Medical costs of a low skeletal muscle mass are modulated by dietary diversity and physical activity in community-dwelling older Taiwanese: a longitudinal study

Yuan-Ting C Lo, Mark L Wahlqvist, Yi-Chen Huang, Shao-Yuan Chuang, Chi-Fen Wang, Meei-Shyuan Lee, Yuan-Ting C Lo, Mark L Wahlqvist, Yi-Chen Huang, Shao-Yuan Chuang, Chi-Fen Wang, Meei-Shyuan Lee

Abstract

Background: Age-related loss of skeletal muscle mass (SMM) and function (sarcopenia) are associated with poor health outcomes and an economic burden on health care services. An appropriate diet and physical activity have been proposed for prevention and treatment of sarcopenia. Nevertheless, the effects on medical service utilization and costs remain unclear. This study determined the effects of SMM in conjunction with diet quality and physical activity on medical service utilization and expenditure in community-dwelling older Taiwanese.

Methods: In total, 1337 participants from the Elderly Nutrition and Health Survey in Taiwan (1999-2000) were enrolled. An SMM index [SMMI, calculated by dividing SMM (kg) by height (m2)] was used as the marker of sarcopenia. Participants with the lowest SMMI quartiles (<11.4 kg/m2 for men and 8.50 kg/m2 for women) comprised the high-risk group, and the remainder comprised the low-risk group. Dietary information (dietary diversity: low and high) and physical activity (low and moderate) were obtained at baseline. Annual medical service utilization and expenditure were calculated from National Health Insurance claims until December 31, 2006. Generalized linear models were used to determine the association between the SMMI and annual medical service utilization and costs in conjunction with dietary diversity or physical activity.

Results: After 8 follow-up years, regardless of gender, participants in the high-risk group reported significantly more hospitalization (days and expenditure) and total medical expenditure. Participants in the high-risk group who had low dietary diversity made fewer annual outpatient (14%), preventive care (19%), and dental (40%) visits, but exhibited longer hospitalization (102%) than did those who had a low SMMI and high dietary diversity. Similar patterns were observed in the corresponding medical expenditures. The findings were similar when considering physical activity. Being in the low-risk group in conjunction with having high dietary diversity or more physical activity was associated with the lowest annual adjusted mean hospitalization days with expenditure, and also total expenditure.

Conclusions: A lower SMMI was associated with more hospitalization days and costs. However, high dietary diversity and more physical activity can attenuate the effects of lower SMMI on medical service utilization and expenditure.

Keywords: Medical utilization; Older adults; Sarcopenia.

Figures

Fig. 1
Fig. 1
Flow chart
Fig. 2
Fig. 2
Annual adjusted mean hospitalization (days and expenditure) and total medical expenditure stratified by the SMMI and DDS (n = 1337). The models were adjusted for age (y), gender, region of residence, ethnicity, education level, living status, self-reported financial status, household income (NT$/mo), perceived health status, ADL, CCI, energy (kcal/d), protein (g/d), and physical activity (<1.5 MET/day or ≥ 1.5 MET/day)
Fig. 3
Fig. 3
Annual adjusted mean hospitalization (days and expenditure) and total medical expenditure stratified by the SMMI and physical activity (n = 1337). The models were adjusted for age (y), gender, region of residence, ethnicity, education level, living status, self-reported financial status, household income (NT$/mo), perceived health status, ADL, CCI, energy (kcal/d), protein (g/d), and DDS (≤4 or > 4)

