Disease and Health Inequalities Attributable to Air Pollutant Exposure in Detroit, Michigan

Sheena E Martenies, Chad W Milando, Guy O Williams, Stuart A Batterman, Sheena E Martenies, Chad W Milando, Guy O Williams, Stuart A Batterman

Abstract

The environmental burden of disease is the mortality and morbidity attributable to exposures of air pollution and other stressors. The inequality metrics used in cumulative impact and environmental justice studies can be incorporated into environmental burden studies to better understand the health disparities of ambient air pollutant exposures. This study examines the diseases and health disparities attributable to air pollutants for the Detroit urban area. We apportion this burden to various groups of emission sources and pollutants, and show how the burden is distributed among demographic and socioeconomic subgroups. The analysis uses spatially-resolved estimates of exposures, baseline health rates, age-stratified populations, and demographic characteristics that serve as proxies for increased vulnerability, e.g., race/ethnicity and income. Based on current levels, exposures to fine particulate matter (PM2.5), ozone (O₃), sulfur dioxide (SO₂), and nitrogen dioxide (NO₂) are responsible for more than 10,000 disability-adjusted life years (DALYs) per year, causing an annual monetized health impact of $6.5 billion. This burden is mainly driven by PM2.5 and O₃ exposures, which cause 660 premature deaths each year among the 945,000 individuals in the study area. NO₂ exposures, largely from traffic, are important for respiratory outcomes among older adults and children with asthma, e.g., 46% of air-pollution related asthma hospitalizations are due to NO₂ exposures. Based on quantitative inequality metrics, the greatest inequality of health burdens results from industrial and traffic emissions. These metrics also show disproportionate burdens among Hispanic/Latino populations due to industrial emissions, and among low income populations due to traffic emissions. Attributable health burdens are a function of exposures, susceptibility and vulnerability (e.g., baseline incidence rates), and population density. Because of these dependencies, inequality metrics should be calculated using the attributable health burden when feasible to avoid potentially underestimating inequality. Quantitative health impact and inequality analyses can inform health and environmental justice evaluations, providing important information to decision makers for prioritizing strategies to address exposures at the local level.

Keywords: ambient air pollution; burden of disease; health impact assessment; urban health.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Map showing the full study area boundary and the study boundaries used in the sensitivity analyses. Black diamonds show the location of ambient air quality monitors in the area. The shaded area has been classified as non-attainment with the SO2 national ambient air quality standard (NAAQS).
Figure 2
Figure 2
Maps showing the annual health burden as DALYs per 10,000 persons per year attributable to exposures from: all sources (A); and exposures from: regional sources (B); point sources (C); mobile sources (D); and area sources (E).
Figure 3
Figure 3
Annual average ambient concentrations from point sources of: PM2.5 (A); and SO2 (B). Percentage of the population identifying as: Hispanic or Latino (C); or as persons of color (excludes non-Hispanic whites) (D).

References

    1. Solomon G.M., Morello-Frosch R., Zeise L., Faust J.B. Cumulative environmental impacts: Science and policy to protect communities. Annu. Rev. Public Health. 2016;37:83–96. doi: 10.1146/annurev-publhealth-032315-021807.
    1. Mohai P., Pellow D., Roberts J.T. Annual Review of Environment and Resources. Volume 34. Annual Reviews; Palo Alto, CA, USA: 2009. Environmental Justice; pp. 405–430.
    1. O’Neill M.S., Breton C.V., Devlin R.B., Utell M.J. Air pollution and health: Emerging information on susceptible populations. Air Qual. Atmos. Health. 2012;5:189–201. doi: 10.1007/s11869-011-0150-7.
    1. Sacks J.D., Stanek L.W., Luben T.J., Johns D.O., Buckley B.J., Brown J.S., Ross M. Particulate matter-induced health effects: Who is susceptible? Environ. Health Perspect. 2011;119:446–454. doi: 10.1289/ehp.1002255.
