Lymphatic Vessels and Their Surroundings: How Local Physical Factors Affect Lymph Flow

Eleonora Solari, Cristiana Marcozzi, Daniela Negrini, Andrea Moriondo, Eleonora Solari, Cristiana Marcozzi, Daniela Negrini, Andrea Moriondo

Abstract

Lymphatic vessels drain and propel lymph by exploiting external forces that surrounding tissues exert upon vessel walls (extrinsic mechanism) and by using active, rhythmic contractions of lymphatic muscle cells embedded in the vessel wall of collecting lymphatics (intrinsic mechanism). The latter mechanism is the major source of the hydraulic pressure gradient where scant extrinsic forces are generated in the microenvironment surrounding lymphatic vessels. It is mainly involved in generating pressure gradients between the interstitial spaces and the vessel lumen and between adjacent lymphatic vessels segments. Intrinsic pumping can very rapidly adapt to ambient physical stimuli such as hydraulic pressure, lymph flow-derived shear stress, fluid osmolarity, and temperature. This adaptation induces a variable lymph flow, which can precisely follow the local tissue state in terms of fluid and solutes removal. Several cellular systems are known to be sensitive to osmolarity, temperature, stretch, and shear stress, and some of them have been found either in lymphatic endothelial cells or lymphatic muscle. In this review, we will focus on how known physical stimuli affect intrinsic contractility and thus lymph flow and describe the most likely cellular mechanisms that mediate this phenomenon.

Keywords: extrinsic mechanism; hydraulic pressure; intrinsic contractility; lymph flow; lymphatic vessels; osmolarity; shear stress; tissue temperature.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Functional scheme of how lymph is drained and propelled. Extrinsic forces and/or intrinsic rhythmic contractions generate transmural pressure gradients (ΔPTM) across the wall of initial lymphatic capillaries and intraluminal pressure gradients (ΔPLymph) between adjacent lymphangions. Intraluminal valve leaflets are devoid of LM. (Pin) interstitial hydraulic pressure; (PL) intraluminal hydraulic pressure; (EC) lymphatic endothelial cells; (LM) lymphatic muscle cells.
Figure 2
Figure 2
Modulation of lymphatic function: difference in oscillatory lymph flow induced by intrinsic contractions and one extrinsic contraction (experimentally induced at the time point indicated by the vertical dotted line).
Figure 3
Figure 3
Temperature-dependent modulation of diaphragmatic lymphatics contractility, affecting both CF and contraction amplitude (Δd). Upper panel: positive chronotropic effect on CF (solid line) and negative inotropic effect on Δd (dashed line). Gray area highlights the range of steepest variation of both parameters. Lower panel shows representative traces of vessel diameter over time recorded in the range of 36–38 °C. Data taken from [94].

References

    1. Aukland K., Reed R.K. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol. Rev. 1993;73:1–78. doi: 10.1152/physrev.1993.73.1.1.
    1. Wiig H., Swartz M.A. Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer. Physiol. Rev. 2012;92:1005–1060. doi: 10.1152/physrev.00037.2011.
    1. Leak L.V. Studies on the permeability of lymphatic capillaries. J. Cell Biol. 1971;50:300–323. doi: 10.1083/jcb.50.2.300.
    1. Trzewik J., Mallipattu S.K., Artmann G.M., Delano F.A., Schmid-Schönbein G.W. Evidence for a second valve system in lymphatics: Endothelial microvalves. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2001;15:1711–1717. doi: 10.1096/fj.01-0067com.
    1. Bazigou E., Wilson J.T., Moore J.E.J. Primary and secondary lymphatic valve development: Molecular, functional and mechanical insights. Microvasc. Res. 2014;96:38–45. doi: 10.1016/j.mvr.2014.07.008.
    1. Schmid-Schönbein G.W. The second valve system in lymphatics. Lymphat. Res. Biol. 2003;1:25–31. doi: 10.1089/15396850360495664.
    1. Florey H. Observations on the contractility of lacteals: Part I. J. Physiol. 1927;62:267–272. doi: 10.1113/jphysiol.1927.sp002357.
