Dysautonomia and Implications for Anosmia in Long COVID-19 Disease

Alexandre Vallée, Alexandre Vallée

Abstract

Long COVID-19 patients often reported anosmia as one of the predominant persisting symptoms. Recent findings have shown that anosmia is associated with neurological dysregulations. However, the involvement of the autonomic nervous system (ANS), which can aggregate all the long COVID-19 neurological symptoms, including anosmia, has not received much attention in the literature. Dysautonomia is characterized by the failure of the activities of components in the ANS. Long COVID-19 anosmia fatigue could result from damage to olfactory sensory neurons, leading to an augmentation in the resistance to cerebrospinal fluid outflow by the cribriform plate, and further causing congestion of the glymphatic system with subsequent toxic build-up in the brain. Studies have shown that anosmia was an important neurologic symptom described in long COVID-19 in association with potential COVID-19 neurotropism. SARS-CoV-2 can either travel via peripheral blood vessels causing endothelial dysfunction, triggering coagulation cascade and multiple organ dysfunction, or reach the systemic circulation and take a different route to the blood-brain barrier, damaging the blood-brain barrier and leading to neuroinflammation and neuronal excitotoxicity. SARS-CoV-2 entry via the olfactory epithelium and the increase in the expression of TMPRSS2 with ACE2 facilitates SARS-CoV-2 neurotropism and then dysautonomia in long COVID-19 patients. Due to this effect, patients with anosmia persisting 3 months after COVID-19 diagnosis showed extensive destruction of the olfactory epithelium. Persistent anosmia observed among long COVID-19 patients may be involved by a cascade of effects generated by dysautonomia leading to ACE2 antibodies enhancing a persistent immune activation.

Keywords: ACE2; COVID-19; anosmia; dysautonomia; long COVID-19; neurotropism.

Conflict of interest statement

The author declares no conflict of interest.

References

    1. Carfì A., Bernabei R., Landi F. Gemelli Against COVID-19 Post-Acute Care Study Group Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324:603–605. doi: 10.1001/jama.2020.12603.
    1. Goërtz Y.M.J., Van Herck M., Delbressine J.M., Vaes A.W., Meys R., Machado F.V.C., Houben-Wilke S., Burtin C., Posthuma R., Franssen F.M.E., et al. Persistent Symptoms 3 Months after a SARS-CoV-2 Infection: The Post-COVID-19 Syndrome? ERJ Open Res. 2020;6 doi: 10.1183/23120541.00542-2020.
    1. Gerkin R.C., Ohla K., Veldhuizen M.G., Joseph P.V., Kelly C.E., Bakke A.J., Steele K.E., Farruggia M.C., Pellegrino R., Pepino M.Y., et al. Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chem. Senses. 2021;46:bjaa081. doi: 10.1093/chemse/bjaa081.
    1. Giacomelli A., Pezzati L., Conti F., Bernacchia D., Siano M., Oreni L., Rusconi S., Gervasoni C., Ridolfo A.L., Rizzardini G., et al. Self-Reported Olfactory and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-Sectional Study. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020;71:889–890. doi: 10.1093/cid/ciaa330.
    1. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R., Horoi M., Le Bon S.D., Rodriguez A., Dequanter D., Blecic S., El Afia F., Distinguin L., et al. Olfactory and Gustatory Dysfunctions as a Clinical Presentation of Mild-to-Moderate Forms of the Coronavirus Disease (COVID-19): A Multicenter European Study. Eur. Arch. Oto-Rhino-Laryngol. Off. J. Eur. Fed. Oto-Rhino-Laryngol. Soc. EUFOS Affil. Ger. Soc. Oto-Rhino-Laryngol. Head Neck Surg. 2020;277:2251–2261. doi: 10.1007/s00405-020-05965-1.
