Genetic Predisposition to Alzheimer's Disease Is Associated with Enlargement of Perivascular Spaces in Centrum Semiovale Region

Iacopo Ciampa, Grégory Operto, Carles Falcon, Carolina Minguillon, Manuel Castro de Moura, David Piñeyro, Manel Esteller, Jose Luis Molinuevo, Roderic Guigó, Arcadi Navarro, Juan Domingo Gispert, Natalia Vilor-Tejedor, For The Alfa Study, Iacopo Ciampa, Grégory Operto, Carles Falcon, Carolina Minguillon, Manuel Castro de Moura, David Piñeyro, Manel Esteller, Jose Luis Molinuevo, Roderic Guigó, Arcadi Navarro, Juan Domingo Gispert, Natalia Vilor-Tejedor, For The Alfa Study

Abstract

This study investigated whether genetic factors involved in Alzheimer's disease (AD) are associated with enlargement of Perivascular Spaces (ePVS) in the brain. A total of 680 participants with T2-weighted MRI scans and genetic information were acquired from the ALFA study. ePVS in the basal ganglia (BG) and the centrum semiovale (CS) were assessed based on a validated visual rating scale. We used univariate and multivariate logistic regression models to investigate associations between ePVS in BG and CS with BIN1-rs744373, as well as APOE genotypes. We found a significant association of the BIN1-rs744373 polymorphism in the CS subscale (p value = 0.019; OR = 2.564), suggesting that G allele carriers have an increased risk of ePVS in comparison with A allele carriers. In stratified analysis by APOE-ε4 status (carriers vs. non-carriers), these results remained significant only for ε4 carriers (p value = 0.011; OR = 1.429). To our knowledge, the present study is the first suggesting that genetic predisposition for AD is associated with ePVS in CS. These findings provide evidence that underlying biological processes affecting AD may influence CS-ePVS.

Trial registration: ClinicalTrials.gov NCT01835717.

Keywords: APOE-ε4; BIN1-rs744373; enlargement of perivascular spaces; neurogenetics; virchow robin spaces.

Conflict of interest statement

J.L.M. is currently a full time employee of Lundbeck and priorly has served as a consultant or at advisory boards for the following for-profit companies, or has given lectures in symposia sponsored by the following for-profit companies: Roche Diagnostics, Genentech, Novartis, Lundbeck, Oryzon, Biogen, Lilly, Janssen, Green Valley, MSD, Eisai, Alector, BioCross, GE Healthcare, ProMIS Neurosciences. The remaining authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
Schema of the study. Hypothesized etiologies for enlargement of perivascular spaces. Created with BioRender.com, accessed on 10–22 May 2021.
Figure 2
Figure 2
Associations (Odds Ratios) between enlargement of Perivascular Spaces in basal ganglia and centrum semiovale regions and BIN1-rs744373 polymorphism, stratified by APOE genotypes. Models were adjusted by age, sex, and years of education. p-values were corrected using the false discovery rate (FDR) method. *** p-value < 5 × 10−5; ** p-value < 5 × 10−3; * p-value < 5 × 10−2.