    1. Breslin J.W. Mechanical forces and lymphatic transport. Microvasc. Res. 2014;96:46–54. doi: 10.1016/j.mvr.2014.07.013.
    1. Bridenbaugh E.A., Gashev A.A., Zawieja D.C. Lymphatic muscle: A review of contractile function. Lymphat. Res. Biol. 2003;1:147–158. doi: 10.1089/153968503321642633.
    1. Muthuchamy M., Gashev A., Boswell N., Dawson N., Zawieja D. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003;17:920–922. doi: 10.1096/fj.02-0626fje.
    1. Bridenbaugh E.A., Nizamutdinova I.T., Jupiter D., Nagai T., Thangaswamy S., Chatterjee V., Gashev A.A. Lymphatic muscle cells in rat mesenteric lymphatic vessels of various ages. Lymphat. Res. Biol. 2013;11:35–42. doi: 10.1089/lrb.2012.0025.
    1. Hargens A.R., Zweifach B.W. Contractile stimuli in collecting lymph vessels. Am. J. Physiol. 1977;233:H57–H65. doi: 10.1152/ajpheart.1977.233.1.H57.
    1. Van Helden D.F. Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J. Physiol. 1993;471:465–479. doi: 10.1113/jphysiol.1993.sp019910.
    1. Von der Weid P.-Y., Rahman M., Imtiaz M.S., van Helden D.F. Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: Pharmacology and implication for spontaneous contractility. Am. J. Physiol. Heart Circ. Physiol. 2008;295:H1989–H2000. doi: 10.1152/ajpheart.00007.2008.
    1. Beckett E.A.H., Hollywood M.A., Thornbury K.D., McHale N.G. Spontaneous electrical activity in sheep mesenteric lymphatics. Lymphat. Res. Biol. 2007;5:29–43. doi: 10.1089/lrb.2007.5104.
    1. McCloskey K.D., Toland H.M., Hollywood M.A., Thornbury K.D., McHale N.G. Hyperpolarisation-activated inward current in isolated sheep mesenteric lymphatic smooth muscle. J. Physiol. 1999;521 Pt 1:201–211. doi: 10.1111/j.1469-7793.1999.00201.x.
    1. Negrini D., Marcozzi C., Solari E., Bossi E., Cinquetti R., Reguzzoni M., Moriondo A. Hyperpolarization-activated cyclic nucleotide-gated channels in peripheral diaphragmatic lymphatics. Am. J. Physiol. Heart Circ. Physiol. 2016;311:H892–H903. doi: 10.1152/ajpheart.00193.2016.
    1. Zawieja D.C., Davis K.L., Schuster R., Hinds W.M., Granger H.J. Distribution, propagation, and coordination of contractile activity in lymphatics. Am. J. Physiol. 1993;264:H1283–H1291. doi: 10.1152/ajpheart.1993.264.4.H1283.
    1. Mazzoni M.C., Skalak T.C., Schmid-Schonbein G.W. Effects of skeletal muscle fiber deformation on lymphatic volumes. Am. J. Physiol. 1990;259:H1860–H1868. doi: 10.1152/ajpheart.1990.259.6.H1860.
    1. Leak L.V., Burke J.F. Ultrastructural studies on the lymphatic anchoring filaments. J. Cell Biol. 1968;36:129–149. doi: 10.1083/jcb.36.1.129.
    1. Schmid-Schönbein G.W. Microlymphatics and lymph flow. Physiol. Rev. 1990;70:987–1028. doi: 10.1152/physrev.1990.70.4.987.
    1. Swartz M.A. The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 2001;50:3–20. doi: 10.1016/S0169-409X(01)00150-8.
    1. Negrini D., Moriondo A., Mukenge S. Transmural Pressure During Cardiogenic Oscillations in Rodent Diaphragmatic Lymphatic Vessels. Lymphat. Res. Biol. 2004;2:69–81. doi: 10.1089/lrb.2004.2.69.
    1. Moriondo A., Mukenge S., Negrini D. Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am. J. Physiol. Circ. Physiol. 2005;289:H263–H269. doi: 10.1152/ajpheart.00060.2005.