    1. Liotta E.M., Batra A., Clark J.R., Shlobin N.A., Hoffman S.C., Orban Z.S., Koralnik I.J. Frequent Neurologic Manifestations and Encephalopathy-Associated Morbidity in COVID-19 Patients. Ann. Clin. Transl. Neurol. 2020;7:2221–2230. doi: 10.1002/acn3.51210.
    1. Augustin M., Schommers P., Stecher M., Dewald F., Gieselmann L., Gruell H., Horn C., Vanshylla K., Cristanziano V.D., Osebold L., et al. Post-COVID Syndrome in Non-Hospitalised Patients with COVID-19: A Longitudinal Prospective Cohort Study. Lancet Reg. Health Eur. 2021;6:100122. doi: 10.1016/j.lanepe.2021.100122.
    1. Altundag A., Saatci O., Sanli D.E.T., Duz O.A., Sanli A.N., Olmuscelik O., Temirbekov D., Kandemirli S.G., Karaaltin A.B. The Temporal Course of COVID-19 Anosmia and Relation to Other Clinical Symptoms. Eur. Arch. Oto-Rhino-Laryngol. 2021;278:1891–1897. doi: 10.1007/s00405-020-06496-5.
    1. Barizien N., Le Guen M., Russel S., Touche P., Huang F., Vallée A. Clinical Characterization of Dysautonomia in Long COVID-19 Patients. Sci. Rep. 2021;11:14042. doi: 10.1038/s41598-021-93546-5.
    1. Graham E.L., Clark J.R., Orban Z.S., Lim P.H., Szymanski A.L., Taylor C., DiBiase R.M., Jia D.T., Balabanov R., Ho S.U., et al. Persistent Neurologic Symptoms and Cognitive Dysfunction in Non-Hospitalized COVID-19 “Long Haulers”. Ann. Clin. Transl. Neurol. 2021;8:1073–1085. doi: 10.1002/acn3.51350.
    1. Sudre C.H., Murray B., Varsavsky T., Graham M.S., Penfold R.S., Bowyer R.C., Pujol J.C., Klaser K., Antonelli M., Canas L.S., et al. Attributes and Predictors of Long COVID. Nat. Med. 2021;27:626–631. doi: 10.1038/s41591-021-01292-y.
    1. Montalvan V., Lee J., Bueso T., De Toledo J., Rivas K. Neurological Manifestations of COVID-19 and Other Coronavirus Infections: A Systematic Review. Clin. Neurol. Neurosurg. 2020;194:105921. doi: 10.1016/j.clineuro.2020.105921.
    1. Brann D.H., Tsukahara T., Weinreb C., Lipovsek M., Van den Berge K., Gong B., Chance R., Macaulay I.C., Chou H.-J., Fletcher R.B., et al. Non-Neuronal Expression of SARS-CoV-2 Entry Genes in the Olfactory System Suggests Mechanisms Underlying COVID-19-Associated Anosmia. Sci. Adv. 2020;6:eabc5801. doi: 10.1126/sciadv.abc5801.
    1. Fodoulian L., Tuberosa J., Rossier D., Boillat M., Kan C., Pauli V., Egervari K., Lobrinus J.A., Landis B.N., Carleton A., et al. SARS-CoV-2 Receptors and Entry Genes Are Expressed in the Human Olfactory Neuroepithelium and Brain. iScience. 2020;23:101839. doi: 10.1016/j.isci.2020.101839.
    1. Eshak N., Abdelnabi M., Ball S., Elgwairi E., Creed K., Test V., Nugent K. Dysautonomia: An Overlooked Neurological Manifestation in a Critically Ill COVID-19 Patient. Am. J. Med. Sci. 2020;360:427–429. doi: 10.1016/j.amjms.2020.07.022.
    1. Dani M., Dirksen A., Taraborrelli P., Torocastro M., Panagopoulos D., Sutton R., Lim P.B. Autonomic Dysfunction in “Long COVID”: Rationale, Physiology and Management Strategies. Clin. Med. Lond. Engl. 2020 doi: 10.7861/clinmed.2020-0896.
