Burden of Cause-Specific Mortality Associated With PM2.5 Air Pollution in the United States

Benjamin Bowe, Yan Xie, Yan Yan, Ziyad Al-Aly, Benjamin Bowe, Yan Xie, Yan Yan, Ziyad Al-Aly

Abstract

Importance: Ambient fine particulate matter (PM2.5) air pollution is associated with increased risk of several causes of death. However, epidemiologic evidence suggests that current knowledge does not comprehensively capture all causes of death associated with PM2.5 exposure.

Objective: To systematically identify causes of death associated with PM2.5 pollution and estimate the burden of death for each cause in the United States.

Design, setting, and participants: In a cohort study of US veterans followed up between 2006 and 2016, ensemble modeling was used to identify and characterize morphology of the association between PM2.5 and causes of death. Burden of death associated with PM2.5 exposure in the contiguous United States and for each state was then estimated by application of estimated risk functions to county-level PM2.5 estimates from the US Environmental Protection Agency and cause-specific death rate data from the Centers for Disease Control and Prevention.

Main outcomes and measures: Nonlinear exposure-response functions of the association between PM2.5 and causes of death and burden of death associated with PM2.5.

Exposures: Annual mean PM2.5 levels.

Results: A cohort of 4 522 160 US veterans (4 243 462 [93.8%] male; median [interquartile range] age, 64.1 [55.7-75.5] years; 3 702 942 [82.0%] white, 667 550 [14.8%] black, and 145 593 [3.2%] other race) was followed up for a median (interquartile range) of 10.0 (6.8-10.2) years. In the contiguous United States, PM2.5 exposure was associated with excess burden of death due to cardiovascular disease (56 070.1 deaths [95% uncertainty interval {UI}, 51 940.2-60 318.3 deaths]), cerebrovascular disease (40 466.1 deaths [95% UI, 21 770.1-46 487.9 deaths]), chronic kidney disease (7175.2 deaths [95% UI, 5910.2-8371.9 deaths]), chronic obstructive pulmonary disease (645.7 deaths [95% UI, 300.2-2490.9 deaths]), dementia (19 851.5 deaths [95% UI, 14 420.6-31 621.4 deaths]), type 2 diabetes (501.3 deaths [95% UI, 447.5-561.1 deaths]), hypertension (30 696.9 deaths [95% UI, 27 518.1-33 881.9 deaths]), lung cancer (17 545.3 deaths [95% UI, 15 055.3-20 464.5 deaths]), and pneumonia (8854.9 deaths [95% UI, 7696.2-10 710.6 deaths]). Burden exhibited substantial geographic variation. Estimated burden of death due to nonaccidental causes was 197 905.1 deaths (95% UI, 183 463.3-213 644.9 deaths); mean age-standardized death rates (per 100 000) due to nonaccidental causes were higher among black individuals (55.2 [95% UI, 50.5-60.6]) than nonblack individuals (51.0 [95% UI, 46.4-56.1]) and higher among those living in counties with high (65.3 [95% UI, 56.2-75.4]) vs low (46.1 [95% UI, 42.3-50.4]) socioeconomic deprivation; 99.0% of the burden of death due to nonaccidental causes was associated with PM2.5 levels below standards set by the US Environmental Protection Agency.

Conclusions and relevance: In this study, 9 causes of death were associated with PM2.5 exposure. The burden of death associated with PM2.5 was disproportionally borne by black individuals and socioeconomically disadvantaged communities. Effort toward cleaner air might reduce the burden of PM2.5-associated deaths.

Conflict of interest statement

Conflict of Interest Disclosures: None reported.

Figures

Figure 1.. Nonlinear Exposure-Response Hazard Functions for…
Figure 1.. Nonlinear Exposure-Response Hazard Functions for Death Due to Nonaccidental Causes and Noncommunicable Diseases
A and B, Plots are presented for both the optimal and ensembled model for nonaccidental causes (A) and noncommunicable diseases (B). The 95% uncertainty intervals are presented as bands. C, Histogram of ambient fine particulate matter (PM2.5) distribution.
Figure 2.. Nonlinear Exposure-Response Hazard Functions for…
Figure 2.. Nonlinear Exposure-Response Hazard Functions for Cause-Specific Mortality
Plots are presented for both the optimal and ensembled model. The 95% uncertainty intervals are presented as bands. PM2.5 indicates ambient fine particulate matter.
Figure 3.. Maps of the Age-Standardized Death…
Figure 3.. Maps of the Age-Standardized Death Rates Due to Specific Causes Associated With Ambient Fine Particulate Matter in the Contiguous United States by State
Color indicates a state’s number of standard deviations from the mean for each cause of death.

