The TeMPO trial (treatment of meniscal tears in osteoarthritis): rationale and design features for a four arm randomized controlled clinical trial

James K Sullivan, James J Irrgang, Elena Losina, Clare Safran-Norton, Jamie Collins, Swastina Shrestha, Faith Selzer, Kim Bennell, Leslie Bisson, Angela T Chen, Courtney K Dawson, Alexandra B Gil, Morgan H Jones, Melissa A Kluczynski, Kathleen Lafferty, Jeffrey Lange, Emma C Lape, John Leddy, Aaron V Mares, Kurt Spindler, Jennifer Turczyk, Jeffrey N Katz, James K Sullivan, James J Irrgang, Elena Losina, Clare Safran-Norton, Jamie Collins, Swastina Shrestha, Faith Selzer, Kim Bennell, Leslie Bisson, Angela T Chen, Courtney K Dawson, Alexandra B Gil, Morgan H Jones, Melissa A Kluczynski, Kathleen Lafferty, Jeffrey Lange, Emma C Lape, John Leddy, Aaron V Mares, Kurt Spindler, Jennifer Turczyk, Jeffrey N Katz

Abstract

Background: Meniscal tears often accompany knee osteoarthritis, a disabling condition affecting 14 million individuals in the United States. While several randomized controlled trials have compared physical therapy to surgery for individuals with knee pain, meniscal tear, and osteoarthritic changes (determined via radiographs or magnetic resonance imaging), no trial has evaluated the efficacy of physical therapy alone in these subjects.

Methods: The Treatment of Meniscal Tear in Osteoarthritis (TeMPO) Trial is a four-arm multi-center randomized controlled clinical trial designed to establish the comparative efficacy of two in-clinic physical therapy interventions (one focused on strengthening and one containing placebo) and two protocolized home exercise programs.

Discussion: The goal of this paper is to present the rationale behind TeMPO and describe the study design and implementation strategies, focusing on methodologic and clinical challenges.

Trial registration: The TeMPO Trial was first registered at clinicaltrials.gov with registration No. NCT03059004 . on February 14, 2017.

Keywords: Meniscal tear; Osteoarthritis; Physical therapy; Placebo; Randomized trial.

Conflict of interest statement

Ethics approval and consent to participate

The TeMPO Trial has IRB approval from a sIRB at Partners HealthCare/Brigham and Women’s Hospital. Written informed consent is obtained from all study participants prior to randomization or any study-ordered imaging or MSK exams.

Consent for publication

The subject in the instructional pamphlet in Additional file 1 has provided written consent to appear.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Exercise Dose Diagrams in the TeMPO Trial. Exercise dose diagram for weeks 1–4 of trial intervention. All subjects complete 100 min of a strengthening based home program (Arms 1–3) or a combination of the home program and therapist-directed manual therapy and exercise per week (Arm 4) per week. Subjects in Arms 2, 3, and 4 receive adherence optimization consisting of motivational adherence support text messages three times a week and a health information pamphlet once every other week. Subjects in Arm 3 receive a placebo physical therapy intervention consisting of placebo ultrasound (US), placebo lotion application, placebo manual therapy (MT), and placebo assessment twice a week. Subjects in Arm 4 receive a true physical therapy intervention consisting of manual therapy (MT) and supervised strengthening/functional exercise two times a week and complete the protocolized home exercise program two times a week. Subjects are not instructed to exercise in any particular order or sequence, only at the designated frequency
Fig. 2
Fig. 2
Exercise dose diagram for weeks 5–8, 10, 12 of trial intervention. All subjects complete 100 min of a strengthening based home program (Arms 1–3) or a combination of the home program and therapist-directed manual therapy and exercise per week (Arm 4) per week. Subjects in Arms 2, 3, and 4 receive adherence optimization consisting of motivational adherence support text messages three times a week and a health information pamphlet once every other week. Subjects in Arm 3 receive a placebo physical therapy intervention consisting of placebo ultrasound (US), placebo lotion application, placebo manual therapy (MT), and placebo assessment twice a week. Subjects in Arm 4 receive a true physical therapy intervention consisting of manual therapy (MT) and supervised strengthening exercise once a week and complete the protocolized home exercise program three times a week. Subjects are not instructed to exercise in any particular order or sequence, only at the designated frequency
Fig. 3
Fig. 3
Exercise dose diagram for weeks 9 and 11 of trial intervention. All subjects complete 100 min per week of a strengthening based home program at home. Subjects in Arms 2, 3, and 4 receive adherence optimization consisting of motivational adherence support text messages three times a week and a health information pamphlet once every other week. Subjects in Arms 3 and 4 do not go to clinic for additional treatment in these weeks. Subjects are not instructed to exercise in any particular order or sequence, only at the designated frequency
Fig. 4
Fig. 4
Flow diagram depicting enrollment and follow-up procedures in the TeMPO trial

