Effects of non-supervised low intensity aerobic excise training on the microvascular endothelial function of patients with type 1 diabetes: a non-pharmacological interventional study

Roger de Moraes, Diogo Van Bavel, Marília de Brito Gomes, Eduardo Tibiriçá, Roger de Moraes, Diogo Van Bavel, Marília de Brito Gomes, Eduardo Tibiriçá

Abstract

Background: The aim of the present study was to evaluate changes in microvascular density and reactivity in patients with type 1 diabetes (T1D) resulting from low intensity chronic exercise training.

Methods: This study included 22 (34 ± 7 ears) consecutive outpatients with T1D and disease duration > 6 years. We used intravital video-microscopy to measure basal skin capillary density and capillary recruitment using post-occlusive reactive hyperemia (PORH) in the dorsum of the fingers. Endothelium-dependent and -independent vasodilation of the skin microcirculation was evaluated in the forearm with a laser Doppler flow monitoring (LDF) system in combination with acetylcholine and sodium nitroprusside iontophoresis, PORH and local thermal hyperemia.

Results: The basal mean capillary density (MCD) after exercise training was significantly higher than before exercise (134 ± 25 vs. 119 ± 19 capillaries/mm(2), respectively; P = 0.0013). MCD during PORH was also higher after exercise (140 ± 26 vs. 121 ± 24 capillaries/mm(2), respectively; P < 0.0001). Endothelium-dependent capillary recruitment during PORH was also significantly higher after exercise (140 ± 26 vs. 134 ± 25 capillaries/mm(2), respectively; P < 0.0012). There were no significant changes in skin microvascular reactivity after exercise as investigated using LDF.

Conclusions: Our results showed that low intensity aerobic exercise, performed four times per week for 12 weeks by patients with T1D, induces significant increases in microvascular density and endothelial-dependent capillary reactivity.

Trial registration: ClinicalTrials.gov NCT02441504. Registered 7 May 2015.

Figures

Fig. 1
Fig. 1
Functional capillary density at baseline (BASAL) and during post-occlusive reactive hyperemia (PORH) before (PRE) and after (POST) exercise training in patients with type 1 diabetes (n = 22). The values represent the means ± SEM. Paired or unpaired Student’s two-tailed t-tests were used when appropriate
Fig. 2
Fig. 2
Microcirculatory parameters of patients with type 1 diabetes before and after exercise training. The maximum microvascular blood flow, expressed in arbitrary perfusion units (PU), and the area under the curve, expressed in PU/s, resulted from microvascular stimulation with acetylcholine (a, ACH), sodium nitroprusside (b, SNP), post-occlusive reactive hyperemia (c, PORH) and thermal hyperemia (d, TH)