References

    1. Pope CA III, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med. 2009;360(4):-. doi:10.1056/NEJMsa0805646
    1. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J Med. 2000;343(24):1742-1749. doi:10.1056/NEJM200012143432401
    1. Di Q, Wang Y, Zanobetti A, et al. . Air pollution and mortality in the Medicare population. N Engl J Med. 2017;376(26):2513-2522. doi:10.1056/NEJMoa1702747
    1. Cohen AJ, Brauer M, Burnett R, et al. . Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907-1918. doi:10.1016/S0140-6736(17)30505-6
    1. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525(7569):367-371. doi:10.1038/nature15371
    1. Zhang Q, Jiang X, Tong D, et al. . Transboundary health impacts of transported global air pollution and international trade. Nature. 2017;543(7647):705-709. doi:10.1038/nature21712
    1. Landrigan PJ, Fuller R, Acosta NJR, et al. . The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462-512.
    1. Burnett R, Chen H, Szyszkowicz M, et al. . Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci U S A. 2018;115(38):9592-9597. doi:10.1073/pnas.1803222115
    1. Xie Y, Bowe B, Yan Y, Xian H, Li T, Al-Aly Z. Estimates of all cause mortality and cause specific mortality associated with proton pump inhibitors among US veterans: cohort study. BMJ. 2019;365:l1580. doi:10.1136/bmj.l1580
    1. Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z. Particulate matter air pollution and the risk of incident CKD and progression to ESRD. J Am Soc Nephrol. 2018;29(1):218-230. doi:10.1681/ASN.2017030253
    1. Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z. The 2016 global and national burden of diabetes mellitus attributable to PM2·5 air pollution. Lancet Planet Health. 2018;2(7):e301-e312. doi:10.1016/S2542-5196(18)30140-2
    1. Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z. Associations of ambient coarse particulate matter, nitrogen dioxide, and carbon monoxide with the risk of kidney disease: a cohort study. Lancet Planet Health. 2017;1(7):e267-e276. doi:10.1016/S2542-5196(17)30117-1
    1. Bowe B, Xie Y, Xian H, Lian M, Al-Aly Z. Geographic variation and US county characteristics associated with rapid kidney function decline. Kidney Int Rep. 2016;2(1):5-17. doi:10.1016/j.ekir.2016.08.016
    1. Al-Aly Z, Balasubramanian S, McDonald JR, Scherrer JF, O’Hare AM. Greater variability in kidney function is associated with an increased risk of death. Kidney Int. 2012;82(11):1208-1214. doi:10.1038/ki.2012.276
    1. Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z. Estimates of the 2016 global burden of kidney disease attributable to ambient fine particulate matter air pollution. BMJ Open. 2019;9(5):e022450. doi:10.1136/bmjopen-2018-022450
    1. Bowe B, Xie Y, Xian H, Balasubramanian S, Al-Aly Z. Low levels of high-density lipoprotein cholesterol increase the risk of incident kidney disease and its progression. Kidney Int. 2016;89(4):886-896. doi:10.1016/j.kint.2015.12.034
    1. Bowe B, Xie Y, Xian H, Balasubramanian S, Zayed MA, Al-Aly Z. High density lipoprotein cholesterol and the risk of all-cause mortality among U.S. veterans. Clin J Am Soc Nephrol. 2016;11(10):1784-1793. doi:10.2215/CJN.00730116
    1. Centers for Disease Control and Prevention National Environmental Public Health Tracking Network: indicator: annual PM2.5 level (monitor 1 modeled). . Accessed December 1, 2018.
    1. Vaidyanathan A, Dimmick WF, Kegler SR, Qualters JR. Statistical air quality predictions for public health surveillance: evaluation and generation of county level metrics of PM2.5 for the environmental public health tracking network. Int J Health Geogr. 2013;12:12. doi:10.1186/1476-072X-12-12
    1. Kind AJH, Buckingham WR. Making neighborhood-disadvantage metrics accessible—the neighborhood atlas. N Engl J Med. 2018;378(26):2456-2458. doi:10.1056/NEJMp1802313
    1. University of Wisconsin School of Medicine Public Health 2013 Area Deprivation Index. . Accessed December 1, 2018.
    1. Remington PL, Catlin BB, Gennuso KP. The County Health Rankings: rationale and methods. Popul Health Metr. 2015;13:11. doi:10.1186/s12963-015-0044-2
    1. United States Department of Health and Human Services (US DHHS) Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), Underlying Cause of Death 1999-2017 on CDC WONDER Online Database. . Accessed December 1, 2018.
    1. Bragg-Gresham J, Morgenstern H, McClellan W, et al. ; Centers for Disease Control and Prevention CKD Surveillance System . County-level air quality and the prevalence of diagnosed chronic kidney disease in the US Medicare population. PLoS One. 2018;13(7):e0200612. doi:10.1371/journal.pone.0200612
    1. Chan TC, Zhang Z, Lin BC, et al. . Long-term exposure to ambient fine particulate matter and chronic kidney disease: a cohort study. Environ Health Perspect. 2018;126(10):107002. doi:10.1289/EHP3304