    1. Morello-Frosch R., Zuk M., Jerrett M., Shamasunder B., Kyle A.D. Understanding the cumulative impacts of inequalities in environmental health: Implications for policy. Health Aff. 2011;30:879–887. doi: 10.1377/hlthaff.2011.0153.
    1. Su J.G., Jerrett M., Morello-Frosch R., Jesdale B.M., Kyle A.D. Inequalities in cumulative environmental burdens among three urbanized counties in California. Environ. Int. 2012;40:79–87. doi: 10.1016/j.envint.2011.11.003.
    1. Su J.G., Morello-Frosch R., Jesdale B.M., Kyle A.D., Shamasunder B., Jerrett M. An index for assessing demographic inequalities in cumulative environmental hazards with application to Los Angeles, California. Environ. Sci. Technol. 2009;43:7626–7634. doi: 10.1021/es901041p.
    1. Pratt G.C., Vadali M.L., Kvale D.L., Ellickson K.M. Traffic, air pollution, minority and socio-economic status: Addressing inequities in exposure and risk. Int. J. Environ. Res. Public Health. 2015;12:5355–5372. doi: 10.3390/ijerph120505355.
    1. August L.M., Faust J.B., Cushing L., Zeise L., Alexeeff G.V. Methodological considerations in screening for cumulative environmental health impacts: Lessons learned from a pilot study in California. Int. J. Environ. Res. Public Health. 2012;9:3069–3084. doi: 10.3390/ijerph9093069.
    1. Levy J.I., Hanna S.R. Spatial and temporal variability in urban fine particulate matter concentrations. Environ. Pollut. 2011;159:2009–2015. doi: 10.1016/j.envpol.2010.11.013.
    1. Matte T.D., Ross Z., Kheirbek I., Eisl H., Johnson S., Gorczynski J.E., Kass D., Markowitz S., Pezeshki G., Clougherty J.E. Monitoring intraurban spatial patterns of multiple combustion air pollutants in New York City: Design and implementation. J. Expo. Sci. Environ. Epidemiol. 2013;23:223–231. doi: 10.1038/jes.2012.126.
    1. Sadd J.L., Pastor M., Morello-Frosch R., Scoggins J., Jesdale B. Playing it safe: Assessing cumulative impact and social vulnerability through an environmental justice screening method in the South Coast Air Basin, California. Int. J. Environ. Res. Public Health. 2011;8:1441–1459. doi: 10.3390/ijerph8051441.
    1. US Environmental Protection Agency . EJ 2020 Action Agenda: Environmental Justice Strategic Plan 2016–2020. US EPA; Washington, DC, USA: 2016.
    1. Rhodus J., Fulk F., Autrey B., O’Shea S., Roth A. A Review of Health Impact Assessments in the U.S.: Current State-of-Science, Best Practices and Area for Improvement. U.S. Environmental Protection Agency; Washington, DC, USA: 2013.
    1. US Environmental Protection Agency . Regulatory Impact Analysis of the Proposed Revisions to the National Ambient Air Quality Standards for Ground-Level Ozone. United States Environmental Protection Agency; Research Triangle Park, NC, USA: 2014.
    1. US Environmental Protection Agency . Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate Matter. Office of Air Quality Planning and Standards; Research Triangle Park, NC, USA: 2012.
    1. US Environmental Protection Agency . Final Regulatory Impact Analysis (RIA) for the SO2 National Ambient Air Quality Standards (NAAQS) Office of Air Quality Planning and Standards; Research Triangle Park, NC, USA: 2010.
    1. US Environmental Protection Agency . Final Regulatory Impact Analysis (RIA) for the NO2 National Ambient Air Quality Standards (NAAQS) Office of Air Quality Planning and Standards; Washington, DC, USA: 2010.
    1. Fann N., Lamson A.D., Anenberg S.C., Wesson K., Risley D., Hubbell B.J. Estimating the National Public Health Burden Associated with exposure to ambient PM2.5 and ozone. Risk Anal. 2012;32:81–95. doi: 10.1111/j.1539-6924.2011.01630.x.