References

    1. Frontera WR, Hughes VA, Fielding RA, et al. Aging of skeletal muscle: a 12-years longitudinal study. J Appl Physiol (1985) 2000;88(4):1321–1326.
    1. Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–1064. doi: 10.1093/gerona/61.10.1059.
    1. Hughes VA, Frontera WR, Roubenoff R, et al. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr. 2002;76(2):473–481.
    1. von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1(2):129–133. doi: 10.1007/s13539-010-0014-2.
    1. Cawthon PM, Blackwell TL, Cauley J, et al. Evaluation of the Usefulness of Consensus Definitions of Sarcopenia in Older Men: Results from the Observational Osteoporotic Fractures in Men Cohort Study. J Am Geriatr Soc. 2015;63(11):2247–2259. doi: 10.1111/jgs.13788.
    1. Beaudart C, Rizzoli R, Bruyere O, et al. Sarcopenia: burden and challenges for public health. Arch Public Health. 2014;72(1):1–8. doi: 10.1186/2049-3258-72-45.
    1. Milte R, Crotty M. Musculoskeletal health, frailty and functional decline. Best Pract Res Clin Rheumatol. 2014;28(3):395–410. doi: 10.1016/j.berh.2014.07.005.
    1. Patil R, Uusi-Rasi K, Pasanen M, et al. Sarcopenia and osteopenia among 70-80-year-old home-dwelling Finnish women: prevalence and association with functional performance. Osteoporos Int. 2013;24(3):787–796. doi: 10.1007/s00198-012-2046-2.
    1. Li CI, Li TC, Lin WY, et al. Combined association of chronic disease and low skeletal muscle mass with physical performance in older adults in the Sarcopenia and Translational Aging Research in Taiwan (START) study. BMC Geriatr. 2015;15(11):1–10.
    1. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–896. doi: 10.1046/j.1532-5415.2002.50216.x.
    1. Chuang SY, Chang HY, Lee MS, et al. Skeletal muscle mass and risk of death in an elderly population. Nutr Metab Cardiovasc Dis. 2014;24(7):784–791. doi: 10.1016/j.numecd.2013.11.010.
    1. Janssen I, Shepard DS, Katzmarzyk PT, et al. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–85. doi: 10.1111/j.1532-5415.2004.52014.x.
    1. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–256. doi: 10.1016/j.jamda.2011.01.003.
    1. Deutz NE, Bauer JM, Barazzoni R, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33(6):929–936. doi: 10.1016/j.clnu.2014.04.007.
    1. Cruz-Jentoft AJ, Landi F, Schneider SM, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS) Age Ageing. 2014;43(6):748–759. doi: 10.1093/ageing/afu115.
    1. Mithal A, Bonjour JP, Boonen S, et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int. 2013;24(5):1555–1566. doi: 10.1007/s00198-012-2236-y.
    1. McLean RR, Mangano KM, Hannan MT, et al. Dietary Protein Intake is Protective Against Loss of Grip Strength Among Older Adults in the Framingham Offspring Cohort. J Gerontol A Biol Sci Med Sci. 2016;71(3):356–361. doi: 10.1093/gerona/glv184.
    1. Kim JS, Wilson JM, Lee SR. Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. J Nutr Biochem. 2010;21(1):1–13. doi: 10.1016/j.jnutbio.2009.06.014.
    1. Tieland M, den Berg KJ B-V, van Loon LJ, et al. Dietary protein intake in community-dwelling, frail, and institutionalized elderly people: scope for improvement. Eur J Nutr. 2012;51(2):173–179. doi: 10.1007/s00394-011-0203-6.
    1. Chen YL, Yang KC, Chang HH, et al. Low serum selenium level is associated with low muscle mass in the community-dwelling elderly. J Am Med Dir Assoc. 2014;15(11):807–811. doi: 10.1016/j.jamda.2014.06.014.
    1. Semba RD, Blaum C, Guralnik JM, et al. Carotenoid and vitamin E status are associated with indicators of sarcopenia among older women living in the community. Aging Clin Exp Res. 2003;15(6):482–487. doi: 10.1007/BF03327377.
    1. Verlaan S, Aspray TJ, Bauer JM, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr. 2015;S0261-5614(15):1–8.
    1. Robinson S, Cooper C, and Aihie Sayer A. Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. J Aging Res. 2012;2012:1–6.
    1. Robinson SM, Jameson KA, Batelaan SF, et al. Diet and its relationship with grip strength in community-dwelling older men and women: the Hertfordshire cohort study. J Am Geriatr Soc. 2008;56(1):84–90. doi: 10.1111/j.1532-5415.2007.01478.x.
