Carriage of Supernumerary Sex Chromosomes Decreases the Volume and Alters the Shape of Limbic Structures

Ajay Nadig, Paul K Reardon, Jakob Seidlitz, Cassidy L McDermott, Jonathan D Blumenthal, Liv S Clasen, Francois Lalonde, Jason P Lerch, M Mallar Chakravarty, Armin Raznahan, Ajay Nadig, Paul K Reardon, Jakob Seidlitz, Cassidy L McDermott, Jonathan D Blumenthal, Liv S Clasen, Francois Lalonde, Jason P Lerch, M Mallar Chakravarty, Armin Raznahan

Abstract

Sex chromosome aneuploidy (SCA) increases risk for several psychiatric disorders associated with the limbic system, including mood and autism spectrum disorders. Thus, SCA offers a genetics-first model for understanding the biological basis of psychopathology. Additionally, the sex-biased prevalence of many psychiatric disorders could potentially reflect sex chromosome dosage effects on brain development. To clarify how limbic anatomy varies across sex and sex chromosome complement, we characterized amygdala and hippocampus structure in a uniquely large sample of patients carrying supernumerary sex chromosomes (n = 132) and typically developing controls (n = 166). After adjustment for sex-differences in brain size, karyotypically normal males (XY) and females (XX) did not differ in volume or shape of either structure. In contrast, all SCAs were associated with lowered amygdala volume relative to gonadally-matched controls. This effect was robust to three different methods for total brain volume adjustment, including an allometric analysis that derived normative scaling rules for these structures in a separate, typically developing population (n = 79). Hippocampal volume was insensitive to SCA after adjustment for total brain volume. However, surface-based analysis revealed that SCA, regardless of specific karyotype, was consistently associated with a spatially specific pattern of shape change in both amygdala and hippocampus. In particular, SCA was accompanied by contraction around the basomedial nucleus of the amygdala and an area crossing the hippocampal tail. These results demonstrate the power of SCA as a model to understand how copy number variation can precipitate changes in brain systems relevant to psychiatric disease.

Trial registration: ClinicalTrials.gov NCT00001246.

Keywords: CNV; amygdala; hippocampus; sex chromosome aneuploidy.

Figures

Figure 1.
Figure 1.
Bulk volume analysis of amygdala and hippocampus. (A) Total brain volume (tbv), amygdala, and hippocampus volume across karyotype groups, relative to typically developing males (XY). (B) Scaling of amygdala and hippocampus volume in the allometric sample (amygdala β1 = 0.89; hippocampus β1 = 0.76). (C) Comparisons of regional volume across sex and sex chromosome complement. FDR-corrected log(p) values are shown. Presence of color indicates statistical significance, and color identity/sign indicates direction of effect: for contrast A-B, blue and negative values indicate smaller volume in A versus B, red and positive value indicate larger volume in A versus B.
Figure 2.
Figure 2.
Surface-based analysis of amygdala and hippocampus shape. (A) Map of vertex-wise surface area scaling coefficients from log-log linear model with total bilateral region surface area. (B) Binarized surface maps showing areas of significant surface area contraction (blue) or expansion (red) for each patient contrast. (C) Spatial correlation of uncorrected t-statistic maps demonstrating convergence of SCA effects. AMY: Amygdala, HC: Hippocampus.