    1. Skalak T.C., Schmid-Schönbein G.W., Zweifach B.W. New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc. Res. 1984;28:95–112. doi: 10.1016/0026-2862(84)90032-3.
    1. McGeown J.G., McHale N.G., Thornbury K.D. The role of external compression and movement in lymph propulsion in the sheep hind limb. J. Physiol. 1987;387:83–93. doi: 10.1113/jphysiol.1987.sp016564.
    1. Moriondo A., Solari E., Marcozzi C., Negrini D. Lymph flow pattern in pleural diaphragmatic lymphatics during intrinsic and extrinsic isotonic contraction. Am. J. Physiol. Hear. Circ. Physiol. 2016;310:H60–H70. doi: 10.1152/ajpheart.00640.2015.
    1. Moriondo A., Solari E., Marcozzi C., Negrini D. Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction. Am. J. Physiol. Heart Circ. Physiol. 2015;308:H193–H205. doi: 10.1152/ajpheart.00701.2014.
    1. Moriondo A., Solari E., Marcozzi C., Negrini D. Spontaneous activity in peripheral diaphragmatic lymphatic loops. Am. J. Physiol. Heart Circ. Physiol. 2013;305:H987–H995. doi: 10.1152/ajpheart.00418.2013.
    1. Boriek A.M., Rodarte J.R., Reid M.B. Shape and tension distribution of the passive rat diaphragm. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001;280:R33–R41. doi: 10.1152/ajpregu.2001.280.1.R33.
    1. Ohtani O., Ohtani Y. Organization and developmental aspects of lymphatic vessels. Arch. Histol. Cytol. 2008;71:1–22. doi: 10.1679/aohc.71.1.
    1. Solari E., Marcozzi C., Bartolini B., Viola M., Negrini D., Moriondo A. Acute Exposure of Collecting Lymphatic Vessels to Low-Density Lipoproteins Increases Both Contraction Frequency and Lymph Flow: An In Vivo Mechanical Insight. Lymphat. Res. Biol. 2020;18:146–155. doi: 10.1089/lrb.2019.0040.
    1. Telinius N., Baandrup U., Rumessen J., Pilegaard H., Hjortdal V., Aalkjaer C., Boedtkjer D.B. The human thoracic duct is functionally innervated by adrenergic nerves. Am. J. Physiol. Heart Circ. Physiol. 2014;306:H206–H213. doi: 10.1152/ajpheart.00517.2013.
    1. Bachmann S.B., Gsponer D., Montoya-Zegarra J.A., Schneider M., Scholkmann F., Tacconi C., Noerrelykke S.F., Proulx S.T., Detmar M. A Distinct Role of the Autonomic Nervous System in Modulating the Function of Lymphatic Vessels under Physiological and Tumor-Draining Conditions. Cell Rep. 2019;27:3305–3314.e13. doi: 10.1016/j.celrep.2019.05.050.
    1. Bazigou E., Makinen T. Flow control in our vessels: Vascular valves make sure there is no way back. Cell. Mol. Life Sci. 2013;70:1055–1066. doi: 10.1007/s00018-012-1110-6.
    1. Marshall M.V., Rasmussen J.C., Tan I.-C., Aldrich M.B., Adams K.E., Wang X., Fife C.E., Maus E.A., Smith L.A., Sevick-Muraca E.M. Near-Infrared Fluorescence Imaging in Humans with Indocyanine Green: A Review and Update. Open Surg. Oncol. J. 2010;2:12–25. doi: 10.2174/1876504101002010012.
    1. Pujari A., Smith A.F., Hall J.D., Mei P., Chau K., Nguyen D.T., Sweet D.T., Jiménez J.M. Lymphatic Valves Bifurcate Lymph Flow Into a Central Jet and a Slow-Moving Peri-Valvular Milieu. J. Biomech. Eng. 2020;142 doi: 10.1115/1.4048028.
    1. Dixon J.B., Greiner S.T., Gashev A.A., Cote G.L., Moore J.E., Zawieja D.C. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation. 2006;13:597–610. doi: 10.1080/10739680600893909.