    1. Fann N., Roman H.A., Fulcher C.M., Gentile M.A., Hubbell B.J., Wesson K., Levy J.I. Maximizing health benefits and minimizing inequality: Incorporating local-scale data in the design and evaluation of air quality policies. Risk Anal. 2011;31:908–922. doi: 10.1111/j.1539-6924.2011.01629.x.
    1. Kheirbek I., Wheeler K., Walters S., Kass D., Matte T. PM2.5 and ozone health impacts and disparities in New York City: Sensitivity to spatial and temporal resolution. Air Qual. Atmos. Health. 2013;6:473–486. doi: 10.1007/s11869-012-0185-4.
    1. Michigan Department of Environmental Quality . Sulfur Dioxide One-Hour National Ambient Air Quality Standard Nonattainment State Implementation Plan for Wayne County (Partial) MDEQ; Lansing, MI, USA: 2016.
    1. Michigan Department of Environmental Quality . Recommendations for Area Designations for the Ozone National Ambient Air Quality Standard 2016. MDEQ; Lansing, MI, USA: 2016.
    1. Michigan Department of Health and Human Services Hospitalizations by Selected Diagnosis. [(accessed on 8 February 2016)]; Available online: .
    1. Schulz A.J., Mentz G.B., Sampson N., Ward M., Anderson R., de Majo R., Israel B.A., Lewis T.C., Wilkins D. Race and the distribution of social and physical environmental risk: A case example from the Detroit metropolitan area. Bois Rev. Soc. Sci. Res. Race. 2016;13:285–304. doi: 10.1017/S1742058X16000163.
    1. US Census Bureau 2010–2014 American Community Survey (ACS) 5-Year Estimates. [(accessed on 6 October 2016)]; Available online:
    1. US Census Bureau Detroit QuickFacts. [(accessed on 9 June 2015)]; Available online: .
    1. Batterman S., Chambliss S., Isakov V. Spatial resolution requirements for traffic-related air pollutant exposure evaluations. Atmos. Environ. 2014;94:518–528. doi: 10.1016/j.atmosenv.2014.05.065.
    1. US Census Bureau TIGER/Line® with Selected Demographic and Economic Data. [(accessed on 2 July 2015)]; Available online: .
    1. Martenies S.E., Wilkins D., Batterman S.A. Health impact metrics for air pollution management strategies. Environ. Int. 2015;85:84–95. doi: 10.1016/j.envint.2015.08.013.
    1. US Environmental Protection Agency . Integrated Science Assessment for Oxides of Nitrogen—Health Criteria. US Environmental Protection Agency; Washington, DC, USA: 2016.
    1. US Environmental Protection Agency . Integrated Science Assessment (ISA) for Sulfur Oxides—Health Criteria (Second External Review Draft) US Environmental Protection Agency; Washington, DC, USA: 2016.
    1. US Environmental Protection Agency . Integrated Science Assessment for Ozone and Related Photochemical Oxidants. US Environmental Protection Agency; Washington, DC, USA: 2013.
    1. US Environmental Protection Agency . Integrated Science Assessment for Particulate Matter. US EPA; Research Triangle Park, NC, USA: 2009.
    1. US Environmental Protection Agency . Integrated Science Assessment (ISA) for Sulfur Dioxide (Health Criteria) National Center for Environmental Assessment; Washington, DC, USA: 2008.
    1. Bell M.L., Peng R.D., Dominici F. The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environ. Health Perspect. 2006;114:532–536. doi: 10.1289/ehp.8816.
    1. Daniels M.J., Dominici F., Samet J.M., Scott L. Zeger estimating particulate matter-mortality dose-response curves and threshold levels: An analysis of daily time-series for the 20 largest USA cities. Am. J. Epidemiol. 2000;152:397–406. doi: 10.1093/aje/152.5.397.
    1. Schwartz J., Coull B., Laden F., Ryan L. The effect of dose and timing of dose on the association between airborne particles and survival. Environ. Health Perspect. 2008;116:64–69. doi: 10.1289/ehp.9955.