References

    1. Delbin MA, Trask AJ. The diabetic vasculature: physiological mechanisms of dysfunction and influence of aerobic exercise training in animal models. Life Sci. 2014;102:1–9. doi: 10.1016/j.lfs.2014.02.021.
    1. Chao CY, Cheing GL. Microvascular dysfunction in diabetic foot disease and ulceration. Diabetes Metab Res Rev. 2009;25:604–14. doi: 10.1002/dmrr.1004.
    1. Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye. 2009;23:1496–508. doi: 10.1038/eye.2009.108.
    1. Khan F, Elhadd TA, Greene SA, Belch JJ. Impaired skin microvascular function in children, adolescents, and young adults with type 1 diabetes. Diabetes Care. 2000;23:215–20. doi: 10.2337/diacare.23.2.215.
    1. Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118:968–76. doi: 10.1161/CIRCULATIONAHA.107.763730.
    1. Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007;55:498–510. doi: 10.1016/j.phrs.2007.04.016.
    1. Tooke JE. Microvascular function in human diabetes. A physiological perspective. Diabetes. 1995;44:721–6. doi: 10.2337/diab.44.7.721.
    1. Candido R, Allen TJ. Haemodynamics in microvascular complications in type 1 diabetes. Diabetes Metab Res Rev. 2002;18:286–304. doi: 10.1002/dmrr.313.
    1. Hwu CM, Lin KH. Uric acid and the development of hypertension. Med Sci Monit. 2010;16:RA224–30.
    1. Gomes MB, Matheus AS, Tibirica E. Evaluation of microvascular endothelial function in patients with type 1 diabetes using laser-Doppler perfusion monitoring: which method to choose? Microvasc Res. 2008;76:132–3. doi: 10.1016/j.mvr.2008.04.003.
    1. Tibirica E, Rodrigues E, Cobas R, Gomes MB. Increased functional and structural skin capillary density in type 1 diabetes patients with vascular complications. Diabetol Metab Syndr. 2009;1:24. doi: 10.1186/1758-5996-1-24.
    1. Tibirica E, Rodrigues E, Cobas RA, Gomes MB. Endothelial function in patients with type 1 diabetes evaluated by skin capillary recruitment. Microvasc Res. 2007;73:107–12. doi: 10.1016/j.mvr.2006.11.004.
    1. Miyazaki C, Takeuchi M, Yoshitani H, Otani S, Sakamoto K, Yoshikawa J. Optimum hypoglycemic therapy can improve coronary flow velocity reserve in diabetic patients: demonstration by transthoracic doppler echocardiography. Circ J. 2003;67:945–50. doi: 10.1253/circj.67.945.
    1. Marketou ME, Zacharis EA, Koukouraki S, Stathaki MI, Arfanakis DA, Kochiadakis GE, et al. Effect of angiotensin-converting enzyme inhibitors on systemic inflammation and myocardial sympathetic innervation in normotensive patients with type 2 diabetes mellitus. J Hum Hypertens. 2008;22:191–6. doi: 10.1038/sj.jhh.1002310.
    1. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol (1985) 2005;98:1154–62. doi: 10.1152/japplphysiol.00164.2004.
    1. Shono N, Urata H, Saltin B, Mizuno M, Harada T, Shindo M, et al. Effects of low intensity aerobic training on skeletal muscle capillary and blood lipoprotein profiles. J Atheroscler Thromb. 2002;9:78–85. doi: 10.5551/jat.9.78.
    1. Galassetti P, Riddell MC. Exercise and type 1 diabetes (T1DM) Compr Physiol. 2013;3:1309–36.
    1. MacMillan F, Kirk A, Mutrie N, Matthews L, Robertson K, Saunders DH. A systematic review of physical activity and sedentary behavior intervention studies in youth with type 1 diabetes: study characteristics, intervention design, and efficacy. Pediatr Diabetes. 2014;15:175–89. doi: 10.1111/pedi.12060.
    1. Froisland DH, Graue M, Markestad T, Skrivarhaug T, Wentzel-Larsen T, Dahl-Jorgensen K. Health-related quality of life among Norwegian children and adolescents with type 1 diabetes on intensive insulin treatment: a population-based study. Acta Paediatr. 2013;102:889–95. doi: 10.1111/apa.12312.