References

    1. Ad-Dab’bagh Y, Lyttelton O, Muehlboeck JS, Lepage C, Einarson D, Mok K, Ivanov O, Vincent RD, Lerch J, Fombonne E, Evans AC (2006) The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research. In Proceedings of the 12th annual meeting of the organization for human brain mapping (2266). Florence, Italy.
    1. Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145. 10.1016/j.tins.2007.12.005
    1. Avino TA, Barger N, Vargas MV, Carlson EL, Amaral DG, Bauman MD, Schumann CM (2018) Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism. Proc Natl Acad Sci U S A 115:3710–3715. 10.1073/pnas.1801912115
    1. Carr VA, Rissman J, Wagner AD (2010) Imaging the human medial temporal lobe with high-resolution fMRI. Neuron 65:298–308. 10.1016/j.neuron.2009.12.022
    1. Chakravarty MM, Steadman P, van Eede MC, Calcott RD, Gu V, Shaw P, Raznahan A, Collins DL, Lerch JP (2013) Performing label-fusion-based segmentation using multiple automatically generated templates. Hum Brain Mapp 34:2635–2654. 10.1002/hbm.22092
    1. Cocosco CA, Zijdenbos AP, Evans AC (2003) A fully automatic and robust brain MRI tissue classification method. Med Image Anal 7:513–527. 10.1016/S1361-8415(03)00037-9
    1. David SP, Naudet F, Laude J, Radua J, Fusar-Poli P, Chu I, Stefanick ML, Ioannidis JPA (2018) Potential reporting bias in neuroimaging studies of sex differences. Sci Rep 8:6082.
    1. Fish AM, Cachia A, Fischer C, Mankiw C, Reardon PK, Clasen LS, Blumenthal JD, Greenstein D, Giedd JN, Mangin JF, Raznahan A (2016) Influences of brain size, sex, and sex chromosome complement on the architecture of human cortical folding. Cerebral Cortex 27: 5557–5567. 10.1093/cercor/bhw323
    1. Giedd JN, Raznahan A, Alexander-Bloch A, Schmitt E, Gogtay N, Rapoport JL (2015) Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology 40:43–49. 10.1038/npp.2014.236
    1. Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, Ortega BN, Zaiko YV, Roach EL, Korgaonkar MS, Grieve SM, Galatzer-Levy I, Fox PT, Etkin A (2015) Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72:305–315. 10.1001/jamapsychiatry.2014.2206
    1. Green T, Fierro KC, Raman MM, Foland-Ross L, Hong DS, Reiss AL (2016) Sex differences in amygdala shape: insights from Turner syndrome. Hum Brain Mapp 37:1593–1601. 10.1002/hbm.23122
    1. Hennessey T, Andari E, Rainnie DG (2018) RDoC-based categorization of amygdala functions and its implications in autism. Neurosci Biobehav Rev 90:115–129. 10.1016/j.neubiorev.2018.04.007
    1. Hong DS, Reiss AL (2014) Cognitive and neurological aspects of sex chromosome aneuploidies. Lancet Neurol 13:306–318. 10.1016/S1474-4422(13)70302-8
    1. Huxley JS (1924) Constant differential growth-ratios and their significance. Nature 114:895–896. 10.1038/114895a0
    1. Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517:284–292. 10.1038/nature14188
    1. Kaczkurkin AN, Moore TM, Calkins ME, Ciric R, Detre JA, Elliott MA, Garcia de la Garza A, Roalf DR, Rosen A, Ruparel K, Shinohara RT, Xia CH, Wolf DH, Gur RE, Gur RC, Satterthwaite TD (2017) Common and dissociable regional cerebral blood flow differences associate with dimensions of psychopathology across categorical diagnoses. Mol Psychiatry. Advance online publication. doi: .
    1. Kesler SR, Garrett A, Bender B, Yankowitz J, Zeng SM, Reiss AL (2004) Amygdala and hippocampal volumes in Turner syndrome: a high-resolution MRI study of X-monosomy. Neuropsychologia 42:1971–1978. 10.1016/j.neuropsychologia.2004.04.021
    1. Kim HJ, Kim N, Kim S, Hong S, Park K, Lim S, Park JM, Na B, Chae Y, Lee J, Yeo S, Choe IH, Cho SY, Cho G (2012) Sex differences in amygdala subregions: evidence from subregional shape analysis. NeuroImage 60:2054–2061. 10.1016/j.neuroimage.2012.02.025
    1. Lee NR, Wallace GL, Adeyemi EI, Lopez KC, Blumenthal JD, Clasen LS, Giedd JN (2012) Dosage effects of X and Y chromosomes on language and social functioning in children with supernumerary sex chromosome aneuploidies: implications for idiopathic language impairment and autism spectrum disorders. J Child Psychol Psychiatry 53:1072–1081. 10.1111/j.1469-7610.2012.02573.x
    1. Lin A, Clasen L, Lee NR, Wallace GL, Lalonde F, Blumenthal J, Giedd JN, Raznahan A (2015) Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies. Journal of Neuroscience 35:140–145. 10.1523/jneurosci.3489-14.2015
    1. Makowski C, Béland S, Kostopoulos P, Bhagwat N, Devenyi GA, Malla AK, Joober R, Lepage M, Chakravarty MM (2018) Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation. NeuroImage 170:182–198. 10.1016/j.neuroimage.2017.02.069