References

    1. Deshpande BR, Katz JN, Solomon DH, Yelin EH, Hunter DJ, Messier SP, et al. Number of persons with symptomatic knee osteoarthritis in the US: impact of race and ethnicity, age, sex, and obesity. Arthritis Care Res. 2016;68(12):1743–1750. doi: 10.1002/acr.22897.
    1. Bhattacharyya T, Gale D, Dewire P, Totterman S, Gale ME, McLaughlin S, et al. The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee. J Bone Joint Surg Am. 2003;85-A(1):4–9. doi: 10.2106/00004623-200301000-00002.
    1. Englund M, Guermazi A, Gale D, Hunter DJ, Aliabadi P, Clancy M, et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med. 2008;359(11):1108–1115. doi: 10.1056/NEJMoa0800777.
    1. Englund M. The role of the meniscus in osteoarthritis genesis. Med Clin North Am. 2009;93(1):37–43. doi: 10.1016/j.mcna.2008.08.005.
    1. Englund M, Roos EM, Roos HP, Lohmander LS. Patient-relevant outcomes fourteen years after meniscectomy: influence of type of meniscal tear and size of resection. Rheumatology (Oxford, England) 2001;40(6):631–639. doi: 10.1093/rheumatology/40.6.631.
    1. Katz JN, Martin SD. Meniscus – friend or foe: epidemiologic observations and surgical implications. Arthritis Rheum. 2009;60(3):633–635. doi: 10.1002/art.24363.
    1. Jevsevar DS. Treatment of osteoarthritis of the knee: evidence-based guideline, 2nd edition. J Am Acad Orthop Surg. 2013;21(9):571–576.
    1. Katz JN, Brophy RH, Chaisson CE, de Chaves L, Cole BJ, Dahm DL, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med. 2013;368(18):1675–1684. doi: 10.1056/NEJMoa1301408.
    1. Thorlund JB, Juhl CB, Roos EM, Lohmander LS. Arthroscopic surgery for degenerative knee: systematic review and meta-analysis of benefits and harms. BMJ. 2015;350:h2747. doi: 10.1136/bmj.h2747.
    1. Kise NJ, Risberg MA, Stensrud S, Ranstam J, Engebretsen L, Roos EM. Exercise therapy versus arthroscopic partial meniscectomy for degenerative meniscal tear in middle aged patients: randomised controlled trial with two year follow-up. BMJ. 2016;354:i3740. doi: 10.1136/bmj.i3740.
    1. Sihvonen R, Paavola M, Malmivaara A, Itälä A, Joukainen A, Nurmi H, et al. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N Engl J Med. 2013;369(26):2515–2524. doi: 10.1056/NEJMoa1305189.
    1. Herrlin SV, Wange PO, Lapidus G, Hallander M, Werner S, Weidenhielm L. Is arthroscopic surgery beneficial in treating non-traumatic, degenerative medial meniscal tears? A five year follow-up. Knee Surg Sports Traumatol Arthrosc. 2013;21(2):358–364. doi: 10.1007/s00167-012-1960-3.
    1. Papalia R, Del Buono A, Osti L, Denaro V, Maffulli N. Meniscectomy as a risk factor for knee osteoarthritis: a systematic review. Br Med Bull. 2011;99:89–106. doi: 10.1093/bmb/ldq043.
    1. Yim JH, Seon JK, Song EK, Choi JI, Kim MC, Lee KB, et al. A comparative study of meniscectomy and nonoperative treatment for degenerative horizontal tears of the medial meniscus. Am J Sports Med. 2013;41(7):1565–1570. doi: 10.1177/0363546513488518.
    1. Buchbinder R. Meniscectomy in patients with knee osteoarthritis and a meniscal tear? N Engl J Med. 2013;368(18):1740–1741. doi: 10.1056/NEJMe1302696.
    1. Logerstedt DS, Snyder-Mackler L, Ritter RC, Axe MJ. Knee pain and mobility impairments: meniscal and articular cartilage lesions. J Orthop Sports Phys Ther. 2010;40(6):A1–A35. doi: 10.2519/jospt.2010.0304.
    1. Krogsboll LT, Hrobjartsson A, Gotzsche PC. Spontaneous improvement in randomised clinical trials: meta-analysis of three-armed trials comparing no treatment, placebo and active intervention. BMC Med Res Methodol. 2009;9:1. doi: 10.1186/1471-2288-9-1.
    1. Bennell KL, Hinman RS, Metcalf BR, Buchbinder R, McConnell J, McColl G, et al. Efficacy of physiotherapy management of knee joint osteoarthritis: a randomised, double blind, placebo controlled trial. Ann Rheum Dis. 2005;64(6):906–912. doi: 10.1136/ard.2004.026526.