    1. Kennedy A, Nirantharakumar K, Chimen M, Pang TT, Hemming K, Andrews RC, et al. Does exercise improve glycaemic control in type 1 diabetes? A systematic review and meta-analysis. PLoS One. 2013;8:e58861. doi: 10.1371/journal.pone.0058861.
    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–59. doi: 10.1249/MSS.0b013e318213fefb.
    1. Herbst A, Kordonouri O, Schwab KO, Schmidt F, Holl RW. Impact of physical activity on cardiovascular risk factors in children with type 1 diabetes: a multicenter study of 23,251 patients. Diabetes Care. 2007;30:2098–100. doi: 10.2337/dc06-2636.
    1. Manders RJ, Van Dijk JW, van Loon LJ. Low-intensity exercise reduces the prevalence of hyperglycemia in type 2 diabetes. Med Sci Sports Exerc. 2010;42:219–25. doi: 10.1249/MSS.0b013e3181b3b16d.
    1. Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol (1985) 2004;97:1119–28. doi: 10.1152/japplphysiol.00035.2004.
    1. Roche DM, Edmunds S, Cable T, Didi M, Stratton G. Skin microvascular reactivity in children and adolescents with type 1 diabetes in relation to levels of physical activity and aerobic fitness. Pediatr Exerc Sci. 2008;20:426–38.
    1. Seeger JP, Thijssen DH, Noordam K, Cranen ME, Hopman MT. Nijhuis-van der Sanden MW. Exercise training improves physical fitness and vascular function in children with type 1 diabetes. Diabetes Obes Metab. 2011;13(4):382–4. doi: 10.1111/j.1463-1326.2011.01361.x.
    1. Fuchsjager-Mayrl G, Pleiner J, Wiesinger GF, Sieder AE, Quittan M, Nuhr MJ, et al. Exercise training improves vascular endothelial function in patients with type 1 diabetes. Diabetes Care. 2002;25:1795–801. doi: 10.2337/diacare.25.10.1795.
    1. Roche DM, Edmunds S, Cable T, Didi M, Stratton G. Skin microvascular reactivity in children and adolescents with type 1 diabetes in relation to levels of physical activity and aerobic fitness. Pediatr Exerc Sci. 2008;20:426–38.
    1. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37:153–6. doi: 10.1016/S0735-1097(00)01054-8.
    1. Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate; a longitudinal study. Ann Med Exp Biol Fenn. 1957;35:307–15.
    1. Miller WC, Wallace JP, Eggert KE. Predicting max HR and the HR-VO2 relationship for exercise prescription in obesity. Med Sci Sports Exerc. 1993;25:1077–81. doi: 10.1249/00005768-199309000-00017.
    1. Antonios TF, Kaski JC, Hasan KM, Brown SJ, Singer DR. Rarefaction of skin capillaries in patients with anginal chest pain and normal coronary arteriograms. Eur Heart J. 2001;22:1144–8. doi: 10.1053/euhj.2000.2442.
    1. Nama V, Manyonda IT, Onwude J, Antonios TF. Structural capillary rarefaction and the onset of preeclampsia. Obstet Gynecol. 2012;119:967–74. doi: 10.1097/AOG.0b013e31824ea092.
    1. Antonios TF, Nama V, Wang D, Manyonda IT. Microvascular remodelling in preeclampsia: quantifying capillary rarefaction accurately and independently predicts preeclampsia. Am J Hypertens. 2013;26:1162–9. doi: 10.1093/ajh/hpt087.
    1. Kaiser SE, Sanjuliani AF, Estato V, Gomes MB, Tibirica E. Antihypertensive treatment improves microvascular rarefaction and reactivity in low-risk hypertensive individuals. Microcirculation. 2013;20:703–16.
    1. Matheus AS, Tibirica E, da Silva PB, de Fatima Bevilacqua da Matta M, Gomes MB. Uric acid levels are associated with microvascular endothelial dysfunction in patients with Type 1 diabetes. Diabet Med. 2011;28:1188–93. doi: 10.1111/j.1464-5491.2011.03349.x.
    1. Hovind P, Rossing P, Johnson RJ, Parving HH. Serum uric acid as a new player in the development of diabetic nephropathy. J Ren Nutr. 2011;21:124–7. doi: 10.1053/j.jrn.2010.10.024.
    1. Edwards NL. The role of hyperuricemia in vascular disorders. Curr Opin Rheumatol. 2009;21:132–7. doi: 10.1097/BOR.0b013e3283257b96.
