Dietary fiber and prebiotics and the gastrointestinal microbiota

Hannah D Holscher, Hannah D Holscher

Abstract

The gastrointestinal microbiota has an important role in human health, and there is increasing interest in utilizing dietary approaches to modulate the composition and metabolic function of the microbial communities that colonize the gastrointestinal tract to improve health, and prevent or treat disease. One dietary strategy for modulating the microbiota is consumption of dietary fiber and prebiotics that can be metabolized by microbes in the gastrointestinal tract. Human alimentary enzymes are not able to digest most complex carbohydrates and plant polysaccharides. Instead, these polysaccharides are metabolized by microbes which generate short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate. This article reviews the current knowledge of the impact of fiber and prebiotic consumption on the composition and metabolic function of the human gastrointestinal microbiota, including the effects of physiochemical properties of complex carbohydrates, adequate intake and treatment dosages, and the phenotypic responses related to the composition of the human microbiota.

Keywords: fermentation; human microbiome; non-digestible carbohydrate; short-chain fatty acids.

References

    1. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 2011; 94:58-65; PMID:21543530;
    1. Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 2014; 49:785-98; PMID:24652102;
    1. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al.. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472:57-63; PMID:21475195;
    1. Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 2012; 109:594-9; PMID:22184244;
    1. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490:55-60; PMID:23023125;
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP. Human gut microbiome viewed across age and geography. Nature 2012; 486:222-7; PMID:22699611
    1. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT. Human genetics shape the gut microbiome. Cell 2014; 159:789-99; PMID:25417156;
    1. Sonnenburg JL, Bäckhed F. Diet–microbiota interactions as moderators of human metabolism. Nature 2016; 535:56-64; PMID:27383980;
    1. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 2013; 5:1417-35; PMID:23609775;
    1. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 2010; 7:1-19;
    1. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011; 332:970-4; PMID:21596990;
    1. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al.. Linking Long-Term Dietary Patterns with with Gut Microbial Enterotypes. Science (80) 2011; 334:105-9;
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al.. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2013; 505:559-63
    1. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Acad Sci 2010; 107:14691-6;
    1. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, Severgnini M, et al.. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014; 5; PMID:24736369;
    1. King DE, Mainous AG III, Lambourne CA. Trends in dietary fiber intake in the United States, 1999–2008. J Acad Nutr Diet 2012; 112:642-8; PMID:22709768;
    1. NatCen Social Research, MRC Human Nutrition Research, University College London Medical School. National Diet and Nutrition Survey: Results from Years 1-4 (combined) of the Rolling Programme (2008/2009 – 2011/12). Executive summary, 2015.
    1. EFSA Panel on Dietetic Products, Nutrition and A Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Eur Food Saf Auth J 2010; 877 Available from:
    1. Segata N. Gut Microbiome: Westernization and the Disappearance of Intestinal Diversity. Curr Biol 2015; 25:R611-3; PMID:26196489;
    1. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016; 529:212-5; PMID:26762459;
    1. Tap J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, Lakhdari O, Lombard V, Henrissat B, Corthier G, et al.. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol 2015; 17:4954-64; PMID:26235304;
    1. Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, Louk JA, Rose DJ, Kyureghian G, Peterson DA, et al.. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 2012; 7:269-80; PMID:23038174;
