Is lactate a volume transmitter of metabolic states of the brain?

Linda H Bergersen, Albert Gjedde, Linda H Bergersen, Albert Gjedde

Abstract

We present the perspective that lactate is a volume transmitter of cellular signals in brain that acutely and chronically regulate the energy metabolism of large neuronal ensembles. From this perspective, we interpret recent evidence to mean that lactate transmission serves the maintenance of network metabolism by two different mechanisms, one by regulating the formation of cAMP via the lactate receptor GPR81, the other by adjusting the NADH/NAD(+) redox ratios, both linked to the maintenance of brain energy turnover and possibly cerebral blood flow. The role of lactate as mediator of metabolic information rather than metabolic substrate answers a number of questions raised by the controversial oxidativeness of astrocytic metabolism and its contribution to neuronal function.

Keywords: central fatigue; lactate; lactate receptor; metabolic information; volume transmission.

Figures

FIGURE 1
FIGURE 1
In this illustration you can follow the two different mechanisms proposed: (a) Lactate regulates the formation of cAMP via the lactate receptor GPR81. (b) Lactate adjusts the NADH/NAD+ redox ratio. (c) Both the formation of cAMP and the adjustment of NADH/NAD+ redox ratio can be linked to the maintenance of brain energy turnover and neurovascular coupling. The role of lactate in neurovascular coupling is included in the figure, but not dealt with in the text, which focuses on cellular effects of lactate in brain tissue. The roles of lactate as mediator of metabolic information rather than metabolic substrate answer a number of questions raised by the aerobic glycolysis of astrocytes and its controversial contribution to neuronal function.