    1. Balcom E.F., Nath A., Power C. Acute and Chronic Neurological Disorders in COVID-19: Potential Mechanisms of Disease. Brain J. Neurol. 2021:awab302. doi: 10.1093/brain/awab302.
    1. Moldofsky H., Patcai J. Chronic Widespread Musculoskeletal Pain, Fatigue, Depression and Disordered Sleep in Chronic Post-SARS Syndrome; a Case-Controlled Study. BMC Neurol. 2011;11:37. doi: 10.1186/1471-2377-11-37.
    1. Desforges M., Le Coupanec A., Stodola J.K., Meessen-Pinard M., Talbot P.J. Human Coronaviruses: Viral and Cellular Factors Involved in Neuroinvasiveness and Neuropathogenesis. Virus Res. 2014;194:145–158. doi: 10.1016/j.virusres.2014.09.011.
    1. Alam S.B., Willows S., Kulka M., Sandhu J.K. Severe Acute Respiratory Syndrome Coronavirus 2 May Be an Underappreciated Pathogen of the Central Nervous System. Eur. J. Neurol. 2020;27:2348–2360. doi: 10.1111/ene.14442.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet Lond. Engl. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., Chang J., Hong C., Zhou Y., Wang D., et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:683–690. doi: 10.1001/jamaneurol.2020.1127.
    1. Vabret N., Britton G.J., Gruber C., Hegde S., Kim J., Kuksin M., Levantovsky R., Malle L., Moreira A., Park M.D., et al. Immunology of COVID-19: Current State of the Science. Immunity. 2020;52:910–941. doi: 10.1016/j.immuni.2020.05.002.
    1. Zubair A.S., McAlpine L.S., Gardin T., Farhadian S., Kuruvilla D.E., Spudich S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020;77:1018–1027. doi: 10.1001/jamaneurol.2020.2065.
    1. Jafarzadeh A., Chauhan P., Saha B., Jafarzadeh S., Nemati M. Contribution of Monocytes and Macrophages to the Local Tissue Inflammation and Cytokine Storm in COVID-19: Lessons from SARS and MERS, and Potential Therapeutic Interventions. Life Sci. 2020;257:118102. doi: 10.1016/j.lfs.2020.118102.
    1. Paniz-Mondolfi A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky J., Sordillo E.M., Fowkes M. Central Nervous System Involvement by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) J. Med. Virol. 2020;92:699–702. doi: 10.1002/jmv.25915.
    1. Buzhdygan T.P., DeOre B.J., Baldwin-Leclair A., Bullock T.A., McGary H.M., Khan J.A., Razmpour R., Hale J.F., Galie P.A., Potula R., et al. The SARS-CoV-2 Spike Protein Alters Barrier Function in 2D Static and 3D Microfluidic in-Vitro Models of the Human Blood-Brain Barrier. Neurobiol. Dis. 2020;146:105131. doi: 10.1016/j.nbd.2020.105131.
    1. Chakravarty N., Senthilnathan T., Paiola S., Gyani P., Castillo Cario S., Urena E., Jeysankar A., Jeysankar P., Ignatius Irudayam J., Natesan Subramanian S., et al. Neurological Pathophysiology of SARS-CoV-2 and Pandemic Potential RNA Viruses: A Comparative Analysis. FEBS Lett. 2021 doi: 10.1002/1873-3468.14227.
    1. Butowt R., von Bartheld C.S. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neurosci. Rev. J. Bring. Neurobiol. Neurol. Psychiatry. 2020 doi: 10.1177/1073858420956905.
    1. Wostyn P. COVID-19 and Chronic Fatigue Syndrome: Is the Worst yet to Come? Med. Hypotheses. 2021;146:110469. doi: 10.1016/j.mehy.2020.110469.