    1. Zawieja D.C. Contractile physiology of lymphatics. Lymphat. Res. Biol. 2009;7:87–96. doi: 10.1089/lrb.2009.0007.
    1. Benoit J.N., Zawieja D.C., Goodman A.H., Granger H.J. Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress. Am. J. Physiol. 1989;257:H2059–H2069. doi: 10.1152/ajpheart.1989.257.6.H2059.
    1. Zweifach B.W., Prather J.W. Micromanipulation of pressure in terminal lymphatics in the mesentery. Am. J. Physiol. 1975;228:1326–1335. doi: 10.1152/ajplegacy.1975.228.5.1326.
    1. Gashev A.A., Davis M.J., Zawieja D.C. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J. Physiol. 2002;540:1023–1037. doi: 10.1113/jphysiol.2001.016642.
    1. Gashev A.A., Davis M.J., Delp M.D., Zawieja D.C. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation. 2004;11:477–492. doi: 10.1080/10739680490476033.
    1. McHale N.G., Roddie I.C. The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J. Physiol. 1976;261:255–269. doi: 10.1113/jphysiol.1976.sp011557.
    1. Zawieja D.C., Kossmann E., Pullin J. Progress in Applied Microcirculation. Volume 23. Karger Medical and Scientific Publishers; Basel, Switzerland: 1999. Dynamics of the Microlymphatic System; pp. 33–41.
    1. Zhang R.-Z., Gashev A.A., Zawieja D.C., Davis M.J. Length-tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H1943–H1952. doi: 10.1152/ajpheart.01000.2005.
    1. Gashev A.A., Zhang R.-Z., Muthuchamy M., Zawieja D.C., Davis M.J. Regional heterogeneity of length-tension relationships in rat lymph vessels. Lymphat. Res. Biol. 2012;10:14–19. doi: 10.1089/lrb.2011.0013.
    1. Gashev A.A., Wang W., Laine G.A., Stewart R.H., Zawieja D.C. Characteristics of the active lymph pump in bovine prenodal mesenteric lymphatics. Lymphat. Res. Biol. 2007;5:71–79. doi: 10.1089/lrb.2007.5202.
    1. Gasheva O.Y., Knippa K., Nepiushchikh Z.V., Muthuchamy M., Gashev A.A. Age-related alterations of active pumping mechanisms in rat thoracic duct. Microcirculation. 2007;14:827–839. doi: 10.1080/10739680701444065.
    1. Quick C.M., Venugopal A.M., Gashev A.A., Zawieja D.C., Stewart R.H. Intrinsic pump-conduit behavior of lymphangions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R1510–R1518. doi: 10.1152/ajpregu.00258.2006.
    1. Moriondo A., Bianchin F., Marcozzi C., Negrini D. Kinetics of fluid flux in the rat diaphragmatic submesothelial lymphatic lacunae. Am. J. Physiol. Heart Circ. Physiol. 2008;295:H1182–H1190. doi: 10.1152/ajpheart.00369.2008.
    1. Sweet D.T., Jiménez J.M., Chang J., Hess P.R., Mericko-Ishizuka P., Fu J., Xia L., Davies P.F., Kahn M.L. Lymph flow regulates collecting lymphatic vessel maturation in vivo. J. Clin. Investig. 2015;125:2995–3007. doi: 10.1172/JCI79386.
    1. Planas-Paz L., Lammert E. Mechanosensing in developing lymphatic vessels. Adv. Anat. Embryol. Cell Biol. 2014;214:23–40. doi: 10.1007/978-3-7091-1646-3_3.
    1. Sabine A., Saygili Demir C., Petrova T.V. Endothelial Cell Responses to Biomechanical Forces in Lymphatic Vessels. Antioxid. Redox Signal. 2016;25:451–465. doi: 10.1089/ars.2016.6685.
    1. Mizuno R., Koller A., Kaley G. Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins. Am. J. Physiol. 1998;274:R790–R796. doi: 10.1152/ajpregu.1998.274.3.R790.
    1. Datar S.A., Gong W., He Y., Johengen M., Kameny R.J., Raff G.W., Maltepe E., Oishi P.E., Fineman J.R. Disrupted NOS signaling in lymphatic endothelial cells exposed to chronically increased pulmonary lymph flow. Am. J. Physiol. Heart Circ. Physiol. 2016;311:H137–H145. doi: 10.1152/ajpheart.00649.2015.