    1. Miller KA, Siscovick DS, Sheppard L, et al. . Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007;356(5):447-458. doi:10.1056/NEJMoa054409
    1. Yang BY, Qian Z, Howard SW, et al. . Global association between ambient air pollution and blood pressure: a systematic review and meta-analysis. Environ Pollut. 2018;235:576-588. doi:10.1016/j.envpol.2018.01.001
    1. Chen H, Kwong JC, Copes R, et al. . Exposure to ambient air pollution and the incidence of dementia: a population-based cohort study. Environ Int. 2017;108:271-277. doi:10.1016/j.envint.2017.08.020
    1. Dominici F, Zigler C. Best practices for gauging evidence of causality in air pollution epidemiology. Am J Epidemiol. 2017;186(12):1303-1309. doi:10.1093/aje/kwx307
    1. Nethery RC, Dominici F. Estimating pollution-attributable mortality at the regional and global scales: challenges in uncertainty estimation and causal inference. Eur Heart J. 2019;40(20):1597-1599. doi:10.1093/eurheartj/ehz200
    1. Kloog I, Ridgway B, Koutrakis P, Coull BA, Schwartz JD. Long- and short-term exposure to PM2.5 and mortality: using novel exposure models. Epidemiology. 2013;24(4):555-561. doi:10.1097/EDE.0b013e318294beaa
    1. Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med. 2006;173(6):667-672. doi:10.1164/rccm.200503-443OC
    1. Lipsitch M, Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiology. 2010;21(3):383-388. doi:10.1097/EDE.0b013e3181d61eeb
    1. Franklin M, Zeka A, Schwartz J. Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J Expo Sci Environ Epidemiol. 2007;17(3):279-287. doi:10.1038/sj.jes.7500530
    1. Vodonos A, Awad YA, Schwartz J. The concentration-response between long-term PM2.5 exposure and mortality: a meta-regression approach. Environ Res. 2018;166:677-689. doi:10.1016/j.envres.2018.06.021
    1. Nasari MM, Szyszkowicz M, Chen H, et al. . A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution. Air Qual Atmos Health. 2016;9(8):961-972. doi:10.1007/s11869-016-0398-z
    1. Li T, Zhang Y, Wang J, et al. . All-cause mortality risk associated with long-term exposure to ambient PM2·5 in China: a cohort study. Lancet Public Health. 2018;3(10):e470-e477. doi:10.1016/S2468-2667(18)30144-0
    1. Lelieveld J, Klingmüller K, Pozzer A, et al. . Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J. 2019;40(20):1590-1596. doi:10.1093/eurheartj/ehz135
    1. Jaakkola MS, Jaakkola JJ. Assessment of public health impact of work-related asthma. BMC Med Res Methodol. 2012;12:22. doi:10.1186/1471-2288-12-22
    1. GBD 2017 Risk Factor Collaborators Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923-1994. doi:10.1016/S0140-6736(18)32225-6
    1. Burnett RT, Pope CA III, Ezzati M, et al. . An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 2014;122(4):397-403. doi:10.1289/ehp.1307049
    1. Di Q, Dai L, Wang Y, et al. . Association of short-term exposure to air pollution with mortality in older adults. JAMA. 2017;318(24):2446-2456. doi:10.1001/jama.2017.17923
    1. Tessum CW, Apte JS, Goodkind AL, et al. . Inequity in consumption of goods and services adds to racial-ethnic disparities in air pollution exposure. Proc Natl Acad Sci U S A. 2019;116(13):6001-6006. doi:10.1073/pnas.1818859116
    1. Bowe B, Xie Y, Li T, et al. . Changes in the US burden of chronic kidney disease from 2002 to 2016: an analysis of the global burden of disease study. JAMA Netw Open. 2018;1(7):e184412. doi:10.1001/jamanetworkopen.2018.4412
    1. Nelson K, Taylor L, Lurie N, Escarce J, McFarland L, Fihn SD. Neighborhood environment and health status and mortality among veterans. J Gen Intern Med. 2011;26(8):862-867. doi:10.1007/s11606-011-1710-0
    1. Nelson K, Schwartz G, Hernandez S, Simonetti J, Curtis I, Fihn SD. The association between neighborhood environment and mortality: results from a national study of veterans. J Gen Intern Med. 2017;32(4):416-422. doi:10.1007/s11606-016-3905-x
    1. Makar M, Antonelli J, Di Q, Cutler D, Schwartz J, Dominici F. Estimating the causal effect of low levels of fine particulate matter on hospitalization. Epidemiology. 2017;28(5):627-634. doi:10.1097/EDE.0000000000000690
    1. Shi L, Zanobetti A, Kloog I, et al. . Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. Environ Health Perspect. 2016;124(1):46-52. doi:10.1289/ehp.1409111
    1. Samet JM, Burke TA, Goldstein BD. The Trump Administration and the environment—heed the science. N Engl J Med. 2017;376(12):1182-1188. doi:10.1056/NEJMms1615242
    1. Naghavi M, Makela S, Foreman K, O’Brien J, Pourmalek F, Lozano R. Algorithms for enhancing public health utility of national causes-of-death data. Popul Health Metr. 2010;8:9. doi:10.1186/1478-7954-8-9

Source: PubMed

3
購読する