References

    1. Wardlaw J.M., Benveniste H., Nedergaard M., Zlokovic B.V., Mestre H., Lee H., Doubal F.N., Brown R., Ramirez J., MacIntosh B.J., et al. Perivascular spaces in the brain: Anatomy, physiology and pathology. Nat. Rev. Neurol. 2020;16:137–153. doi: 10.1038/s41582-020-0312-z.
    1. Zong X., Lian C., Jimenez J., Yamashita K., Shen D., Lin W. Morphology of perivascular spaces and enclosed blood vessels in young to middle-aged healthy adults at 7T: Dependences on age, brain region, and breathing gas. NeuroImage. 2020;218:116978. doi: 10.1016/j.neuroimage.2020.116978.
    1. Kelsey R. Perivascular spaces are associated with cognition. Nat. Rev. Neurol. 2019;15:246–247. doi: 10.1038/s41582-019-0169-1.
    1. Wuerfel J., Haertle M., Waiczies H., Tysiak E., Bechmann I., Wernecke K.D., Zipp F., Paul F. Perivascular spaces—MRI marker of inflammatory activity in the brain? Brain. 2008;131:2332–2340. doi: 10.1093/brain/awn171.
    1. Brown R., Benveniste H., E Black S., Charpak S., Dichgans M., Joutel A., Nedergaard M., Smith K.J., Zlokovic B.V., Wardlaw J.M. Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovasc. Res. 2018;114:1462–1473. doi: 10.1093/cvr/cvy113.
    1. Chan S.T., Mercaldo N.D., Ravina B., Hersch S.M., Rosas H.D. Association of dilated perivascular spaces and disease severity in patients with Huntington’s disease. Neurology. 2021;96:e890–e894. doi: 10.1212/wnl.0000000000011121.
    1. Ding J., Sigurðsson S., Jónsson P.V., Eiriksdottir G., Charidimou A., Lopez O.L., A Van Buchem M., Guðnason V., Launer L.J. Large Perivascular Spaces Visible on Magnetic Resonance Imaging, Cerebral Small Vessel Disease Progression, and Risk of Dementia. JAMA Neurol. 2017;74:1105–1112. doi: 10.1001/jamaneurol.2017.1397.
    1. Weller R.O., Boche D., Nicoll J.A.R. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol. 2009;118:87–102. doi: 10.1007/s00401-009-0498-z.
    1. Boespflug E.L., Simon M.J., Leonard E., Grafe M., Woltjer R., Silbert L.C., Kaye J.A., Iliff J.J. Targeted Assessment of Enlargement of the Perivascular Space in Alzheimer’s Disease and Vascular Dementia Subtypes Implicates Astroglial Involvement Specific to Alzheimer’s Disease. J. Alzheimer’s Dis. 2018;66:1587–1597. doi: 10.3233/JAD-180367.
    1. Smeijer D., Ikram M.K., Hilal S. Enlarged Perivascular Spaces and Dementia: A Systematic Review. J. Alzheimer’s Dis. 2019;72:247–256. doi: 10.3233/JAD-190527.
    1. Shams S., Martola J., Charidimou A., Larvie M., Granberg T., Shams M., Kristoffersen-Wiberg M., Wahlund L.-O. Topography and determinants of magnetic resonance imaging (MRI)-visible perivascular spaces in a large memory clinic cohort. J. Am. Heart Assoc. 2017;6:e006279. doi: 10.1161/JAHA.117.006279.
    1. Banerjee G., Kim H.J., Fox Z., Jäger H.R., Wilson D., Charidimou A., Na H.K., Na D.L., Seo S.W., Werring D.J. MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden. Brain. 2017;140:1107–1116. doi: 10.1093/brain/awx003.
    1. Liu C.-C., Kanekiyo T., Xu H., Bu G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013;9:106–118. doi: 10.1038/nrneurol.2012.263.
    1. Serrano-Pozo A., Das S., Hyman B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021;20:68–80. doi: 10.1016/S1474-4422(20)30412-9.