    1. Von der Weid P.Y. ATP-sensitive K+ channels in smooth muscle cells of guinea-pig mesenteric lymphatics: Role in nitric oxide and beta-adrenoceptor agonist-induced hyperpolarizations. Br. J. Pharmacol. 1998;125:17–22. doi: 10.1038/sj.bjp.0702026.
    1. Von der Weid P.Y., Zhao J., Van Helden D.F. Nitric oxide decreases pacemaker activity in lymphatic vessels of guinea pig mesentery. Am. J. Physiol. Heart Circ. Physiol. 2001;280:H2707–H2716. doi: 10.1152/ajpheart.2001.280.6.H2707.
    1. Gasheva O.Y., Gashev A.A., Zawieja D.C. Cyclic guanosine monophosphate and the dependent protein kinase regulate lymphatic contractility in rat thoracic duct. J. Physiol. 2013;591:4549–4565. doi: 10.1113/jphysiol.2013.258681.
    1. Coste B., Xiao B., Santos J.S., Syeda R., Grandl J., Spencer K.S., Kim S.E., Schmidt M., Mathur J., Dubin A.E., et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature. 2012;483:176–181. doi: 10.1038/nature10812.
    1. Ranade S.S., Qiu Z., Woo S.-H., Hur S.S., Murthy S.E., Cahalan S.M., Xu J., Mathur J., Bandell M., Coste B., et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc. Natl. Acad. Sci. USA. 2014;111:10347–10352. doi: 10.1073/pnas.1409233111.
    1. Choi D., Park E., Jung E., Cha B., Lee S., Yu J., Kim P.M., Lee S., Hong Y.J., Koh C.J., et al. Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance. JCI Insight. 2019;4 doi: 10.1172/jci.insight.125068.
    1. Nonomura K., Lukacs V., Sweet D.T., Goddard L.M., Kanie A., Whitwam T., Ranade S.S., Fujimori T., Kahn M.L., Patapoutian A. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. Proc. Natl. Acad. Sci. USA. 2018;115:12817–12822. doi: 10.1073/pnas.1817070115.
    1. Lukacs V., Mathur J., Mao R., Bayrak-Toydemir P., Procter M., Cahalan S.M., Kim H.J., Bandell M., Longo N., Day R.W., et al. Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat. Commun. 2015;6:8329. doi: 10.1038/ncomms9329.
    1. Li J., Hou B., Tumova S., Muraki K., Bruns A., Ludlow M.J., Sedo A., Hyman A.J., McKeown L., Young R.S., et al. Piezo1 integration of vascular architecture with physiological force. Nature. 2014;515:279–282. doi: 10.1038/nature13701.
    1. Ballermann B.J., Dardik A., Eng E., Liu A. Shear stress and the endothelium. Kidney Int. Suppl. 1998;67:S100–S108. doi: 10.1046/j.1523-1755.1998.06720.x.
    1. Mukherjee A., Hooks J., Nepiyushchikh Z., Dixon J.B. Entrainment of Lymphatic Contraction to Oscillatory Flow. Sci. Rep. 2019;9:5840. doi: 10.1038/s41598-019-42142-9.
    1. Schacht V., Berens von Rautenfeld D., Abels C. The lymphatic system in the dorsal skinfold chamber of the Syrian golden hamster in vivo. Arch. Dermatol. Res. 2004;295:542–548. doi: 10.1007/s00403-004-0453-8.
    1. Jafarnejad M., Cromer W.E., Kaunas R.R., Zhang S.L., Zawieja D.C., Moore J.E.J. Measurement of shear stress-mediated intracellular calcium dynamics in human dermal lymphatic endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2015;308:H697–H706. doi: 10.1152/ajpheart.00744.2014.
    1. Rahbar E., Akl T., Coté G.L., Moore J.E.J., Zawieja D.C. Lymph transport in rat mesenteric lymphatics experiencing edemagenic stress. Microcirculation. 2014;21:359–367. doi: 10.1111/micc.12112.