    1. Pouga L. Encephalitic Syndrome and Anosmia in COVID-19: Do These Clinical Presentations Really Reflect SARS-CoV-2 Neurotropism? A Theory Based on the Review of 25 COVID-19 Cases. J. Med. Virol. 2021;93:550–558. doi: 10.1002/jmv.26309.
    1. Meinhardt J., Radke J., Dittmayer C., Franz J., Thomas C., Mothes R., Laue M., Schneider J., Brünink S., Greuel S., et al. Olfactory Transmucosal SARS-CoV-2 Invasion as a Port of Central Nervous System Entry in Individuals with COVID-19. Nat. Neurosci. 2021;24:168–175. doi: 10.1038/s41593-020-00758-5.
    1. Burki N.K., Lee L.-Y. Mechanisms of Dyspnea. Chest. 2010;138:1196–1201. doi: 10.1378/chest.10-0534.
    1. González-Duarte A., Norcliffe-Kaufmann L. Is “happy Hypoxia” in COVID-19 a Disorder of Autonomic Interoception? A Hypothesis. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 2020;30:331–333. doi: 10.1007/s10286-020-00715-z.
    1. Gupta K., Mohanty S.K., Mittal A., Kalra S., Kumar S., Mishra T., Ahuja J., Sengupta D., Ahuja G. The Cellular Basis of Loss of Smell in 2019-NCoV-Infected Individuals. Brief. Bioinform. 2021;22:873–881. doi: 10.1093/bib/bbaa168.
    1. Gourtsoyannis J. COVID-19: Possible Reasons for the Increased Prevalence of Olfactory and Gustatory Dysfunction Observed in European Studies. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020:ciaa685. doi: 10.1093/cid/ciaa685.
    1. Somekh I., Yakub Hanna H., Heller E., Bibi H., Somekh E. Age-Dependent Sensory Impairment in COVID-19 Infection and Its Correlation with ACE2 Expression. Pediatr. Infect. Dis. J. 2020;39:e270–e272. doi: 10.1097/INF.0000000000002817.
    1. Bryche B., St Albin A., Murri S., Lacôte S., Pulido C., Ar Gouilh M., Lesellier S., Servat A., Wasniewski M., Picard-Meyer E., et al. Massive Transient Damage of the Olfactory Epithelium Associated with Infection of Sustentacular Cells by SARS-CoV-2 in Golden Syrian Hamsters. Brain. Behav. Immun. 2020;89:579–586. doi: 10.1016/j.bbi.2020.06.032.
    1. Eshraghi A.A., Mirsaeidi M., Davies C., Telischi F.F., Chaudhari N., Mittal R. Potential Mechanisms for COVID-19 Induced Anosmia and Dysgeusia. Front. Physiol. 2020;11:1039. doi: 10.3389/fphys.2020.01039.
    1. Sagare A.P., Sweeney M.D., Makshanoff J., Zlokovic B.V. Shedding of Soluble Platelet-Derived Growth Factor Receptor-β from Human Brain Pericytes. Neurosci. Lett. 2015;607:97–101. doi: 10.1016/j.neulet.2015.09.025.
    1. Miners J.S., Kehoe P.G., Love S., Zetterberg H., Blennow K. CSF Evidence of Pericyte Damage in Alzheimer’s Disease Is Associated with Markers of Blood-Brain Barrier Dysfunction and Disease Pathology. Alzheimers Res. Ther. 2019;11:81. doi: 10.1186/s13195-019-0534-8.
    1. Nation D.A., Sweeney M.D., Montagne A., Sagare A.P., D’Orazio L.M., Pachicano M., Sepehrband F., Nelson A.R., Buennagel D.P., Harrington M.G., et al. Blood-Brain Barrier Breakdown Is an Early Biomarker of Human Cognitive Dysfunction. Nat. Med. 2019;25:270–276. doi: 10.1038/s41591-018-0297-y.
    1. Lindahl P., Johansson B.R., Levéen P., Betsholtz C. Pericyte Loss and Microaneurysm Formation in PDGF-B-Deficient Mice. Science. 1997;277:242–245. doi: 10.1126/science.277.5323.242.