References

    1. Abate C., Patel L., Rauscher F. J., Curran T.(1990). Redox regulation of fos and jun DNA-binding activity in vitro. Science 249 1157–1161
    1. Abi-Saab W. M., Maggs D. G., Jones T., Jacob R., Srihari V., Thompson J., Kerr D., Leone P., Krystal J. H., Spencer D. D., During M. J., Sherwin R. S. (2002). Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J. Cereb. Blood Flow Metab. 22 271–279
    1. Ahmed K., Tunaru S., Offermanns S.(2009). GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol. Sci. 30 557–562
    1. Andriezen W. L. (1893). The neuroglia elements in the human brain. Br. Med. J. 29 227–230
    1. Bergersen L. H. (2007). Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145 11–19
    1. Bergersen L., Waerhaug O., Helm J., Thomas M., Laake p., Davies A. J., Wilson M. C., Halestrap A. P., Ottersen O. P. (2001). A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp. Brain Res. 136 523–534
    1. Bergersen L. H., Magistretti P. J., Pellerin L.(2005). Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb. Cortex 15 361–370
    1. Bero A. W., Yan P., Roh J. H., Cirrito J. R., Stewart F. R., Raichle M. E., Lee J. M., Holtzman D. M. (2011). Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat. Neurosci. 14 750–756
    1. Berridge C. W. (2008). Noradrenergic modulation of arousal. Brain Res. Rev. 58 1–17
    1. Berthet C., Lei H., Thevenet J., Gruetter R., Magistretti P. J., Hirt L.(2009). Neuroprotective role of lactate after cerebral ischemia. J. Cereb. Blood Flow Metab. 29 1780–1789
    1. Blad C. C., Ahmed K., Ijzerman A. P., Offermanns S.(2011). Biological and pharmacological roles of HCA receptors. Adv. Pharmacol 62 219–250
    1. Boumezbeur F., Mason G. F., de Graaf R. A., Behar K. L., Cline G. W., Shulman G. I., Rothman D. L., Petersen K. F. (2010). Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 30 211–221
    1. Bouzier A. K., Thiaudiere E., Biran M., Rouland R., Canioni P., Merle M.(2000). The metabolism of [3-(13)C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment. J. Neurochem. 75 480–486
    1. Bouzier-Sore A. K., Serres S., Canioni P., Merle M.(2003). Lactate involvement in neuron-glia metabolic interaction: (13)C-NMR spectroscopy contribution. Biochimie 85 841–848
    1. Brooks G. A. (2009). Cell–cell and intracellular lactate shuttles. J. Physiol. 587 5591–5600
    1. Cai T. Q., Ren N., Jin L., Cheng K., Kash S., Chen R., Wright S. D., Taggart A. K., Waters M. G. (2008). Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem. Biophys. Res. Commun. 377 987–991
    1. Cerdán S., Rodrigues T. B., Sierra A., Benito M., Fonseca L. L., Fonseca C. P., García-Martín M. L. (2006). The redox switch/redox coupling hypothesis. Neurochem. Int. 48 523–530
    1. Cureton E. L., Kwan R. O., Dozier K. C., Sadjadi J., Pal J. D., Victorino G. P. (2010). A different view of lactate in trauma patients: protecting the injured brain. J. Surg. Res. 159 468–473
    1. Dalsgaard M. K. (2006). Fuelling cerebral activity in exercising man. J. Cereb. Blood Flow Metab. 26 731–750
    1. Dalsgaard M. K., Secher N. H. (2007). The brain at work: a cerebral metabolic manifestation of central fatigue? J. Neurosci. Res. 85 3334–3339
    1. Dienel G. A. (2011). Brain lactate metabolism: the discoveries and the controversies. J. Cereb. Blood Flow Metab. 10.1038/jcbfm.2011.175 [Epub ahead of print]
    1. DiNuzzo M., Gili T., Maraviglia B., Giove F.(2011). Modeling the contribution of neuron-astrocyte cross talk to slow blood oxygenation level-dependent signal oscillations. J. Neurophysiol. 106 3010–3018
    1. DiNuzzo M., Mangia S., Maraviglia B., Giove F.(2010). Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J. Cereb. Blood Flow Metab. 1895–1904.
    1. Fattor J. A., Miller B. F., Jacobs K. A., Brooks G. A. (2005). Catecholamine response is attenuated during moderate-intensity exercise in response to the “lactate clamp”. Am. J. Physiol. Endocrinol. Metab. 288 143–147
    1. Finkel T., Deng C. X., Mostoslavsky R. (2009). Recent progress in the biology and physiology of sirtuins. Nature 460 587–591
    1. Formby B., Stern R. (2003). Lactate-sensitive response elements in genes involved in hyaluronan catabolism. Biochem. Biophys. Res. Commun. 305 203–208
    1. Fuxe K., Dahlström A. B., Jonsson G., Marcellino D., Guescini M., Dam M., Manger P., Agnati L.(2010). The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog. Neurobiol. 90 82–100
    1. Gam C. M. B., Nielsen H. B., Secher N. H., Larsen F. S., Ott P., Quistorff B.(2011). In cirrhotic patients reduced muscle strength is unrelated to muscle capacity for ATP turnover suggesting a central limitation. Clin. Physiol. Funct. Imaging 31 169–174