    1. Mankiw C, Park MTM, Reardon PK, Fish AM, Clasen LS, Greenstein D, Giedd JN, Blumenthal JD, Lerch JP, Chakravarty MM, Raznahan A (2017) Allometric analysis detects brain size-independent effects of sex and sex chromosome complement on human cerebellar organization. J Neurosci 37:5221–5231. 10.1523/JNEUROSCI.2158-16.2017
    1. Marwha D, Halari M, Eliot L (2017) Meta-analysis reveals a lack of sexual dimorphism in human amygdala volume. NeuroImage 147:282–294. 10.1016/j.neuroimage.2016.12.021
    1. Nordahl CW, Scholz R, Yang X, Buonocore MH, Simon T, Rogers S, Amaral DG (2012) Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders: a longitudinal study. Arch Gen Psychiatry 69:53–61. 10.1001/archgenpsychiatry.2011.145
    1. Nadig A (2018a). Results of pairwise volumetric contrasts across sex and sex chromosome aneuploidy after covariation for age and Tanner stage (Version 1). figshare. doi: 10.6084/m9.figshare.6981854.v1.
    1. Nadig A (2018b). Results of pairwise surface-based shape contrasts across sex chromosome aneuploidy groups after covariation for age and Tanner stage (Version 1). figshare. doi: 10.6084/m9.figshare.6990008.v1.
    1. Pendersen TL (2017). patchwork: the Composer of ggplots (Version R package version 0.0.1). Retrieved from .
    1. Pipitone J, Park MTM, Winterburn J, Lett TA, Lerch JP, Pruessner JC, Lepage M, Voineskos AN, Chakravarty MM; Alzheimer’s Disease Neuroimaging Initiative (2014) Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. NeuroImage 101:494–512. 10.1016/j.neuroimage.2014.04.054
    1. Price JL, Drevets WC (2012) Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 16:61–71. 10.1016/j.tics.2011.12.011
    1. Raznahan A, Lee NR, Greenstein D, Wallace GL, Blumenthal JD, Clasen LS, Giedd JN (2016) Globally divergent but locally convergent X- and Y-chromosome influences on cortical development. Cereb Cortex 26:70–79. 10.1093/cercor/bhu174
    1. Raznahan A, Parikshak N, Chandran V, Blumenthal J, Clasen L, Alexander-Bloch A, Zinn AR, Wangsa D, Wise J, Murphy DG, Bolton PF, Ried T, Ross J, Giedd JN, Geschwind D (2018) Sex chromosome dosage effects on gene expression in humans. Proc Natl Acad Sci U S A 115:7398–7403. 10.1073/pnas.1802889115
    1. R Core Team (2008) R: a language and environment for statistical computing. Vienna, Austria; R Foundation for Statistical Computing; Retrieved from
    1. Reardon PK, Clasen L, Giedd JN, Blumenthal J, Lerch JP, Chakravarty MM, Raznahan A (2016) An allometric analysis of sex and sex chromosome dosage effects on subcortical anatomy in humans. J Neurosci 36:2438–2448. 10.1523/JNEUROSCI.3195-15.2016
    1. Reardon PK, Seidlitz J, Vandekar S, Liu S, Patel R, Park MT, Alexander-Bloch A, Clasen LS, Blumenthal JD, Lalonde FM, Giedd JN, Gur RC, Gur RE, Lerch JP, Chakravarty MM, Satterthwaite TD, Shinohara RT, Raznahan A (2018) Normative brain size variation and brain shape diversity in humans. Science 360:1222-1227. 10.1126/science.aar2578
    1. Ruscio AM, Hallion LS, Lim CCW, Aguilar-Gaxiola S, Al-Hamzawi A, Alonso J, … Scott KM (2017) Cross-sectional comparison of the epidemiology of dsm-5 generalized anxiety disorder across the globe. JAMA Psychiatry 74:465–475. 10.1001/jamapsychiatry.2017.0056
    1. Saygin ZM, Osher DE, Koldewyn K, Martin RE, Finn A, Saxe R, Gabrieli JD, Sheridan M (2015) Structural connectivity of the developing human amygdala. PloS One 10:e0125170. 10.1371/journal.pone.0125170
    1. Spronk M, Kulkarni K, Ji JL, Keane B, Anticevic A, Cole MW (2018) A whole-brain and cross-diagnostic perspective on functional brain network dysfunction. bioRxiv 326728. Advance online publication. doi:
    1. Tan A, Ma W, Vira A, Marwha D, Eliot L (2016) The human hippocampus is not sexually-dimorphic: meta-analysis of structural MRI volumes. NeuroImage 124:350–366. 10.1016/j.neuroimage.2015.08.050
    1. Werling DM, Geschwind DH (2013) Sex differences in autism spectrum disorders. Curr Opin Neurol 26:146–153. 10.1097/WCO.0b013e32835ee548
    1. Wickham H (2016) ggplot2: elegant graphics for data analysis. Berlin, Germany: Springer.
    1. Winterburn JL, Pruessner JC, Chavez S, Schira MM, Lobaugh NJ, Voineskos AN, Chakravarty MM (2013) A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging. NeuroImage 74:254–265. 10.1016/j.neuroimage.2013.02.003
    1. Zijdenbos AP, Forghani R, Evans AC (2002) Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imag 21:1280–1291. 10.1109/TMI.2002.806283

Source: PubMed

3
購読する