    1. Deehan EC, Walter J. The fiber gap and the disappearing gut microbiome: Implications for human nutrition. Trends Endocrinol Metab 2016; 27:239-42; PMID:27079516;
    1. Codex Alimentarius Committee Guidelines on nutrition labelling CAC/GL 2-1985 as last amended 2010. Joint FAO/WHO Food Standards Programme, Secretariat of the Codex Alimentarius Commission. Rome, Italy: FAO. 2010.
    1. Jones JM. CODEX-aligned dietary fiber definitions help to bridge the “fiber gap”. Nutr J 2014; 13:34.
    1. Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem 2011; 124:411-21;
    1. Mcrorie JW, Fahey GC. A review of gastrointestinal physiology and the mechanisms underlying the health benefits of dietary fiber: Matching an effective fiber with specific patient needs. Clin Nurs Stud 2013; 1:82-92
    1. Schieber A, Stintzing F, Carle R. By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci Technol 2001; 12:401-13;
    1. Bourquin LD, Titgemeyer EC, Fahey GC Jr.. Vegetable fiber fermentation by human fecal bacteria: cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues. J Nutr 1993; 123:860-9; PMID:8387579
    1. Bourquin LD, Titgemeyer EC, Fahey GC. Fermentation of various dietary fiber sources by human fecal bacteria. Nutr Res 1996; 16:1119-31;
    1. Titgemeyer EC, Bourquin LD, Fahey GC, Garleb KA. Fermentability of various fiber sources by human fecal bacteria in vitro. Am J Clin Nutr 1991; 53:1418-24; PMID:1852091
    1. McRorie JW. Psyllium is not fermented in the human gut. Neurogastroenterol Motil 2015; 27:1681-2; PMID:26503164;
    1. Holscher HD, Caporaso JG, Hooda S, Brulc JM, Fahey GCJ, Swanson KS, Fahey Jr GC, Swanson KS. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr 2015; 101:55-64; PMID:25527750;
    1. Holscher HD, Bauer LL, Vishnupriya G, Pelkman CL, Fahey GC, Swanson KS, Gourineni V, Pelkman CL, Fahey GC Jr, Swanson KS. Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial. J Nutr 2015; 145:2025-32; PMID:26203099;
    1. Martínez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 2010; 5:e15046; PMID:21151493;
    1. Moshfegh AJ, Friday JE, Goldman JP, Ahuja JK. Presence of inulin and oligofructose in the diets of Americans. J Nutr 1999; 129:1407S-11S; PMID:10395608
    1. Holscher HD, Doligale JL, Bauer LL, Gourineni V, Pelkman CL, Fahey GC, Swanson KS. Gastrointestinal tolerance and utilization of agave inulin by healthy adults. Food Funct 2014; 5:1142-9; PMID:24664349;
    1. Brighenti F, Casiraghi MC, Canzi E, Ferrari A. Effect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteers. Eur J Clin Nutr 1999; 53:726-33; PMID:10509770;
    1. Márquez-Aguirre AL, Camacho-Ruíz RM, Arriaga-Alba M, Padilla-Camberos E, Kirchmayr M, Blasco JL, González-Ávila M. Effects of Agave tequilana fructans with different degree of polymerization profiles on body weight, blood lipids and fecal Lactobacilli/Bifidobacteria in obese mice. Food Funct 2013; 4:1237-44; PMID:23759883;
    1. Rendón-Huerta JA, Juárez-Flores B, Pinos-Rodríguez JM, Aguirre-Rivera JR, Delgado-Portales RE. Effects of different sources of fructans on body weight, blood metabolites and fecal bacteria in normal and obese non-diabetic and diabetic rats. Plant foods Hum Nutr 2012; 67:64-70; PMID:22210166;
    1. Urıas-Silvas JE, Cani PD, Delmée E, Neyrinck A, López MG, Delzenne NM. Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. Br J Nutr 2008; 99:254-61; PMID:17711612;
    1. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota 2012; 10:323-35
    1. Liu T, Cephas KD, Holscher HD, Kerr KR, Mangian HF, Tappenden KA, Swanson KS. Nondigestible Fructans alter gastrointestinal barrier function, gene expression, histomorphology, and the microbiota profiles of Diet-Induced Obese C57BL / 6J Mice. J Nutr 2016; 146:949-56; PMID:27052535;
    1. Gibson GR, Beatty ER, Wang X, Cummings JH. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 1995; 108:975-82; PMID:7698613;
    1. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004; 17:259-75; PMID:19079930;
    1. Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 2015; 12(5):303-10; PMID:25824997;
    1. Thomas L V, Suzuki K, Zhao J. Probiotics: a proactive approach to health. A symposium report Aspects of probiotic intervention. Br J Nutr 2015; 114:S1-15; PMID:26548336;