    1. Montagne A., Nation D.A., Sagare A.P., Barisano G., Sweeney M.D., Chakhoyan A., Pachicano M., Joe E., Nelson A.R., D’Orazio L.M., et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature. 2020;581:71–76. doi: 10.1038/s41586-020-2247-3.
    1. Kim J., Basak J.M., Holtzman D.M. The Role of Apolipoprotein E in Alzheimer’s Disease. Neuron. 2009;63:287–303. doi: 10.1016/j.neuron.2009.06.026.
    1. Luo X., Jiaerken Y., Yu X., Huang P., Qiu T., Jia Y., Li K., Xu X., Shen Z., Guan X., et al. Associations between APOE genotype and cerebral small-vessel disease: A longitudinal study. Oncotarget. 2017;8:44477–44489. doi: 10.18632/oncotarget.17724.
    1. Bertram L., McQueen M.B., Mullin K., Blacker D., E Tanzi R. Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database. Nat. Genet. 2007;39:17–23. doi: 10.1038/ng1934.
    1. Tan M.-S., Yu J.-T., Tan L. Bridging integrator 1 (BIN1): Form, function, and Alzheimer’s disease. Trends Mol. Med. 2013;19:594–603. doi: 10.1016/j.molmed.2013.06.004.
    1. Franzmeier N., Rubinski A., Neitzel J., Ewers M., The Alzheimer’s Disease Neuroimaging Initiative (ADNI) The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory. Nat. Commun. 2019;10:1–12. doi: 10.1038/s41467-019-09564-5.
    1. Crotti A., Sait H.R., McAvoy K.M., Estrada K., Ergun A., Szak S., Marsh G., Jandreski L., Peterson M., Reynolds T.L., et al. BIN1 favors the spreading of Tau via extracellular vesicles. Sci. Rep. 2019;9:1–20. doi: 10.1038/s41598-019-45676-0.
    1. Lambert J.C., Ibrahim-Verbaas C.A., Harold D., Naj A.C., Sims R., Bellenguez C., DeStafano A.L., Bis J.C., Beecham G.W., Grenier-Boley B., et al. Meta-Analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013;45:1452–1458. doi: 10.1038/ng.2802.
    1. Jansen I.E., Savage J.E., Watanabe K., Bryois J., Williams D.M., Steinberg S., Sealock J., Karlsson I.K., Hägg S., Athanasiu L., et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019;51:404–413. doi: 10.1038/s41588-018-0311-9.
    1. Jones L., Harold D., Williams J. Genetic evidence for the involvement of lipid metabolism in Alzheimer’s disease. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2010;1801:754–761. doi: 10.1016/j.bbalip.2010.04.005.
    1. Villegas-Llerena C., Phillips A., Garcia-Reitboeck P., Hardy J., Pocock J.M. Microglial genes regulating neuroinflammation in the progression of Alzheimer’s disease. Curr. Opin. Neurobiol. 2016;36:74–81. doi: 10.1016/j.conb.2015.10.004.
    1. Molinuevo J.L., Gramunt N., Gispert J.D., Fauria K., Esteller M., Minguillon C., Sánchez-Benavides G., Huesa G., Morán S., Dal-Ré R., et al. The ALFA project: A research platform to identify early pathophysiological features of Alzheimer’s disease. Alzheimer’s Dementia: Transl. Res. Clin. Interv. 2016;2:82–92. doi: 10.1016/j.trci.2016.02.003.
    1. Blauwendraat C., Faghri F., Pihlstrom L., Geiger J.T., Elbaz A., Lesage S., Corvol J.-C., May P., Nicolas A., Abramzon Y., et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol. Aging. 2017;57:247.e9–247.e13. doi: 10.1016/j.neurobiolaging.2017.05.009.
    1. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795.
    1. Vilor-Tejedor N., for the ALFA Study. Operto G., Evans T.E., Falcon C., Crous-Bou M., Minguillón C., Cacciaglia R., Milà-Alomà M., Grau-Rivera O., et al. Effect of BDNF Val66Met on hippocampal subfields volumes and compensatory interaction with APOE-ε4 in middle-age cognitively unimpaired individuals from the ALFA study. Brain Struct. Funct. 2020;225:2331–2345. doi: 10.1007/s00429-020-02125-3.