    1. Gambini J., Gomez-Cabrera M. C., Borras C., Valles S. L., Lopez-Grueso R., Martinez-Bello V. E., Herranz D., Pallardo F. V., Tresguerres J. A., Serrano M., Viña J. (2011). Free [NADH]/[NAD(+)] regulates sirtuin expression. Arch. Biochem. Biophys. 512 24–29
    1. Gantz I., Muraoka A., Yang Y. K., Samuelson L. C., Zimmerman E. M., Cook H., Yamada T.(1997). Cloning and chromosomal localization of a gene (GPR18) encoding a novel seven transmembrane receptor highly expressed in spleen and testis. Genomics 42 462–466
    1. Ge H., Weiszmann J., Reagan J. D., Gupte J., Baribault H., Gyuris T., Chen J., Tian H., Li Y.(2008). Elucidation of signaling and functional activities of an orphan GPCR, GPR81. J. Lipid Res. 49 797–803
    1. Gjedde A. (2007). “Coupling of brain function to metabolism: evaluation of energy requirements (Chapter 4.4),” in Handbook of Neurochemistry: Brain Energetics from Genes to Metabolites to Cells: Integration of Molecular and Cellular Processes, 3rd Edn, eds Lajtha A., Gibson G., Dienel G. (Heidelberg/NewYork: Springer Verlag; ), 400p, 40 illus
    1. Gjedde A., Johannsen P., Cold J. E., Østergaard L. (2005). Cerebral metabolic response to low blood flow: possible role of cytochrome oxidase inhibition. J. Cereb. Blood Flow Metab. 25 1083–1096
    1. Gjedde A., Léger G. C., Cumming P., Yasuhara Y., Evans A. C., Guttman M., Kuwabara H.(1993). Striatal L-DOPA decarboxylase activity in Parkinson’s disease in vivo: implications for the regulation of dopamine synthesis. J. Neurochem. 61 1538–1541
    1. Gjedde A., Marrett S. (2001). Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo. J. Cereb. Blood Flow Metab. 21 1384–1392
    1. Gjedde A., Marrett S., Vafaee M. (2002). Oxidative and nonoxida-tive metabolism of excited neurons and astrocytes. J. Cereb. Blood Flow Metab. 22 1–14
    1. Gordon G. R., Choi H. B., Rungta R. L., Ellis-Davies G. C., MacVicar B. A. (2008). Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456 745–749
    1. Goyagi T., Nishikawa T., Tobe Y.(2011). Neuroprotective effects and suppression of ischemia-induced glutamate elevation by β1-adrenoreceptor antagonists administered before transient focal ischemia in rats. J. Neurosurg. Anesthesiol. 23 131–137
    1. Hassel B., Bråthe A. (2000). Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation. J. Cereb. Blood Flow Metab. 20 327–336
    1. Ido Y., Chang K., Williamson J. R. (2004). NADH augments blood flow in physiologically activated retina and visual cortex. Proc. Natl. Acad. Sci. U.S.A. 101 653–658
    1. Ido Y., Chang K., Woolsey T. A., Williamson J. R. (2001). NADH: sensor of blood flow need in brain, muscle, and other tissues. FASEB J. 15 1419–1421
    1. Koppenol W. H., Bounds P. L., Dang C. V. (2011). Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11 325–337
    1. Larach D. B., Kofke W. A., Le Roux P. (2011). Potential non-hypoxic/ischemic causes of increased cerebral interstitial fluid lactate/pyruvate ratio: a review of available literature. Neurocrit. Care 15 609–622
    1. Lehmann M., Foster C., Keul J.(1993). Overtraining in endurance athletes: a brief review. Med. Sci. Sports Exerc. 25 854–862
    1. Liu C., Wu J., Zhu J., Kuei C., Yu J., Shelton J., Sutton S. W., Li X., Yun S. J., Mirzadegan T., Mazur C., Kamme F., Lovenberg T. W. (2009). Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 284 2811–2822
    1. Maddock R. J., Buonocore M. H., Lavoie S. P., Copeland L. E., Kile S. J., Richards A. L., Ryan J. M. (2006). Brain lactate responses during visual stimulation in fasting and hyperglycemic subjects: a proton magnetic resonance spectroscopy study at 1.5 Tesla Psychiatry Res. 148 47–54
    1. Madsen P. L., Cruz N. F., Sokoloff L., Dienel G. A. (1999). Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J. Cereb. Blood Flow Metab. 19 393–400
    1. Mailloux R. J., and Harper M. E. (2011). Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 51 1106–1115
    1. Mangia S., Garreffa G., Bianciardi M., Giove F., Di Salle F., Maraviglia B. (2003). The aerobic brain: lactate decrease at the onset of neural activity. Neuroscience 118 7–10
    1. Mathiesen C., Caesar K., Thomsen K., Hoogland T. M., Witgen B. M., Brazhe A., Lauritzen M.(2011). Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo. J. Neurosci. 31 18327–18337
    1. O’Brien J., Kla K. M., Hopkins I. B., Malecki E. A., McKenna M. C. (2007). Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Neurochem. Res. 32 597–607
    1. Okubo Y., Iino M. (2011). Visualization of glutamate as a volume transmitter. J. Physiol. 589 481–488