    1. Propper R., Wong P., Bui S., Austin J., Vance W., Alvarado A., Croes B., Luo D. Ambient and emission trends of toxic air contaminants in California. Environ. Sci. Technol. 2015;49:11329–11339. doi: 10.1021/acs.est.5b02766.
    1. Murray C.J. Quantifying the burden of disease: The technical basis for disability-adjusted life years. Bull. World Health Organ. 1994;72:429–445.
    1. Ontario Ministry of Environment and Climate Change Air Quality Ontario. [(accessed on 30 July 2016)]; Available online: .
    1. US Environmental Protection Agency AQS Data Mart. [(accessed on 30 July 2016)]; Available online: .
    1. Van Buuren S., Groothuis-Oudshoorn K. MICE: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011;25 doi: 10.18637/jss.v045.i03.
    1. Michigan Department of Environmental Quality MDEQ-Michigan Air Emissions Reporting System (MAERS) [(accessed on 25 March 2016)]; Annual Pollutant Totals Query. Available online: .
    1. US Environmental Protection Agency National Emissions Inventory. [(accessed on 10 March 2015)]; Available online: .
    1. Milando C.W., Martenies S.E., Batterman S.A. Assessing concentrations and health impacts of air quality management strategies: Framework for Rapid Emissions Scenario and Health impact ESTimation (FRESH-EST) Environ. Int. 2016;94:473–481. doi: 10.1016/j.envint.2016.06.005.
    1. Cimorelli A.J., Perry S.G., Venkatram A., Weil J.C., Paine R.J., Wilson R.B., Lee R.F., Peters W.D., Brode R.W. AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteorol. 2005;44:682–693. doi: 10.1175/JAM2227.1.
    1. US Environmental Protection Agency 2014 National Emissions Inventory (NEI) Data. [(accessed on 13 January 2017)]; Available online: .
    1. Snyder M.G., Venkatram A., Heist D.K., Perry S.G., Petersen W.B., Isakov V. RLINE: A line source dispersion model for near-surface releases. Atmos. Environ. 2013;77:748–756. doi: 10.1016/j.atmosenv.2013.05.074.
    1. US Environmental Protection Agency MOVES (Motor Vehicle Emission Simulator) [(accessed on 6 July 2015)]; Available online:
    1. Milando C., Huang L., Batterman S. Trends in PM2.5 emissions, concentrations and apportionments in Detroit and Chicago. Atmos. Environ. 2016;129:197–209. doi: 10.1016/j.atmosenv.2016.01.012.
    1. Harper S., Ruder E., Roman H.A., Geggel A., Nweke O., Payne-Sturges D., Levy J.I. Using inequality measures to incorporate environmental justice into regulatory analyses. Int. J. Environ. Res. Public Health. 2013;10:4039–4059. doi: 10.3390/ijerph10094039.
    1. Levy J.I., Greco S.L., Melly S.J., Mukhi N. Evaluating efficiency-equality tradeoffs for mobile source control strategies in an urban area. Risk Anal. 2009;29:34–47. doi: 10.1111/j.1539-6924.2008.01119.x.
    1. Levy J.I., Wilson A.M., Zwack L.M. Quantifying the efficiency and equity implications of power plant air pollution control strategies in the United States. Environ. Health Perspect. 2007;115:743–750. doi: 10.1289/ehp.9712.
    1. O’Donnell O., van Doorslaer E., Wagstaff A., Lindelow M. Analyzing Health Equity Using Household Survey Data: A Guide to Techniques and Their Implementation. The World Bank; Washington, DC, USA: 2008.
    1. Cushing L., Faust J., August L.M., Cendak R., Wieland W., Alexeeff G. Racial/ethnic disparities in cumulative environmental health impacts in California: Evidence from a statewide environmental justice screening tool (CalEnviroScreen 1.1) Am. J. Public Health. 2015;105:2341–2348. doi: 10.2105/AJPH.2015.302643.