    1. Edén A., Simrén J., Price R.W., Zetterberg H., Gisslén M. Neurochemical Biomarkers to Study CNS Effects of COVID-19: A Narrative Review and Synthesis. J. Neurochem. 2021;159:61–77. doi: 10.1111/jnc.15459.
    1. Nataraj C., Oliverio M.I., Mannon R.B., Mannon P.J., Audoly L.P., Amuchastegui C.S., Ruiz P., Smithies O., Coffman T.M. Angiotensin II Regulates Cellular Immune Responses through a Calcineurin-Dependent Pathway. J. Clin. Invest. 1999;104:1693–1701. doi: 10.1172/JCI7451.
    1. Ruiz-Ortega M., Lorenzo O., Suzuki Y., Rupérez M., Egido J. Proinflammatory Actions of Angiotensins. Curr. Opin. Nephrol. Hypertens. 2001;10:321–329. doi: 10.1097/00041552-200105000-00005.
    1. Simões e Silva A.C., Silveira K.D., Ferreira A.J., Teixeira M.M. ACE2, Angiotensin-(1-7) and Mas Receptor Axis in Inflammation and Fibrosis. Br. J. Pharmacol. 2013;169:477–492. doi: 10.1111/bph.12159.
    1. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y., Deng W., et al. A Crucial Role of Angiotensin Converting Enzyme 2 (ACE2) in SARS Coronavirus-Induced Lung Injury. Nat. Med. 2005;11:875–879. doi: 10.1038/nm1267.
    1. Verma S., Abbas M., Verma S., Khan F.H., Raza S.T., Siddiqi Z., Ahmad I., Mahdi F. Impact of I/D Polymorphism of Angiotensin-Converting Enzyme 1 (ACE1) Gene on the Severity of COVID-19 Patients. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2021;91:104801. doi: 10.1016/j.meegid.2021.104801.
    1. Fujii H., Tsuji T., Yuba T., Tanaka S., Suga Y., Matsuyama A., Omura A., Shiotsu S., Takumi C., Ono S., et al. High Levels of Anti-SSA/Ro Antibodies in COVID-19 Patients with Severe Respiratory Failure: A Case-Based Review: High Levels of Anti-SSA/Ro Antibodies in COVID-19. Clin. Rheumatol. 2020;39:3171–3175. doi: 10.1007/s10067-020-05359-y.
    1. Zhang Y., Cao W., Jiang W., Xiao M., Li Y., Tang N., Liu Z., Yan X., Zhao Y., Li T., et al. Profile of Natural Anticoagulant, Coagulant Factor and Anti-Phospholipid Antibody in Critically Ill COVID-19 Patients. J. Thromb. Thrombolysis. 2020;50:580–586. doi: 10.1007/s11239-020-02182-9.
    1. Bastard P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.-H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., et al. Autoantibodies against Type I IFNs in Patients with Life-Threatening COVID-19. Science. 2020;370:eabd4585. doi: 10.1126/science.abd4585.
    1. Arthur J.M., Forrest J.C., Boehme K.W., Kennedy J.L., Owens S., Herzog C., Liu J., Harville T.O. Development of ACE2 Autoantibodies after SARS-CoV-2 Infection. PLoS ONE. 2021;16:e0257016. doi: 10.1371/journal.pone.0257016.
    1. Patel S.K., Juno J.A., Lee W.S., Wragg K.M., Hogarth P.M., Kent S.J., Burrell L.M. Plasma ACE2 Activity Is Persistently Elevated Following SARS-CoV-2 Infection: Implications for COVID-19 Pathogenesis and Consequences. Eur. Respir. J. 2021;57:2003730. doi: 10.1183/13993003.03730-2020.