    1. Wilson J.T., Wang W., Hellerstedt A.H., Zawieja D.C., Moore J.E. Confocal image-based computational modeling of nitric oxide transport in a rat mesenteric lymphatic vessel. J. Biomech. Eng. 2013;135:51005. doi: 10.1115/1.4023986.
    1. Solari E., Marcozzi C., Negrini D., Moriondo A. Fluid Osmolarity Acutely and Differentially Modulates Lymphatic Vessels Intrinsic Contractions and Lymph Flow. Front. Physiol. 2018;9:871. doi: 10.3389/fphys.2018.00871.
    1. Zingg W., Morgan C.D., Anderson D.E. Blood viscosity, erythrocyte sedimentation rate, packed cell volume, osmolality, and plasma viscosity of the Wistar rat. Lab. Anim. Sci. 1971;21:740–742.
    1. Eggermont J., Trouet D., Carton I., Nilius B. Cellular function and control of volume-regulated anion channels. Cell Biochem. Biophys. 2001;35:263–274. doi: 10.1385/CBB:35:3:263.
    1. Voets T., Droogmans G., Nilius B. Membrane currents and the resting membrane potential in cultured bovine pulmonary artery endothelial cells. J. Physiol. 1996;497 Pt 1:95–107. doi: 10.1113/jphysiol.1996.sp021752.
    1. Wang G.-X., Hatton W.J., Wang G.L., Zhong J., Yamboliev I., Duan D., Hume J.R. Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 2003;285:H1453–H1463. doi: 10.1152/ajpheart.00244.2003.
    1. Davis J.P. The effects of Na(+)-K(+)-Cl- co-transport and Cl(-)-HCO3-exchange blockade on the membrane potential and intracellular chloride levels of rat arterial smooth muscle, in vitro. Exp. Physiol. 1992;77:857–862. doi: 10.1113/expphysiol.1992.sp003652.
    1. Chipperfield A.R., Harper A.A. Chloride in smooth muscle. Prog. Biophys. Mol. Biol. 2000;74:175–221. doi: 10.1016/S0079-6107(00)00024-9.
    1. Behringer E.J., Scallan J.P., Jafarnejad M., Castorena-Gonzalez J.A., Zawieja S.D., Moore J.E.J., Davis M.J., Segal S.S. Calcium and electrical dynamics in lymphatic endothelium. J. Physiol. 2017;595:7347–7368. doi: 10.1113/JP274842.
    1. Solari E., Marcozzi C., Bistoletti M., Baj A., Giaroni C., Negrini D., Moriondo A. TRPV4 channels’ dominant role in the temperature modulation of intrinsic contractility and lymph flow of rat diaphragmatic lymphatics. Am. J. Physiol. Heart Circ. Physiol. 2020;319:H507–H518. doi: 10.1152/ajpheart.00175.2020.
    1. Nilius B., Watanabe H., Vriens J. The TRPV4 channel: Structure-function relationship and promiscuous gating behaviour. Pflugers Arch. 2003;446:298–303. doi: 10.1007/s00424-003-1028-9.
    1. Liedtke W., Choe Y., Martí-Renom M.A., Bell A.M., Denis C.S., Sali A., Hudspeth A.J., Friedman J.M., Heller S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000;103:525–535. doi: 10.1016/S0092-8674(00)00143-4.
    1. Vriens J., Watanabe H., Janssens A., Droogmans G., Voets T., Nilius B. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl. Acad. Sci. USA. 2004;101:396–401. doi: 10.1073/pnas.0303329101.
    1. Sonkusare S.K., Bonev A.D., Ledoux J., Liedtke W., Kotlikoff M.I., Heppner T.J., Hill-Eubanks D.C., Nelson M.T. Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science. 2012;336:597–601. doi: 10.1126/science.1216283.
    1. Nilius B., Prenen J., Wissenbach U., Bödding M., Droogmans G. Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch. 2001;443:227–233. doi: 10.1007/s004240100676.
    1. Zakaria E.R., Hunt C.M., Li N., Harris P.D., Garrison R.N. Disparity in osmolarity-induced vascular reactivity. J. Am. Soc. Nephrol. 2005;16:2931–2940. doi: 10.1681/ASN.2004090764.