    1. Radmanesh F., (Adni) F.T.A.D.N.I., Devan W.J., Anderson C.D., Rosand J., Falcone G.J. Accuracy of imputation to infer unobserved APOE epsilon alleles in genome-wide genotyping data. Eur. J. Hum. Genet. 2014;22:1239–1242. doi: 10.1038/ejhg.2013.308.
    1. A Heier L., Bauer C.J., Schwartz L., Zimmerman R.D., Morgello S., Deck M.D. Large Virchow-Robin spaces: MR-clinical correlation. Am. J. Neuroradiol. 1989;10:929–936.
    1. MacLullich A.M.J., Wardlaw J.M., Ferguson K.J., Starr J.M., Seckl J.R., Deary I.J. Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J. Neurol. Neurosurg. Psychiatry. 2004;75:1519–1523. doi: 10.1136/jnnp.2003.030858.
    1. Doubal F.N., MacLullich A.M., Ferguson K.J., Dennis M.S., Wardlaw J.M. Enlarged Perivascular Spaces on MRI Are a Feature of Cerebral Small Vessel Disease. Stroke. 2010;41:450–454. doi: 10.1161/STROKEAHA.109.564914.
    1. Potter G.M., Chappell F.M., Morris Z., Wardlaw J.M. Cerebral Perivascular Spaces Visible on Magnetic Resonance Imaging: Development of a Qualitative Rating Scale and its Observer Reliability. Cerebrovasc. Dis. 2015;39:224–231. doi: 10.1159/000375153.
    1. Zhu Y.C., Tzourio C., Soumaré A., Mazoyer B., Dufouil C., Chabriat H. Severity of dilated virchow-robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease: A population-based study. Stroke. 2010;41:2483–2490. doi: 10.1161/STROKEAHA.110.591586.
    1. Wang H.-F., Yu J.-T., Tan L. Bridging integrator 1 (BIN1) genotypes Induce Alzheimer’s disease—Related Brain atrophy, abnormal glucose and Aβ metabolisms in ADNI cohort (P2.159) Neurology. 2015;84(Suppl. S14)
    1. Calafate S., Flavin W., Verstreken P., Moechars D. Loss of Bin1 Promotes the Propagation of Tau Pathology. Cell Rep. 2016;17:931–940. doi: 10.1016/j.celrep.2016.09.063.
    1. Cook C., Kang S.S., Carlomagno Y., Lin W.-L., Yue M., Kurti A., Shinohara M., Jansen-West K., A Perkerson E., Castanedes-Casey M., et al. Tau deposition drives neuropathological, inflammatory and behavioral abnormalities independently of neuronal loss in a novel mouse model. Hum. Mol. Genet. 2015;24:6198–6212. doi: 10.1093/hmg/ddv336.
    1. Charidimou A., Gang Q., Werring D.J. Sporadic cerebral amyloid angiopathy revisited: Recent insights into pathophysiology and clinical spectrum. J. Neurol. Neurosurg. Psychiatry. 2011;83:124–137. doi: 10.1136/jnnp-2011-301308.
    1. Martinez-Ramirez S., Pontes-Neto O.M., Dumas A.P., Auriel E., Halpin A., Quimby M., Gurol M.E., Greenberg S.M., Viswanathan A. Topography of dilated perivascular spaces in subjects from a memory clinic cohort. Neurology. 2013;80:1551–1556. doi: 10.1212/WNL.0b013e31828f1876.
    1. Patankar T.F., Mitra D., Varma A., Snowden J., Neary D., Jackson A. Dilatation of the Virchow-Robin space is a sensitive indicator of cerebral microvascular disease: Study in elderly patients with dementia. Am. J. Neuroradiol. 2005;26:1512–1520.
    1. Cacciaglia R., Molinuevo J.L., Falcón C., Brugulat-Serrat A., Sánchez-Benavides G., Gramunt N., Esteller M., Morán S., Minguillón C., Fauria K., et al. Effects of APOE-ε4 allele load on brain morphology in a cohort of middle-aged healthy individuals with enriched genetic risk for Alzheimer’s disease. Alzheimer’s Dement. 2018;14:902–912. doi: 10.1016/j.jalz.2018.01.016.

Source: PubMed

3
購読する