    1. Wang E.Y., Mao T., Klein J., Dai Y., Huck J.D., Jaycox J.R., Liu F., Zhou T., Israelow B., Wong P., et al. Diverse Functional Autoantibodies in Patients with COVID-19. Nature. 2021;595:283–288. doi: 10.1038/s41586-021-03631-y.
    1. Yelin D., Wirtheim E., Vetter P., Kalil A.C., Bruchfeld J., Runold M., Guaraldi G., Mussini C., Gudiol C., Pujol M., et al. Long-Term Consequences of COVID-19: Research Needs. Lancet Infect. Dis. 2020;20:1115–1117. doi: 10.1016/S1473-3099(20)30701-5.
    1. Song E., Zhang C., Israelow B., Lu-Culligan A., Prado A.V., Skriabine S., Lu P., Weizman O.-E., Liu F., Dai Y., et al. Neuroinvasion of SARS-CoV-2 in Human and Mouse Brain. J. Exp. Med. 2021;218:e20202135. doi: 10.1084/jem.20202135.
    1. Kawakami A., Kitsukawa T., Takagi S., Fujisawa H. Developmentally Regulated Expression of a Cell Surface Protein, Neuropilin, in the Mouse Nervous System. J. Neurobiol. 1996;29:1–17. doi: 10.1002/(SICI)1097-4695(199601)29:1<1::AID-NEU1>;2-F.
    1. Cantuti-Castelvetri L., Ojha R., Pedro L.D., Djannatian M., Franz J., Kuivanen S., van der Meer F., Kallio K., Kaya T., Anastasina M., et al. Neuropilin-1 Facilitates SARS-CoV-2 Cell Entry and Infectivity. Science. 2020;370:856–860. doi: 10.1126/science.abd2985.
    1. Kumar R., Harilal S., Sabitha M., Pappachan L.K., Roshni P.R., Mathew B. Current Perspective of COVID-19 on Neurology: A Mechanistic Insight. Comb. Chem. High Throughput Screen. 2021 doi: 10.2174/1386207324666210805121828.
    1. Bilinska K., Jakubowska P., Von Bartheld C.S., Butowt R. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chem. Neurosci. 2020;11:1555–1562. doi: 10.1021/acschemneuro.0c00210.
    1. Ramani A., Müller L., Ostermann P.N., Gabriel E., Abida-Islam P., Müller-Schiffmann A., Mariappan A., Goureau O., Gruell H., Walker A., et al. SARS-CoV-2 Targets Neurons of 3D Human Brain Organoids. EMBO J. 2020;39:e106230. doi: 10.15252/embj.2020106230.
    1. Yang L., Han Y., Nilsson-Payant B.E., Gupta V., Wang P., Duan X., Tang X., Zhu J., Zhao Z., Jaffré F., et al. A Human Pluripotent Stem Cell-Based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell. 2020;27:125–136. doi: 10.1016/j.stem.2020.06.015.
    1. Pellegrini L., Albecka A., Mallery D.L., Kellner M.J., Paul D., Carter A.P., James L.C., Lancaster M.A. SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell. 2020;27:951–961. doi: 10.1016/j.stem.2020.10.001.
    1. Daly J.L., Simonetti B., Klein K., Chen K.-E., Williamson M.K., Antón-Plágaro C., Shoemark D.K., Simón-Gracia L., Bauer M., Hollandi R., et al. Neuropilin-1 Is a Host Factor for SARS-CoV-2 Infection. Science. 2020;370:861–865. doi: 10.1126/science.abd3072.
    1. Chen M., Shen W., Rowan N.R., Kulaga H., Hillel A., Ramanathan M., Lane A.P. Elevated ACE-2 Expression in the Olfactory Neuroepithelium: Implications for Anosmia and Upper Respiratory SARS-CoV-2 Entry and Replication. Eur. Respir. J. 2020;56:2001948. doi: 10.1183/13993003.01948-2020.