    1. Kim J, Lee Y, Kye S, et al. Association of vegetables and fruits consumption with sarcopenia in older adults: the Fourth Korea National Health and Nutrition Examination Survey. Age Ageing. 2015;44(1):96–102. doi: 10.1093/ageing/afu028.
    1. Hashemi R, Motlagh AD, Heshmat R, et al. Diet and its relationship to sarcopenia in community dwelling Iranian elderly: a cross sectional study. Nutrition. 2015;31(1):97–104. doi: 10.1016/j.nut.2014.05.003.
    1. Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc. 2011;43(2):249–258. doi: 10.1249/MSS.0b013e3181eb6265.
    1. Leenders M, Verdijk LB, van der Hoeven L, et al. Elderly men and women benefit equally from prolonged resistance-type exercise training. J Gerontol A Biol Sci Med Sci. 2013;68(7):769–779. doi: 10.1093/gerona/gls241.
    1. Harber MP, Konopka AR, Douglass MD, et al. Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1452–R1459. doi: 10.1152/ajpregu.00354.2009.
    1. Harber MP, Konopka AR, Undem MK, et al. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. J Appl Physiol (1985) 2012;113(9):1495–1504. doi: 10.1152/japplphysiol.00786.2012.
    1. Morris MS, Jacques PF. Total protein, animal protein and physical activity in relation to muscle mass in middle-aged and older Americans. Br J Nutr. 2013;109(7):1294–1303. doi: 10.1017/S0007114512003133.
    1. Phillips SM. Nutritional supplements in support of resistance exercise to counter age-related sarcopenia. Adv Nutr. 2015;6(4):452–460. doi: 10.3945/an.115.008367.
    1. Strandberg E, Edholm P, Ponsot E, et al. Influence of combined resistance training and healthy diet on muscle mass in healthy elderly women: a randomized controlled trial. J Appl Physiol (1985) 2015;119(8):918–925. doi: 10.1152/japplphysiol.00066.2015.
    1. Pan WH, Hung YT, Shaw NS, et al. Elderly Nutrition and Health Survey in Taiwan (1999-2000): research design, methodology and content. Asia Pac J Clin Nutr. 2005;14(3):203–210.
    1. Cheng TM. Taiwan's new national health insurance program: genesis and experience so far. Health Aff (Millwood) 2003;22(3):61–76. doi: 10.1377/hlthaff.22.3.61.
    1. National Health Research Institutes. National Health Insurance Research Database. Available from: . Accessed 15 Apr 2015.
    1. Chuang SY, Hsu YY, Chen RC, et al. Abdominal Obesity and Low Skeletal Muscle Mass Jointly Predict Total Mortality and Cardiovascular Mortality in an Elderly Asian Population. J Gerontol A Biol Sci Med Sci. 2015;71(8):1049–1055. doi: 10.1093/gerona/glv192.
    1. Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc. 2008;56(9):1710–1715. doi: 10.1111/j.1532-5415.2008.01854.x.
    1. Kant AK, Schatzkin A, Harris TB, et al. Dietary diversity and subsequent mortality in the First National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr. 1993;57(3):434–440.
    1. Lee MS, Huang YC, Su HH, et al. A simple food quality index predicts mortality in elderly Taiwanese. J Nutr Health Aging. 2011;15(10):815–821. doi: 10.1007/s12603-011-0081-x.
    1. Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081–1093. doi: 10.1161/CIRCULATIONAHA.107.185649.
    1. Lo YT, Wahlqvist ML, Chang YH, et al. Dietary diversity predicts type of medical expenditure in elders. Am J Manag Care. 2013;19(12):e415–e423.
    1. Wiener JM, Hanley RJ, Clark R, et al. Measuring the activities of daily living: comparisons across national surveys. J Gerontol. 1990;45(6):S229–S237. doi: 10.1093/geronj/45.6.S229.
    1. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–383. doi: 10.1016/0021-9681(87)90171-8.
    1. Manning WG, Basu A, Mullahy J. Generalized modeling approaches to risk adjustment of skewed outcomes data. J Health Econ. 2005;24(3):465–488. doi: 10.1016/j.jhealeco.2004.09.011.
    1. Chi C, Lee JL, Tsai SL, et al. Out-of-pocket payment for medical care under Taiwan's National Health Insurance system. Health Econ. 2008;17(8):961–975. doi: 10.1002/hec.1312.
    1. Campbell SE, Seymour DG, Primrose WR. A systematic literature review of factors affecting outcome in older medical patients admitted to hospital. Age Ageing. 2004;33(2):110–115. doi: 10.1093/ageing/afh036.
    1. Chang JS, Kim TH, Kim H, et al. Qualitative muscle mass index as a predictor of skeletal muscle function deficit in Asian older adults. Geriatr Gerontol Int. 2015;17(1):1–9.