    1. Paulson O. B., Hasselbalch S. G., Ros-trup E., Knudsen G. M., Pelligrino D. (2010). Cerebral blood flow response to functional activation J. Cereb. Blood Flow Metab. 30 2–14
    1. Prichard J., Rothman D., Novotny E., Petroff O., Kuwabara T., Avison M., Howseman A., Hanstock C., Shulman R.(1991). Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. U.S.A. 88 5829–5831
    1. Quistorff B., Grunnet N. (2011). The isoenzyme pattern of LDH does not play a physiological role; except perhaps during fast transitions in energy metabolism. Aging 3 457–460
    1. Rajendran P., Williams D. E., Ho E., Dashwood R. H. (2011). Metabolism as a key to histone deacetylase inhibition. Crit. Rev. Biochem. Mol. Biol. 46 181–199
    1. Ramírez B. G., Rodrigues T. B., Violante I. R., Cruz F., Fonseca L. L., Ballesteros P., Castro M. M., García-Martín M. L., Cerdán S. (2007). Kinetic properties of the redox switch/redox coupling mechanism as determined in primary cultures of cortical neurons and astrocytes from rat brain. J. Neurosci. Res. 85 3244–3253
    1. Rasmussen P., Nielsen J., Overgaard M., Krogh-Madsen R., Gjedde A., Secher N. H., Petersen N. C. (2010). Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. J. Physiol. 58 1985–1995
    1. Rodrigues T. B., López-Larrubia P., Cerdán S. (2009). Redox dependence and compartmentation of [13C]pyruvate in the brain of deuterated rats bearing implanted C6 gliomas. J. Neurochem. 109 237–245
    1. Rooney K., Trayhurn P. (2011). Lactate and the GPR81 receptor in metabolic regulation: implications for adipose tissue function and fatty acid utilisation by muscle during exercise. Br. J. Nutr. 106 1310–1316
    1. Ros J., Pecinska N., Alessandri B., Landolt H., Fillenz M. (2001). Lactate reduces glutamate-induced neurotoxicity in rat cortex. J. Neurosci. Res. 66 790–794
    1. Ross J. M. (2011). Visualization of mitochondrial respiratory function using cytochrome C oxidase/ succinate dehydrogenase (COX/SDH) double-labeling histochemistry. J. Vis. Exp. 23 57
    1. Ross J. M., Öberg J., Brené S., Coppotelli G., Terzioglu M., Pernold K., Goiny M., Sitnikov R., Kehr J., Trifunovic A., Larsson N. G., Hoffer B. J., Olson L.(2010). High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc. Natl. Acad. Sci. U.S.A. 107 20087–20092
    1. Sappey-Marinier D., Calabrese G., Fein G., Hugg J. W., Biggins C., Weiner M. W. (1992). Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 12 584–592
    1. Schmalbruch I. K., Linde R., Paulson O. B., Madsen P. L. (2002). Activation-induced resetting of cerebral metabolism and flow is abolished by beta-adrenergic blockade with propranolol. Stroke 33 251–255
    1. Schurr A., Miller J. J., Payne R. S., Rigor B. M. (1999). An increase in lactate output bybrain tissue serves to meet the energy needs of glutamate-activated neurons. J. Neurosci. 19 34–39
    1. Schurr A., Payne R. S., Miller J. J., Rigor B. M. (1997). Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J. Neurochem. 69 423–426
    1. Schurr A., Payne R. S., Miller J. J., Tseng M. T., Rigor B. M. (2001). Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia. Brain Res. 895 268–272
    1. Smith D., Pernet A., Hallett W. A., Bingham E., Marsden P. K., Amiel S. A. (2003). Lactate: a preferred fuel for human brain metabolism in vivo. J. Cereb. Blood Flow Metab. 23 658–664
    1. Thangaraju M., Carswell K. N., Prasad P. D., Ganapathy V. (2009). Colon cancer cells maintain low levels of pyruvate to avoid cell death caused by inhibition of HDAC1/HDAC3. Biochem. J. 417 379–389
    1. Uehara T., Sumiyoshi T., Itoh H., Kurata K.(2008). Lactate production and neurotransmitters; evidence from microdialysis studies. Pharmacol. Biochem. Behav. 90 273–281
    1. Ugrumov M. V. (2009). Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance. J. Chem. Neuroanat. 38 241–256
    1. Vaishnavi S. N., Vlassenko A. G., Rundle M. M., Snyder A. Z., Mintun M. A., Raichle M. E. (2010). Regional aerobic glycolysis in the human brain. Proc. Natl. Acad. Sci. U.S.A. 107 17757–17762
    1. van Hall G. (2010). Lactate kinetics in human tissues at rest and during exercise Acta. Physiol. 199 499–508
    1. Wilson J. E. (2003). Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J. Exp. Biol. 206(Pt. 12) 2049–2057
    1. Wyss M. T., Jolivet R., Buck A., Magistretti P. J., Weber B.(2011). In vivo evidence for lactate as a neu-ronal energy source. J. Neurosci. 31 7477–7485
    1. Xu Y., Ola M. S., Berkich D. A., Gardner T. W., Barber A. J., Palmieri F., Hutson S. M., LaNoue K. F. (2007). Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia. J. Neurochem. 101 120–131

Source: PubMed

3
購読する