    1. Cakir S, Hepguler S, Ozturk C, Korkmaz M, Isleten B, Atamaz FC. Efficacy of therapeutic ultrasound for the management of knee osteoarthritis: a randomized, controlled, and double-blind study. Am J Phys Med Rehabil. 2014;93(5):405–412. doi: 10.1097/PHM.0000000000000033.
    1. Deyle GD, Henderson NE, Matekel RL, Ryder MG, Garber MB, Allison SC. Effectiveness of manual physical therapy and exercise in osteoarthritis of the knee. A randomized, controlled trial. Ann Intern Med. 2000;132(3):173–181. doi: 10.7326/0003-4819-132-3-200002010-00002.
    1. Foroughi N, Smith RM, Lange AK, Baker MK, Fiatarone Singh MA, Vanwanseele B. Lower limb muscle strengthening does not change frontal plane moments in women with knee osteoarthritis: A randomized controlled trial. Clinical biomechanics (Bristol, Avon) 2011;26(2):167–174. doi: 10.1016/j.clinbiomech.2010.08.011.
    1. Hinman RS, Crossley KM, McConnell J, Bennell KL. Efficacy of knee tape in the management of osteoarthritis of the knee: blinded randomised controlled trial. BMJ. 2003;327(7407):135. doi: 10.1136/bmj.327.7407.135.
    1. Huang MH, Lin YS, Lee CL, Yang RC. Use of ultrasound to increase effectiveness of isokinetic exercise for knee osteoarthritis. Arch Phys Med Rehabil. 2005;86(8):1545–1551. doi: 10.1016/j.apmr.2005.02.007.
    1. Ozgonenel L, Aytekin E, Durmusoglu G. A double-blind trial of clinical effects of therapeutic ultrasound in knee osteoarthritis. Ultrasound Med Biol. 2009;35(1):44–49. doi: 10.1016/j.ultrasmedbio.2008.07.009.
    1. Ulus Y, Tander B, Akyol Y, Durmus D, Buyukakincak O, Gul U, et al. Therapeutic ultrasound versus sham ultrasound for the management of patients with knee osteoarthritis: a randomized double-blind controlled clinical study. Int J Rheum Dis. 2012;15(2):197–206. doi: 10.1111/j.1756-185X.2012.01709.x.
    1. Chan A, Tetzlaff JM, Altman DG, et al. Spirit 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Beattie KA, Boulos P, Pui M, O'Neill J, Inglis D, Webber CE, et al. Abnormalities identified in the knees of asymptomatic volunteers using peripheral magnetic resonance imaging. Osteoarthr Cartil. 2005;13(3):181–186. doi: 10.1016/j.joca.2004.11.001.
    1. Troupis JM, Batt MJ, Pasricha SS, Saddik D. Magnetic resonance imaging in knee synovitis: clinical utility in differentiating asymptomatic and symptomatic meniscal tears. J Med Imaging Radiat Oncol. 2015;59(1):1–6. doi: 10.1111/1754-9485.12240.
    1. Wright RW, Boyce RH, Michener T, Shyr Y, McCarty EC, Spindler KP. Radiographs are not useful in detecting arthroscopically confirmed mild chondral damage. Clin Orthop Relat Res. 2006;442:245–251. doi: 10.1097/01.blo.0000167670.03197.c2.
    1. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348:g1687. doi: 10.1136/bmj.g1687.
    1. Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process. 1991;50(2):179–211. doi: 10.1016/0749-5978(91)90020-T.
    1. Madden TJ, Ellen PS, Ajzen I. A comparison of the theory of planned behavior and the theory of reasoned action. Personal Soc Psychol Bull. 1992;18(1):3–9. doi: 10.1177/0146167292181001.
    1. McAlister A, Perry C, Parcel G. How individuals, environments, and health behaviors interact: social cognitive theory. Health Behav Health Educ Theory Res Pract. 2008;4:169–188.
    1. Fisher J, Fisher W. The Information-Motivation-Behavioral Skills Model. In: DiClemente R, Crosby R, Kegler M, editors. Emerging Theories in Health Promotion Practice and Reseaerch. New York: Wiley; 2002. pp. 40–70.
    1. Cocosila M, Archer N, Brian Haynes R, Yuan Y. Can wireless text messaging improve adherence to preventive activities? Results of a randomised controlled trial. Int J Med Inform. 2009;78(4):230–238. doi: 10.1016/j.ijmedinf.2008.07.011.
    1. Cole-Lewis H, Kershaw T. Text messaging as a tool for behavior change in disease prevention and management. Epidemiol Rev. 2010;32(1):56–69. doi: 10.1093/epirev/mxq004.