    1. Levine S.E., Granger D.N., Brace R.A., Taylor A.E. Effect of hyperosmolality on vascular resistance and lymph flow in the cat ileum. Am. J. Physiol. 1978;234:H14–H20. doi: 10.1152/ajpheart.1978.234.1.H14.
    1. Zakaria E.R., Althani A., Fawzi A.A., Fituri O.M. Hyperosmolality-mediated peritoneal microvascular vasodilation is linked to aquaporin function. Adv. Perit. Dial. 2014;30:63–74.
    1. Zakaria E.R., Althani A., Fawzi A.A., Fituri O.M. Molecular mechanisms of peritoneal dialysis-induced microvascular vasodilation. Adv. Perit. Dial. 2014;30:98–109.
    1. Toda N., Ayajiki K., Toda H., Hatano Y., Okamura T. Mechanism underlying mannitol-induced relaxation in isolated monkey cerebral arteries. Am. J. Physiol. 1992;262:H897–H902. doi: 10.1152/ajpheart.1992.262.3.H897.
    1. De Clerck I., Boussery K., Pannier J.-L., Van De Voorde J. Hyperosmolarity increases K+-induced vasodilations in rat skeletal muscle arterioles. Med. Sci. Sports Exerc. 2005;37:220–226. doi: 10.1249/01.MSS.0000152703.49505.57.
    1. Moriondo A., Pelosi P., Passi A., Viola M., Marcozzi C., Severgnini P., Ottani V., Quaranta M., Negrini D. Proteoglycan fragmentation and respiratory mechanics in mechanically ventilated healthy rats. J. Appl. Physiol. 2007;103:747–756. doi: 10.1152/japplphysiol.00056.2007.
    1. Pelosi P., Rocco P.R.M., Negrini D., Passi A. The extracellular matrix of the lung and its role in edema formation. An. Acad. Bras. Cienc. 2007;79:285–297. doi: 10.1590/S0001-37652007000200010.
    1. Solari E., Marcozzi C., Negrini D., Moriondo A. Temperature-dependent modulation of regional lymphatic contraction frequency and flow. Am. J. Physiol. Heart Circ. Physiol. 2017;313:H879–H889. doi: 10.1152/ajpheart.00267.2017.
    1. Yasuda A., Ohshima N. In situ observations of spontaneous contractions of the peripheral lymphatic vessels in the rat mesentery: Effects of temperature. Experientia. 1984;40:342–343. doi: 10.1007/BF01952541.
    1. Ito E., Ikemoto Y., Yoshioka T. Thermodynamic implications of high Q 10 of thermo-TRP channels in living cells. Biophys. 2015;11:33–38. doi: 10.2142/biophysics.11.33.
    1. Baylie R.L., Brayden J.E. TRPV channels and vascular function. Acta Physiol. 2011;203:99–116. doi: 10.1111/j.1748-1716.2010.02217.x.
    1. Benham C.D., Gunthorpe M.J., Davis J.B. TRPV channels as temperature sensors. Cell Calcium. 2003;33:479–487. doi: 10.1016/S0143-4160(03)00063-0.
    1. Clapham D.E., Miller C. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc. Natl. Acad. Sci. USA. 2011;108:19492–19497. doi: 10.1073/pnas.1117485108.
    1. Hille B. Ion Channels of Excitable Membranes. 3rd ed. Sinauer Associates; Sunderland, MA, USA: 2001.
    1. DiFrancesco D., Ojeda C. Properties of the current if in the sino-atrial node of the rabbit compared with those of the current iK, in Purkinje fibres. J. Physiol. 1980;308:353–367. doi: 10.1113/jphysiol.1980.sp013475.
    1. Yanagida H., Inoue R., Tanaka M., Ito Y. Temperature-sensitive gating of cation current in guinea pig ileal muscle activated by hyperpolarization. Am. J. Physiol. Cell Physiol. 2000;278:C40–C48. doi: 10.1152/ajpcell.2000.278.1.C40.

Source: PubMed

3
購読する