    1. Gersch C, Palii SP, Kim KM, Angerhofer A, Johnson RJ, Henderson GN. Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids. 2008;27:967–78. doi: 10.1080/15257770802257952.
    1. Hayden MR, Tyagi SC. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr Metab (Lond) 2004;1:10. doi: 10.1186/1743-7075-1-10.
    1. Gagliardi AC, Miname MH, Santos RD. Uric acid: A marker of increased cardiovascular risk. Atherosclerosis. 2009;202:11–7. doi: 10.1016/j.atherosclerosis.2008.05.022.
    1. Tang XY, Hong HS, Chen LL, Lin XH, Lin JH, Lin Z. Effects of exercise of different intensities on the angiogenesis, infarct healing, and function of the left ventricle in postmyocardial infarction rats. Coron Artery Dis. 2011;22:497–506. doi: 10.1097/MCA.0b013e32834993d9.
    1. Schantz P, Henriksson J, Jansson E. Adaptation of human skeletal muscle to endurance training of long duration. Clin Physiol. 1983;3:141–51. doi: 10.1111/j.1475-097X.1983.tb00685.x.
    1. Kivela R, Silvennoinen M, Touvra AM, Lehti TM, Kainulainen H, Vihko V. Effects of experimental type 1 diabetes and exercise training on angiogenic gene expression and capillarization in skeletal muscle. FASEB J. 2006;20:1570–2. doi: 10.1096/fj.05-4780fje.
    1. Katz MA, McNeill G. Defective vasodilation response to exercise in cutaneous precapillary vessels in diabetic humans. Diabetes. 1987;36:1386–96. doi: 10.2337/diab.36.12.1386.
    1. Tibirica E, Rodrigues E, Cobas R, Gomes MB. Impairment of skin capillary recruitment precedes chronic complications in patients with type 1 diabetes. Rev Diabet Stud. 2007;4:85–8. doi: 10.1900/RDS.2007.4.85.
    1. Lenasi H, Strucl M. Effect of regular physical training on cutaneous microvascular reactivity. Med Sci Sports Exerc. 2004;36:606–12. doi: 10.1249/01.MSS.0000121948.86377.51.
    1. Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports. 2014;24:e69–76. doi: 10.1111/sms.12112.
    1. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86. doi: 10.1152/physrev.00045.2006.
    1. Di Francescomarino S, Sciartilli A, Di Valerio V, Di Baldassarre A, Gallina S. The effect of physical exercise on endothelial function. Sports Med. 2009;39:797–812. doi: 10.2165/11317750-000000000-00000.
    1. Gustafsson T. Vascular remodelling in human skeletal muscle. Biochem Soc Trans. 2011;39:1628–32. doi: 10.1042/BST20110720.
    1. Thorin E, Thorin-Trescases N. Vascular endothelial ageing, heartbeat after heartbeat. Cardiovasc Res. 2009;84:24–32. doi: 10.1093/cvr/cvp236.
    1. Kondo H, Fujino H, Murakami S, Tanaka M, Kanazashi M, Nagatomo F, et al. Low-intensity running exercise enhances the capillary volume and pro-angiogenic factors in the soleus muscle of type 2 diabetic rats. Muscle Nerve. 2015;51:391–9. doi: 10.1002/mus.24316.
    1. Morvan E, Lima NE, Machi JF, Mostarda C, De Angelis K, Irigoyen MC, et al. Metabolic, hemodynamic and structural adjustments to low intensity exercise training in a metabolic syndrome model. Cardiovasc Diabetol. 2013;12:89. doi: 10.1186/1475-2840-12-89.
    1. Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118:346–54. doi: 10.1161/CIRCULATIONAHA.108.772822.
    1. Achten J, Jeukendrup AE. Optimizing fat oxidation through exercise and diet. Nutrition. 2004;20:716–27. doi: 10.1016/j.nut.2004.04.005.
    1. De Feo P, Di Loreto C, Lucidi P, Murdolo G, Parlanti N, De Cicco A, et al. Metabolic response to exercise. J Endocrinol Invest. 2003;26:851–4. doi: 10.1007/BF03345235.
    1. Wolfe RR. Fat metabolism in exercise. Adv Exp Med Biol. 1998;441:147–56. doi: 10.1007/978-1-4899-1928-1_14.