    1. Boehmer T.K., Foster S.L., Henry J.R., Woghiren-Akinnifesi E.L., Yip F.Y. Centers for Disease Control and Prevention (CDC). Residential proximity to major highways—United States, 2010. Morb. Mortal. Wkly. Rep. 2013;62(Suppl. 3):46–50.
    1. Tian N., Xue J., Barzyk T.M. Evaluating socioeconomic and racial differences in traffic-related metrics in the United States using a GIS approach. J. Expo. Sci. Environ. Epidemiol. 2013;23:215–222. doi: 10.1038/jes.2012.83.
    1. Schwartz J., Bind M.-A., Koutrakis P. Estimating causal effects of local air pollution on daily deaths: Effect of low levels. Environ. Health Perspect. 2017;125:23. doi: 10.1289/EHP232.
    1. Shi L., Zanobetti A., Kloog I., Coull B.A., Koutrakis P., Melly S.J., Schwartz J.D. Low-concentration PM2.5 and mortality: Estimating acute and chronic effects in a population-based study. Environ. Health Perspect. 2016;124:46–52. doi: 10.1289/ehp.1409111.
    1. Goodkind A.L., Coggins J.S., Marshall J.D. A spatial model of air pollution: The impact of the concentration-response function. J. Assoc. Environ. Resour. Econ. 2014;1:451–479. doi: 10.1086/678985.
    1. Pope C.A., Cropper M., Coggins J., Cohen A. Health benefits of air pollution abatement policy: Role of the shape of the concentration-response function. J. Air Waste Manag. Assoc. 2015;65:516–522. doi: 10.1080/10962247.2014.993004.
    1. Meng Z., Dabdub D., Seinfeld J.H. Chemical coupling between atmospheric ozone and particulate matter. Science. 1997;277:116–119. doi: 10.1126/science.277.5322.116.
    1. Sacks J.D., Fann N., Owens E.O., Costa D.L. Using science to shape policy. In: Nadadur S.S., Hollingsworth J.W., editors. Air Pollution and Health Effects. Molecular and Integrative Toxicology; Springer; London, UK: 2015. pp. 403–436.
    1. Batterman S., Ganguly R., Harbin P. High resolution spatial and temporal mapping of traffic-related air pollutants. Int. J. Environ. Res. Public Health. 2015;12:3646–3666. doi: 10.3390/ijerph120403646.
    1. Padró-Martínez L.T., Patton A.P., Trull J.B., Zamore W., Brugge D., Durant J.L. Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year. Atmos. Environ. 2012;61:253–264. doi: 10.1016/j.atmosenv.2012.06.088.
    1. Patton A.P., Perkins J., Zamore W., Levy J.I., Brugge D., Durant J.L. Spatial and temporal differences in traffic-related air pollution in three urban neighborhoods near an interstate highway. Atmos. Environ. 2014;99:309–321. doi: 10.1016/j.atmosenv.2014.09.072.
    1. Schulz A.J., Williams D.R., Israel B.A., Lempert L.B. Racial and spatial relations as fundamental determinants of health in Detroit. Milbank Q. 2002;80:677–707. doi: 10.1111/1468-0009.00028.
    1. De la Cruz P., Brittingham A. The Arab Population: 2000. Census Bureau; Suitland, MD, USA: 2003. Census 2000 Brief.
    1. Padela A.I., Heisler M. The association of perceived abuse and discrimination after 11 September 2001, with psychological distress, level of happiness, and health status among Arab Americans. Am. J. Public Health. 2010;100:284–291. doi: 10.2105/AJPH.2009.164954.
    1. Samari G. Islamophobia and public health in the United States. Am. J. Public Health. 2016;106:1920–1925. doi: 10.2105/AJPH.2016.303374.
    1. Robert Wood Johnson Foundation Michigan: County Health Rankings & Roadmaps. [(accessed on 12 April 2017)]; Available online: .
    1. Gray S.C., Edwards S.E., Miranda M.L. Race, socioeconomic status, and air pollution exposure in North Carolina. Environ. Res. 2013;126:152–158. doi: 10.1016/j.envres.2013.06.005.