    1. Bouchard DR, Heroux M, Janssen I. Association between muscle mass, leg strength, and fat mass with physical function in older adults: influence of age and sex. J Aging Health. 2011;23(2):313–328. doi: 10.1177/0898264310388562.
    1. Tanimoto Y, Watanabe M, Sun W, et al. Sarcopenia and falls in community-dwelling elderly subjects in Japan: Defining sarcopenia according to criteria of the European Working Group on Sarcopenia in Older People. Arch Gerontol Geriatr. 2014;59(2):295–299. doi: 10.1016/j.archger.2014.04.016.
    1. Trombetti A, Reid KF, Hars M, et al. Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life. Osteoporos Int. 2016;27(2):463–471. doi: 10.1007/s00198-015-3236-5.
    1. Moon JH, Choo SR, Kim JS. Relationship between Low Muscle Mass and Metabolic Syndrome in Elderly People with Normal Body Mass Index. J Bone Metab. 2015;22(3):99–106. doi: 10.11005/jbm.2015.22.3.99.
    1. Moon SJ, Kim TH, Yoon SY, et al. Relationship between Stage of Chronic Kidney Disease and Sarcopenia in Korean Aged 40 Years and Older Using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2), 2008-2011. PLoS ONE. 2015;10(6):1–11.
    1. He H, Liu Y, Tian Q, et al. Relationship of sarcopenia and body composition with osteoporosis. Osteoporos Int. 2016;27(2):473–482. doi: 10.1007/s00198-015-3241-8.
    1. Lee YH, Kim SU, Song K, et al. Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: Nationwide surveys (KNHANES 2008-2011) Hepatology. 2016;63(3):776–786. doi: 10.1002/hep.28376.
    1. Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2(10):819–829. doi: 10.1016/S2213-8587(14)70034-8.
    1. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475–482.
    1. Cawthon PM, Fox KM, Gandra SR, et al. Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults? J Am Geriatr Soc. 2009;57(8):1411–1419. doi: 10.1111/j.1532-5415.2009.02366.x.
    1. Gariballa S, Alessa A. Sarcopenia: prevalence and prognostic significance in hospitalized patients. Clin Nutr. 2013;32(5):772–776. doi: 10.1016/j.clnu.2013.01.010.
    1. Gill TM, Allore HG, Gahbauer EA, et al. Change in disability after hospitalization or restricted activity in older persons. JAMA. 2010;304(17):1919–1928. doi: 10.1001/jama.2010.1568.
    1. Ehlenbach WJ, Larson EB, Curtis JR, et al. Physical Function and Disability After Acute Care and Critical Illness Hospitalizations in a Prospective Cohort of Older Adults. J Am Geriatr Soc. 2015;63(10):2061–2069. doi: 10.1111/jgs.13663.
    1. Kim J, Lee Y, Kye S, et al. Association between healthy diet and exercise and greater muscle mass in older adults. J Am Geriatr Soc. 2015;63(5):886–892. doi: 10.1111/jgs.13386.
    1. Levy LB, Welch AA. Implications of skeletal muscle loss for public health nutrition messages: a brief report. Proc Nutr Soc. 2015;74(4):426–429. doi: 10.1017/S0029665115002116.
    1. McGregor RA, Poppitt SD. Milk protein for improved metabolic health: a review of the evidence. Nutr Metab (Lond) 2013;10(1):46–59. doi: 10.1186/1743-7075-10-46.
    1. Allender S, Foster C, Scarborough P, et al. The burden of physical activity-related ill health in the UK. J Epidemiol Community Health. 2007;61(4):344–348. doi: 10.1136/jech.2006.050807.
    1. Popkin BM, Kim S, Rusev ER, et al. Measuring the full economic costs of diet, physical activity and obesity-related chronic diseases. Obes Rev. 2006;7(3):271–293. doi: 10.1111/j.1467-789X.2006.00230.x.
    1. Carlson SA, Fulton JE, Pratt M, et al. Inadequate physical activity and health care expenditures in the United States. Prog Cardiovasc Dis. 2015;57(4):315–323. doi: 10.1016/j.pcad.2014.08.002.
    1. Yang G, Niu K, Fujita K, et al. Impact of physical activity and performance on medical care costs among the Japanese elderly. Geriatr Gerontol Int. 2011;11(2):157–165. doi: 10.1111/j.1447-0594.2010.00651.x.
    1. Sayer AA, Syddall H, Martin H, et al. The developmental origins of sarcopenia. J Nutr Health Aging. 2008;12(7):427–432. doi: 10.1007/BF02982703.
    1. Rubbieri G, Mossello E, Di Bari M. Techniques for the diagnosis of sarcopenia. Clin Cases Miner Bone Metab. 2014;11(3):181–184.
    1. Toffanello ED, Inelmen EM, Minicuci N, et al. Ten-year trends in dietary intake, health status and mortality rates in free-living elderly people. J Nutr Health Aging. 2010;14(4):259–264. doi: 10.1007/s12603-010-0058-1.

Source: PubMed

3
購読する