    1. Silvennoinen M, Rinnankoski-Tuikka R, Vuento M, Hulmi JJ, Torvinen S, Lehti M, et al. High-fat feeding induces angiogenesis in skeletal muscle and activates angiogenic pathways in capillaries. Angiogenesis. 2013;16:297–307. doi: 10.1007/s10456-012-9315-8.
    1. Basak S, Das MK, Duttaroy AK. Fatty acid-induced angiogenesis in first trimester placental trophoblast cells: possible roles of cellular fatty acid-binding proteins. Life Sci. 2013;93:755–62. doi: 10.1016/j.lfs.2013.09.024.
    1. Bishop-Bailey D. PPARs and angiogenesis. Biochem Soc Trans. 2011;39:1601–5. doi: 10.1042/BST20110643.
    1. Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun. 2002;296:350–4. doi: 10.1016/S0006-291X(02)00881-1.
    1. Fujimoto E, Yamaguchi W, Terada S, Higuchi M, Tabata I. Change in PGC-1alpha expression in rat skeletal muscle after low-intensity prolonged swimming exercise. J Physiol Anthropol. 2011;30:23–7. doi: 10.2114/jpa2.30.23.
    1. Raney MA, Yee AJ, Todd MK, Turcotte LP. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. Am J Physiol Endocrinol Metab. 2005;288:E592–8. doi: 10.1152/ajpendo.00301.2004.
    1. Akasaki Y, Miyata M, Eto H, Shirasawa T, Hamada N, Ikeda Y, et al. Repeated thermal therapy up-regulates endothelial nitric oxide synthase and augments angiogenesis in a mouse model of hindlimb ischemia. Circ J. 2006;70:463–70. doi: 10.1253/circj.70.463.
    1. Pranskunas A, Pranskuniene Z, Milieskaite E, Daniuseviciute L, Kudreviciene A, Vitkauskiene A, et al. Effects of whole body heat stress on sublingual microcirculation in healthy humans. Eur J Appl Physiol. 2015;115:157–65. doi: 10.1007/s00421-014-2999-2.
    1. Widanski IB, Richardson D, Bruckner G. Effect of urate on nitric oxide microcirculatory response in the rat tail to body heating. Microcirculation. 2002;9:125–31. doi: 10.1038/sj.mn.7800125.
    1. Kivela R, Silvennoinen M, Lehti M, Jalava S, Vihko V, Kainulainen H. Exercise-induced expression of angiogenic growth factors in skeletal muscle and in capillaries of healthy and diabetic mice. Cardiovasc Diabetol. 2008;7:13. doi: 10.1186/1475-2840-7-13.
    1. Gute D, Laughlin MH, Amann JF. Regional changes in capillary supply in skeletal muscle of interval-sprint and low-intensity, endurance-trained rats. Microcirculation. 1994;1:183–93. doi: 10.3109/10739689409148273.
    1. Yokokawa Y, Hongo M, Urayama H, Nishimura T, Kai I. Effects of low-intensity resistance exercise with vascular occlusion on physical function in healthy elderly people. Biosci Trends. 2008;2:117–23.
    1. Hoier B, Passos M, Bangsbo J, Hellsten Y. Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle. Exp Physiol. 2013;98:585–97. doi: 10.1113/expphysiol.2012.067967.
    1. Wallace JP. Exercise in hypertension. A clinical review. Sports Med. 2003;33:585–98. doi: 10.2165/00007256-200333080-00004.
    1. Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab. 2009;94:3171–82. doi: 10.1210/jc.2008-2534.
    1. Kampoli AM, Tousoulis D, Briasoulis A, Latsios G, Papageorgiou N, Stefanadis C. Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr Pharm Des. 2011;17:4147–58. doi: 10.2174/138161211798764825.
    1. Persson F, Rossing P, Hovind P, Stehouwer CD, Schalkwijk CG, Tarnow L, et al. Endothelial dysfunction and inflammation predict development of diabetic nephropathy in the Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria (IRMA 2) study. Scand J Clin Lab Invest. 2008;68:731–8. doi: 10.1080/00365510802187226.
    1. Patte C, Rothhut B, Russo-Marie F, Blanquet PR. Possible involvement of a lipocortin in the initiation of DNA synthesis by human endothelial cells. Exp Cell Res. 1991;197:12–20. doi: 10.1016/0014-4827(91)90474-9.
    1. Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest. 1998;101:311–20. doi: 10.1172/JCI1368.

Source: PubMed

3
購読する