    1. de Jongh T, Gurol-Urganci I, Vodopivec-Jamsek V, Car J, Atun R. Mobile phone messaging for facilitating self- management of long- term illnesses. Cochrane Database Syst Rev. 2012;12:CD007459.
    1. Eysenbach G, Hurling R, Kirwan M, Ramirez E, Fanning J, Mullen SP, et al. Increasing Physical Activity With Mobile Devices: A Meta-Analysis. Journal of Medical Internet Research. 2012;14(6).
    1. Fjeldsoe BS, Marshall AL, Miller YD. Behavior change interventions delivered by Mobile telephone short-message service. Am J Prev Med. 2009;36(2):165–173. doi: 10.1016/j.amepre.2008.09.040.
    1. Head K, Noar S, Iannarino N, Harrington N. Efficacy of text messaging-based interventions for health promotion: A meta-analysis. Social Science & Medicine 2013;97:41.
    1. Hurling R, Catt M, Boni MD, Fairley BW, Hurst T, Murray P, et al. Using internet and mobile phone technology to deliver an automated physical activity program: randomized controlled trial. J Med Internet Res. 2007;9(2):e7. doi: 10.2196/jmir.9.2.e7.
    1. Kannisto KA, Koivunen MH, Välimäki MA. Use of mobile phone text message reminders in health care services: a narrative literature review. J Med Internet Res. 2014;16(10):e222. doi: 10.2196/jmir.3442.
    1. Prestwich A, Perugini M, Hurling R. Can the effects of implementation intentions on exercise be enhanced using text messages? Psychology &amp. Health. 2009;24(6):677–687.
    1. Taylor NF, Bottrell J, Lawler K, Benjamin D. Mobile telephone short message service reminders can reduce nonattendance in physical therapy outpatient clinics: a randomized controlled trial. Arch Phys Med Rehabil. 2012;93(1):21–6.
    1. Osborn CY, Mulvaney SA. Development and feasibility of a text messaging and interactive voice response intervention for low-income, diverse adults with type 2 diabetes mellitus. J Diabetes Sci Technol. 2013;7(3):612–622. doi: 10.1177/193229681300700305.
    1. Hurley JC, Hollingshead KE, Todd M, Jarrett CL, Tucker WJ, Angadi SS, et al. The walking interventions through texting (WalkIT) trial: rationale, design, and protocol for a factorial randomized controlled trial of adaptive interventions for overweight and obese, Inactive Adults. JMIR Res Protoc. 2015;4(3):e108. doi: 10.2196/resprot.4856.
    1. Dobson F, Bennell KL, French SD, Nicolson PJ, Klaasman RN, Holden MA, et al. Barriers and facilitators to exercise participation in people with hip and/or knee osteoarthritis: synthesis of the literature using behavior change theory. Am J Phys Med Rehabil. 2016;95(5):372–389.
    1. Dobson F, Hinman RS, Roos EM, Abbott JH, Stratford P, Davis AM, et al. OARSI recommended performance-based tests to assess physical function in people diagnosed with hip or knee osteoarthritis. Osteoarthr Cartil. 2013;21(8):1042–1052. doi: 10.1016/j.joca.2013.05.002.
    1. Roos E. Knee injury and osteoarthritis outcome score. 2012.
    1. Roos EM, Lohmander LS. The knee injury and osteoarthritis outcome score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes. 2003;1(1):64. doi: 10.1186/1477-7525-1-64.
    1. Carpenter JR, Kenward MG, White IR. Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Stat Methods Med Res. 2007;16(3):259–275. doi: 10.1177/0962280206075303.
    1. Katz JN, Smith SR, Collins JE, Solomon DH, Jordan JM, Hunter DJ, et al. Cost-effectiveness of nonsteroidal anti-inflammatory drugs and opioids in the treatment of knee osteoarthritis in older patients with multiple comorbidities. Osteoarthr Cartil. 2016;24(3):409–418. doi: 10.1016/j.joca.2015.10.006.
    1. Losina E, Burbine SA, Suter LG, Hunter DJ, Solomon DH, Daigle ME, et al. Pharmacologic regimens for knee osteoarthritis prevention: can they be cost-effective? Osteoarthr Cartil. 2014;22(3):415–430. doi: 10.1016/j.joca.2014.01.005.
