunoglobulin receptor. In contrast, other highly abundant milk proteins such as α-lactalbumin and lactoferrin appear to have undergone no proteolytic cleavage. A peptide sequence containing a known antimicrobial peptide is released in breast milk by elastase and cathepsin D.

Figures

Figure 1
Figure 1
Representation of the total number of cleaved milk proteins per predicted enzyme. Each enzyme name on the X-axis is plotted against the total number of proteins it cleaves on the Y-axis.
Figure 2
Figure 2
Illustration of antimicrobial-like peptides released in vivo from β-casein in human milk. The peptide QELLLNPTHQIYPVTQPLAPVHNPISV shown at the top of the figure in gray has been discovered to be an antimicrobial peptide. This peptide is found at the C-terminus of β-casein (positions 199–225). Four overlapping peptides found to be released in vivo in human milk are represented under the β-casein sequence. The in vivo cleavage positions are indicated with gray lines. The enzymes predicted to be responsible for these cleavages are presented beside the gray lines.

References

    1. Heegaard C. W.; Larsen L. B.; Rasmussen L. K.; Højberg K. E.; Petersen T. E.; Andreasen P. A. Plasminogen activation system in human milk. J. Pediatr. Gastroenterol. Nutr. 1997, 25, 159–166.
    1. Nielsen S. S. Plasmin system and microbial proteases in milk: characteristics, roles, and relationship. J. Agric. Food Chem. 2002, 50, 6628–6634.
    1. Borulf S.; Lindberg T.; Mansson M. Immunoreactive anionic trypsin and anionic elastase in human-milk. Acta Paediatr. 1987, 76, 11–15.
    1. Monti J.; Mermoud A.; Jolles P. Trypsin in human milk. Experientia 1986, 42, 39–41.
    1. Kaminogawa S.; Yamauchi K. Acid protease of bovine milk. Agric. Biol. Chem. 1972, 36, 2351–2356.
    1. Armaforte E.; Curran E.; Huppertz T.; Ryan C. A.; Caboni M. F. O.; Connor P. M.; Ross R. P.; Hirtz C.; Sommerer N.; Chevalier F. Proteins and proteolysis in pre-term and term human milk and possible implications for infant formulae. Int. Dairy J. 2010, 20, 715–723.
    1. Ferranti P.; Traisci M. V.; Picariello G.; Nasi A.; Boschi V.; Siervo M.; Falconi C.; Chianese L.; Addeo F. Casein proteolysis in human milk: tracing the pattern of casein breakdown and the formation of potential bioactive peptides. J. Dairy Res. 2004, 71, 74–87.
    1. Borulf S.; Lindberg T.; Mansson M. Immunoreactive anionic trypsin and anionic elastase in human milk. Acta Paediatr. Scand. 1987, 76, 11–15.
    1. Monti J. C.; Mermoud A. F.; Jolles P. Trypsin in human milk. Experientia 1986, 42, 39–41.
    1. Shahani K.; Kwan A.; Friend B. A. Role and significance of enzymes in human milk. Am. J. Clin. Nutr. 1980, 33, 1861–1868.
    1. Korhonen H.; Pihlanto A. Bioactive peptides: production and functionality. Int. Dairy J. 2006, 16, 945–960.
    1. Dallas D. C.; Underwood M. A.; Zivkovic A. M.; German J. B. Digestion of protein in premature and term infants. J. Nutr. Disorders Ther. 2012, 2, 1–9.
    1. Dallas D. C.; Guerrero A.; Khaldi N.; Castillo P. A.; Martin W. F.; Smilowitz J. T.; Bevins C. L.; Barile D.; German J. B.; Lebrilla C. B. Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides. J. Proteome Res. 2013, 12, 2295–2304.
    1. Vijayakumar V.; Guerrero A.; Davey N.; Lebrilla C. B.; Shields D. C.; Khaldi N. EnzymePredictor: a tool for predicting and visualizing enzymatic cleavages of digested proteins. J. Proteome Res. 2012, 11, 6056–6065.
    1. Wickramasinghe S.; Rincon G.; Islas-Trejo A.; Medrano J. F. Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics 2012, 13, 45–58.
    1. Mortazavi A.; Williams B. A.; McCue K.; Schaeffer L.; Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628.
    1. Larsen L. B.; Petersen T. E.. Identification of five molecular forms of cathepsin D in bovine milk. In Aspartic Proteinases; Springer: Dordrecht, The Netherlands, 1995; pp 279–283.
    1. Travis J.; Fritz H. Potential problems in designing elastase inhibitors for therapy. Am. Rev. Respir. Dis. 1991, 143, 1412–1415.
    1. Prin-Mathieu C.; Le Roux Y.; Faure G.; Laurent F.; Béné M.; Moussaoui F. Enzymatic activities of bovine peripheral blood leukocytes and milk polymorphonuclear neutrophils during intramammary inflammation caused by lipopolysaccharide. Clin. Diagn. Lab. Immunol. 2002, 9, 812–817.
    1. Kelly A.; O’Flaherty F.; Fox P. Indigenous proteolytic enzymes in milk: a brief overview of the present state of knowledge. Int. Dairy J. 2006, 16, 563–572.
    1. Hayes M.; Stanton C.; Fitzgerald G. F.; Ross R. P. Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnol. J. 2007, 2, 435–449.
    1. Wilkins M. R.; Gasteiger E.; Bairoch A.; Sanchez J.-C.; Williams K. L.; Appel R. D.; Hochstrasser D. F.. Protein identification and analysis tools in the ExPASy server. In 2-D Proteome Analysis Protocols; Springer: Dordrecht, The Netherlands, 1999; pp 531–552.
    1. Christensen B.; Schack L.; Kläning E.; Sørensen E. S. Osteopontin is cleaved at multiple sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D. J. Biol. Chem. 2010, 285, 7929–7937.

Source: PubMed

3
購読する