    1. Jones M.R., Diez-Roux A.V., Hajat A., Kershaw K.N., O’Neill M.S., Guallar E., Post W.S., Kaufman J.D., Navas-Acien A. Race/ethnicity, residential segregation, and exposure to ambient air pollution: The multi-ethnic study of atherosclerosis (MESA) Am. J. Public Health. 2014;104:2130–2137. doi: 10.2105/AJPH.2014.302135.
    1. Pope R., Wu J., Boone C. Spatial patterns of air pollutants and social groups: A distributive environmental justice study in the phoenix metropolitan region of USA. Environ. Manag. 2016;58:753–766. doi: 10.1007/s00267-016-0741-z.
    1. Prochaska J.D., Nolen A.B., Kelley H., Sexton K., Linder S.H., Sullivan J. Social determinants of health in environmental justice communities: Examining cumulative risk in terms of environmental exposures and social determinants of health. Hum. Ecol. Risk Assess. 2014;20:980–994. doi: 10.1080/10807039.2013.805957.
    1. Batterman S., Burke J., Isakov V., Lewis T., Mukherjee B., Robins T. A comparison of exposure metrics for traffic-related air pollutants: Application to epidemiology studies in Detroit, Michigan. Int. J. Environ. Res. Public Health. 2014;11:9553–9577. doi: 10.3390/ijerph110909553.
    1. Brender J.D., Maantay J.A., Chakraborty J. Residential proximity to environmental hazards and adverse health outcomes. Am. J. Public Health. 2011;101:S37–S52. doi: 10.2105/AJPH.2011.300183.
    1. US Environmental Protection Agency . Technical Support Document: EPA’s 2011 National-Scale Air Toxics Assessment. Office of Air Quality Planning and Standards; Research Triangle Park, NC, USA: 2015.
    1. Fann N., Fulcher C.M., Hubbell B.J. The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution. Air Qual. Atmos. Health. 2009;2:169–176. doi: 10.1007/s11869-009-0044-0.
    1. De Hollander A.E., Melse J.M., Lebret E., Kramers P.G. An aggregate public health indicator to represent the impact of multiple environmental exposures. Epidemiology. 1999;10:606–617. doi: 10.1097/00001648-199909000-00030.
    1. Haagsma J.A., Polinder S., Cassini A., Colzani E., Havelaar A.H. Review of disability weight studies: Comparison of methodological choices and values. Popul. Health Metr. 2014;12:20. doi: 10.1186/s12963-014-0020-2.
    1. O’Connell E., Hurley F. A review of the strengths and weaknesses of quantitative methods used in health impact assessment. Public Health. 2009;123:306–310. doi: 10.1016/j.puhe.2009.02.008.
    1. Brody S.D., Peck B.M., Highfield W.E. Examining localized patterns of air quality perception in Texas: A spatial and statistical analysis. Risk Anal. 2004;24:1561–1574. doi: 10.1111/j.0272-4332.2004.00550.x.
    1. Downey L., Willigen M.V. Environmental stressors: The mental health impacts of living near industrial activity. J. Health Soc. Behav. 2005;46:289–305. doi: 10.1177/002214650504600306.
    1. Basner M., Babisch W., Davis A., Brink M., Clark C., Janssen S., Stansfeld S. Auditory and non-auditory effects of noise on health. Lancet. 2014;383:1325–1332. doi: 10.1016/S0140-6736(13)61613-X.
    1. Bhatia R., Seto E. Quantitative estimation in health impact assessment: Opportunities and challenges. Environ. Impact Assess. Rev. 2011;31:301–309. doi: 10.1016/j.eiar.2010.08.003.
    1. Fehr R., Hurley F., Mekel O.C., Mackenbach J.P. Quantitative health impact assessment: Taking stock and moving forward. J. Epidemiol. Community Health. 2012;66:1088–1091. doi: 10.1136/jech-2011-200835.
    1. Wolch J.R., Byrne J., Newell J.P. Urban green space, public health, and environmental justice: The challenge of making cities “just green enough”. Landsc. Urban Plan. 2014;125:234–244. doi: 10.1016/j.landurbplan.2014.01.017.