    1. Losina E, Michl G, Collins JE, Hunter DJ, Jordan JM, Yelin E, et al. Model-based evaluation of cost-effectiveness of nerve growth factor inhibitors in knee osteoarthritis: impact of drug cost, toxicity, and means of administration. Osteoarthr Cartil. 2016;24(5):776–785. doi: 10.1016/j.joca.2015.12.011.
    1. Losina E, Paltiel AD, Weinstein AM, Yelin E, Hunter DJ, Chen SP, et al. Lifetime medical costs of knee osteoarthritis Management in the United States: impact of extending indications for Total knee arthroplasty. Arthritis care &amp. Research. 2015;67(2):203–215.
    1. Smith SR, Katz JN, Collins JE, Solomon DH, Jordan JM, Suter LG, et al. Cost-effectiveness of tramadol and oxycodone in the treatment of knee osteoarthritis. Arthritis Care Res. 2017;69(2):234–242. doi: 10.1002/acr.22916.
    1. Losina E, Usiskin IM, Smith SR, Sullivan JK, Smith KC, Hunter DJ, et al. Cost-effectiveness of generic celecoxib in knee osteoarthritis for average-risk patients: a model-based evaluation. Osteoarthr Cartil. 2018;26(5):641–50.
    1. Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA. 2016;316(10):1093–1103. doi: 10.1001/jama.2016.12195.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) - a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Butsch WS, Ard JD, Allison DB, Patki A, Henson CS, Rueger MM, et al. Effects of a reimbursement incentive on enrollment in a weight control program. Obesity (Silver Spring, Md) 2007;15(11):2733–2738. doi: 10.1038/oby.2007.325.
    1. Giles EL, Robalino S, McColl E, Sniehotta FF, Adams J. The effectiveness of financial incentives for health behaviour change: systematic review and meta-analysis. PLoS One. 2014;9(3):e90347. doi: 10.1371/journal.pone.0090347.
    1. Volpp KG, Troxel AB, Pauly MV, Glick HA, Puig A, Asch DA, et al. A randomized, controlled trial of financial incentives for smoking cessation. N Engl J Med. 2009;360(7):699–709. doi: 10.1056/NEJMsa0806819.
    1. Edwards IR, Biriell C. Harmonisation in pharmacovigilance. Drug Saf. 1994;10(2):93–102. doi: 10.2165/00002018-199410020-00001.
    1. Protocol Deviations and Violations . National Institutes of Health, Committee NIPA. 2005.
    1. Crossley K, Bennell K, Green S, Cowan S, McConnell J. Physical therapy for patellofemoral pain: a randomized, double-blinded, placebo-controlled trial. Am J Sports Med. 2002;30(6):857–865. doi: 10.1177/03635465020300061701.
    1. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and Osteoarthritis Outcome Score (KOOS)--development of a self-administered outcome measure. J Orthop Sports Phys Ther. 1998;28(2):88–96.
    1. Galer BS, Jensen MP. Development and preliminary validation of a pain measure specific to neuropathic pain. Neuropathic Pain Scale. 1997;48(2):332–8.
    1. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Hauser W, Katz RS, et al. Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. J Rheumatol. 2011;38(6):1113–22.
    1. Rumpf HJ, Meyer C, Hapke U, John U. Screening for mental health: validity of the MHI-5 using DSM-IV Axis I psychiatric disorders as gold standard. Psychiatry Res. 2001;105(3):243–53.
    1. Sangha O, Stucki G, Liang MH, Fossel AH, Katz JN. The self-administered comorbidity questionnaire: A new method to assess comorbidity for clinical and health services research. Arthritis Care Res. 2003;49(2):156–63.
    1. Herdman M, Gudex C, Lloyd A, Janssen MF, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. 2011;20(10):1727–36.
    1. Sullivan MJL, Bishop SR, J P. The Pain Catastrophizing Scale: Development and Validation. Psychol Assess. 1995;7(4):524–32.
    1. Zhang W, Bansback N, Boonen A, Young A, Singh A, Anis AH. Validity of the work productivity and activity impairment questionnaire - general health version in patients with rheumatoid arthritis. Arthritis Res Ther. 2010;12(5):R177-R.

Source: PubMed

3
購読する