    1. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312:1355-9; PMID:16741115;
    1. Cantarel BL, Lombard V, Henrissat B, Hu Y, Walker S, Laine R, Varki A, Sharon N, Varki A, Hooper L, et al.. Complex carbohydrate utilization by the healthy human microbiome. PLoS One 2012; 7:e28742; PMID:22719820;
    1. Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, et al.. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 2011; 9:e1001221; PMID:22205877;
    1. Scott KP, Martin JC, Duncan SH, Flint HJ. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol 2013; 87:30-40; PMID:23909466;
    1. Cummings JH, Pomare EW, Branch HWJ, Naylor E, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28:122-1;
    1. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156:84-96; PMID:24412651;
    1. Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt MG Jr.. Absorption of short-chain fatty acids by the colon. Gastroenterology 1980; 78:1500-7; PMID:6768637
    1. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI. Acetate mediates a microbiome–brain–β- cell axis to promote metabolic syndrome. Nature 2016; 534:213-7; PMID:27279214;
    1. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S, et al.. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014; 5:3611;
    1. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016; 165:1332-45; PMID:27259147;
    1. Englyst HN, Hay S, Macfarlane GT. Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiol Ecol 1987; 3:163-71;
    1. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490-5; PMID:24270786;
    1. Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 1991; 70:443-59; PMID:1938669;
    1. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 2013; 11:497-504; PMID:23748339;
    1. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 2009; 101:541-50; PMID:18590586;
    1. De Vuyst L, Leroy F. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol 2011; 149:73-80; PMID:21450362;
    1. Falony G, Calmeyn T, Leroy F, De Vuyst L. Coculture fermentations of Bifidobacterium species and Bacteroides thetaiotaomicron reveal a mechanistic insight into the prebiotic effect of inulin-type fructans. Appl Environ Microbiol 2009; 75:2312-9; PMID:19251883;
    1. Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D. Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 2005; 71:6150-8; PMID:16204533;
    1. Levitt MD. Production and excretion of hydrogen gas in man. N Engl J Med 1969; 281:122-7; PMID:5790483;
    1. Oku T, Nakamura S. Comparison of digestibility and breath hydrogen gas excretion of fructo-oligosaccharide, galactosyl- sucrose, and isomalto-oligosaccharide in healthy human subjects. Eur J Clin Nutr 2003; 57:1150-6; PMID:12947435;
    1. Falony G, De Vuyst L. Ecological interactions of bacteria in the human gut Prebiotics and Probiotics Science and Technology. New York, NY: Springer New York; 2009:639-79
    1. Louis P, Flint HJ, Michel C, Schwiertz A. Microbiota of the human body 2016; 902:119-42
    1. Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 2005; 71:3692-700; PMID:16000778;
    1. Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 2009; 11:2112-22; PMID:19397676;
    1. Bouhnik Y, Vahedi K, Achour L, Attar A, Salfati J, Pochart P, Marteau P, Flourie B, Bornet F, Rambaud JC. Short-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. J Nutr 1999; 129:113-6; PMID:9915885
    1. Davis LMG, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One 2011; 6:e25200; PMID:21966454;
    1. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, et al.. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2010; 5:220-30; PMID:20686513;
    1. Angus F, Smart S, Shortt C. Prebiotic ingredients with emphasis on galacto-oligosaccharides and fructo-oligosaccharides. Probiotic Dairy Prod 2005:120-37;
    1. Lopez MG, Mancilla-Margalli NA, Mendoza-Diaz G. Molecular structures of fructans from Agave tequilana Weber var. azul. J Agric Food Chem 2003; 51:7835-40; PMID:14690361;
    1. Knapp BK, Bauer LL, Swanson KS, Tappenden KA, Fahey GC, De Godoy MRC. Soluble fiber dextrin and soluble corn fiber supplementation modify indices of health in cecum and colon of Sprague-Dawley rats. Nutrients 2013; 5:396-410; PMID:23381099;