    1. Bertazzon S., Johnson M., Eccles K., Kaplan G.G. Accounting for spatial effects in land use regression for urban air pollution modeling. Spat. Spat.-Temp. Epidemiol. 2015;14–15:9–21. doi: 10.1016/j.sste.2015.06.002.
    1. Hoek G., Beelen R., de Hoogh K., Vienneau D., Gulliver J., Fischer P., Briggs D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008;42:7561–7578. doi: 10.1016/j.atmosenv.2008.05.057.
    1. Jerrett M., Burnett R.T., Ma R., Pope C.A., Krewski D., Newbold K.B., Thurston G., Shi Y., Finkelstein N., Calle E.E., et al. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology. 2005;16:727–736. doi: 10.1097/01.ede.0000181630.15826.7d.
    1. Baccini M., Grisotto L., Catelan D., Consonni D., Bertazzi P.A., Biggeri A. Commuting-adjusted short-term health impact assessment of airborne fine particles with uncertainty quantification via Monte Carlo simulation. Environ. Health Perspect. 2015;123:27–33. doi: 10.1289/ehp.1408218.
    1. Tchepel O., Dias D. Quantification of health benefits related with reduction of atmospheric PM10 levels: Implementation of population mobility approach. Int. J. Environ. Health Res. 2011;21:189–200. doi: 10.1080/09603123.2010.520117.
    1. Chart-Asa C., Gibson J.M. Health impact assessment of traffic-related air pollution at the urban project scale: Influence of variability and uncertainty. Sci. Total Environ. 2015;506–507:409–421. doi: 10.1016/j.scitotenv.2014.11.020.
    1. Briggs D.J., Sabel C.E., Lee K. Uncertainty in epidemiology and health risk and impact assessment. Environ. Geochem. Health. 2009;31:189–203. doi: 10.1007/s10653-008-9214-5.
    1. Fuentes M. Statistical issues in health impact assessment at the state and local levels. Air Qual. Atmos. Health. 2009;2:47–55. doi: 10.1007/s11869-009-0033-3.
    1. Levy J.I. Issues and uncertainties in estimating the health benefits of air pollution control. J. Toxicol. Environ. Health A. 2003;66:1865–1871. doi: 10.1080/15287390306423.
    1. Mesa-Frias M., Chalabi Z., Vanni T., Foss A.M. Uncertainty in environmental health impact assessment: Quantitative methods and perspectives. Int. J. Environ. Health Res. 2013;23:16–30. doi: 10.1080/09603123.2012.678002.
    1. US Environmental Protection Agency . Integrated Science Assessment for Oxides of Nitrogen—Health Criteria. US EPA; Washington, DC, USA: 2009.
    1. DeGuire P., Cao B., Wisnieski L., Strane D., Wahl R., Lyon-Callo S., Garcia E. Detroit: The Current Status of the Asthma Burden. Michigan Department of Health and Human Services; Hart, MI, USA: 2016.
    1. Michigan Department of Health and Human Services Michigan Asthma Surveillance, Data and Reports. [(accessed on 8 February 2016)]; Available online: .
    1. Batterman S.A., Lewis T., Robins T., Mentz G., Milando C.W., Mukherjee B. Effects of SO2 exposures below the national ambient air quality standards in a cohor of children with asthma in Detroit, Michigan. 2017. Unpublished work.
    1. US Environmental Protection Agency . BenMAP User’s Manual. US EPA; Research Triangle Park, NC, USA: 2015.
    1. Hubbell B.J., Fann N., Levy J.I. Methodological considerations in developing local-scale health impact assessments: Balancing national, regional, and local data. Air Qual. Atmos. Health. 2009;2:99–110. doi: 10.1007/s11869-009-0037-z.
    1. US Environmental Protection Agency . Guidelines for Preparing Economic Analyses 2010. US EPA; Washington, DC, USA: 2010.

Source: PubMed

3
購読する