    1. He L., Mäe M.A., Muhl L., Sun Y., Pietilä R., Nahar K., Liébanas E.V., Fagerlund M.J., Oldner A., Liu J., et al. Pericyte-Specific Vascular Expression of SARS-CoV-2 Receptor ACE2—Implications for Microvascular Inflammation and Hypercoagulopathy in COVID-19 patients. BioRxiv. 2020 doi: 10.1101/2020.05.11.088500.
    1. Lecarpentier Y., Vallée A. The Key Role of the Level of ACE2 Gene Expression in SARS-CoV-2 Infection. Aging. 2021;13:14552–14556. doi: 10.18632/aging.203181.
    1. Beltrán-Corbellini Á., Chico-García J.L., Martínez-Poles J., Rodríguez-Jorge F., Natera-Villalba E., Gómez-Corral J., Gómez-López A., Monreal E., Parra-Díaz P., Cortés-Cuevas J.L., et al. Acute-Onset Smell and Taste Disorders in the Context of COVID-19: A Pilot Multicentre Polymerase Chain Reaction Based Case-Control Study. Eur. J. Neurol. 2020;27:1738–1741. doi: 10.1111/ene.14273.
    1. Zahra S.A., Iddawela S., Pillai K., Choudhury R.Y., Harky A. Can Symptoms of Anosmia and Dysgeusia Be Diagnostic for COVID-19? Brain Behav. 2020;10:e01839. doi: 10.1002/brb3.1839.
    1. Rojas-Lechuga M.J., Izquierdo-Domínguez A., Chiesa-Estomba C., Calvo-Henríquez C., Villarreal I.M., Cuesta-Chasco G., Bernal-Sprekelsen M., Mullol J., Alobid I. Chemosensory Dysfunction in COVID-19 out-Patients. Eur. Arch. Oto-Rhino-Laryngol. 2021;278:695–702. doi: 10.1007/s00405-020-06266-3.
    1. Kirschenbaum D., Imbach L.L., Ulrich S., Rushing E.J., Keller E., Reimann R.R., Frauenknecht K.B.M., Lichtblau M., Witt M., Hummel T., et al. Inflammatory Olfactory Neuropathy in Two Patients with COVID-19. Lancet Lond. Engl. 2020;396:166. doi: 10.1016/S0140-6736(20)31525-7.
    1. Vaira L.A., Hopkins C., Sandison A., Manca A., Machouchas N., Turilli D., Lechien J.R., Barillari M.R., Salzano G., Cossu A., et al. Olfactory Epithelium Histopathological Findings in Long-Term Coronavirus Disease 2019 Related Anosmia. J. Laryngol. Otol. 2020;134:1123–1127. doi: 10.1017/S0022215120002455.
    1. Al-Benna S. Association of High Level Gene Expression of ACE2 in Adipose Tissue with Mortality of COVID-19 Infection in Obese Patients. Obes. Med. 2020;19:100283. doi: 10.1016/j.obmed.2020.100283.
    1. Al Heialy S., Hachim M.Y., Senok A., Gaudet M., Abou Tayoun A., Hamoudi R., Alsheikh-Ali A., Hamid Q. Regulation of Angiotensin- Converting Enzyme 2 in Obesity: Implications for COVID-19. Front. Physiol. 2020;11:555039. doi: 10.3389/fphys.2020.555039.
    1. Krams I.A., Luoto S., Rantala M.J., Jõers P., Krama T. COVID-19: Fat, Obesity, Inflammation, Ethnicity, and Sex Differences. Pathog. Basel Switz. 2020;9:e887. doi: 10.3390/pathogens9110887.
    1. Krams I.A., Jõers P., Luoto S., Trakimas G., Lietuvietis V., Krams R., Kaminska I., Rantala M.J., Krama T. The Obesity Paradox Predicts the Second Wave of COVID-19 to Be Severe in Western Countries. Int. J. Environ. Res. Public. Health. 2021;18:1029. doi: 10.3390/ijerph18031029.

Source: PubMed

3
購読する