    1. Lahtinen SJ, Knoblock K, Drakoularakou A, Jacob M, Stowell J, Gibson GR, Ouwehand AC. Effect of molecule branching and glycosidic linkage on the degradation of polydextrose by gut microbiota. Biosci Biotechnol Biochem 2010; 74:2016-21; PMID:20944426;
    1. Walton GE, Van Den Heuvel EGHM, Kosters MHW, Rastall RA, Tuohy KM, Gibson GR. A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br J Nutr 2012; 107:1466-75; PMID:21910949;
    1. François IEJA, Lescroart O, Veraverbeke WS, Marzorati M, Possemiers S, Evenepoel P, Hamer H, Houben E, Windey K, Welling GW, et al.. Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br J Nutr 2012; 108:2229-42; PMID:22370444;
    1. François IEJA, Lescroart O, Veraverbeke WS, Marzorati M, Possemiers S, Hamer H, Windey K, Welling GW, Delcour JA, Courtin CM, et al.. Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. J Pediatr Gastroenterol Nutr 2014; 58:647-53; PMID:24368315;
    1. Ampatzoglou A, Atwal KK, Maidens CM, Williams CL, Ross AB, Thielecke F, Jonnalagadda SS, Kennedy OB, Yaqoob P. Increased whole grain consumption does not affect blood biochemistry, body composition, or gut microbiology in healthy, low-habitual whole grain consumers. J Nutr 2015; 145(2):215-21, 1–3
    1. Vulevic J, Juric A, Walton GE, Claus SP, Tzortzis G, Toward RE, Gibson GR. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br J Nutr 2015; 114:586-95; PMID:26218845;
    1. Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani PD, Mahillon J, De Vos WM, Thissen J-P, Gueimonde M, De Los Reyes-Gavil An CG, et al.. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr 2015; 34:501-7; PMID:24969566;
    1. Linetzky Waitzberg D, Alves Pereira CC, Logullo L, Manzoni Jacintho T, Almeida D, de Teixeira da Silva ML, Matos de Miranda Torrinhas RS, Santos Brazil P, -Nutrição Humana Brazil G, Linetzky Waitzberg D. Microbiota benefits after inulin and partially hydrolized guar gum supplementation – a randomized clinical trial in constipated women. Nutr Hosp 2012; 27:123-9; PMID:22566311
    1. Lecerf J-M, Dépeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, Cayzeele A, Abdelnour G, Jaruga A, Younes H, et al.. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br J Nutr 2012; 108:1847-58; PMID:22264499;
    1. Sydney Finegold PM, Finegold SM, Zhaoping Li A, Paula Summanen bde H, Downes J, Thames G, Karen Corbett D, Dowd S, Krak de M, Heber D. Linking the chemistry and physics of food with health and nutrition Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct 2014; 5:403-614;
    1. Costabile A, Fava F, Röytiö H, Forssten SD, Olli K, Klievink J, Rowland IR, Ouwehand AC, Rastall RA, Gibson GR. Impact of polydextrose on the faecal microbiota: a double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br J Nutr 2012; 108:471; PMID:22099384;
    1. Lamichhane S, Yde CC, Forssten S, Ouwehand AC, Saarinen M, Jensen HM, Gibson GR, Rastall R, Fava F, Bertram HC. Impact of dietary polydextrose fiber on the human gut metabolome. J Agric Food Chem 2014; 62:9944-51; PMID:25231382;
    1. Vester Boler BM, Rossoni Serao MC, Bauer LL, Staeger MA, Boileau TW, Swanson KS, Fahey GC. Digestive physiological outcomes related to polydextrose and soluble maize fibre consumption by healthy adult men. Br J Nutr 2011; 106:1864-71; PMID:21736814;
    1. Whisner CM, Martin BR, Nakatsu CH, Story JA, Macdonald-Clarke CJ, Mccabe LD, Mccabe GP, Weaver CM. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: A randomized dose-response trial in free-living pubertal females. J Nutr 2016; 146:1298-306; PMID:27281813;
    1. Le Leu RK, Winter JM, Christophersen CT, Young GP, Humphreys KJ, Hu Y, Gratz SW, Miller RB, Topping DL, Bird AR, et al.. Butyrylated starch intake can prevent red meat-induced O 6 -methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr 2015; 2:220-30;
    1. Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE, et al.. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 2014; 8:2218-30; PMID:24763370;
    1. Grabitske HA, Slavin JL. Gastrointestinal effects of low-digestible carbohydrates. Crit Rev Food Sci Nutri 2009; 49(4):327–60.
    1. Flood MT, Auerbach MH, Craig SAS. A review of the clinical toleration studies of polydextrose in food. Food Chem Tox 2004; 42(9):1531–42.

Source: PubMed

3
購読する