Measuring and monitoring skeletal muscle function in COPD: current perspectives

Sarah Marklund, Kim-Ly Bui, Andre Nyberg, Sarah Marklund, Kim-Ly Bui, Andre Nyberg

Abstract

Skeletal muscle dysfunction is an important systemic consequence of chronic obstructive pulmonary disease (COPD) that worsens the natural cause of the disease. Up to a third of all people with COPD express some form of impairment which encompasses reductions in strength and endurance, as well as an increased fatigability. Considering this complexity, no single test could be used to measure and monitor all aspects of the impaired skeletal muscle function within the COPD population, resulting in a wide range of available tests and measurement techniques. The aim of the current review is to highlight current and new perspectives relevant to skeletal muscle function measurements within the COPD population in order to provide guidance for researchers as well as for clinicians. First of all, standardized and clinically feasible measurement protocols, as well as normative values and predictive equations across the spectrum of impaired function in COPD, are needed before assessment of skeletal muscle function can become a reality in clinical praxis. This should minimally target the quadriceps muscle; however, depending on the objective of measurements, eg, to determine upper limb muscle function or walking capacity, other muscles could also be tested. Furthermore, even though muscle strength measurements are important, current evidence suggests that other aspects, such as the endurance and power capacity of the muscle, should also be considered. Moreover, although static (isometric) measurements have been favored, dynamic measurements of skeletal muscle function should not be neglected as they, in a larger extent than static measurements, are related to tasks of daily living. Lastly, the often modest relationships between functional tests and skeletal muscle function measurements indicate that they evaluate different constructs and thus cannot replace one another. Therefore, for accurate measurements of skeletal muscle function in people with COPD, specific and formal measurements should still be prioritized.

Keywords: chronic obstructive pulmonary disease; measurement properties; muscle endurance; muscle power; muscle strength.

Conflict of interest statement

Dr Andre Nyberg reports grants from Swedish Research Council, Swedish Heart and Lung Foundation, Swedish Heart and Lung Association, Strategic Research Area in Care Sciences, Harald Jeanssons Stiftelse samt Harald och Greta Jeanssons Stiftelse, Erika och Rudolf Gustavssons fond, Insamlingsstiftelsen and personal fees from AstraZeneca, outside the submitted work. The authors report no other conflicts of interest in this work.

© 2019 Marklund et al.

Figures

Figure 1
Figure 1
Overview of etiological factors, morphological and structural abnormalities and impaired skeletal muscle function in chronic obstructive pulmonary disease.
Figure 2
Figure 2
Factors that influence the choice of the measurement technique.

References

    1. Maltais F, Decramer M, Casaburi R, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189(9):e15–e62. doi:10.1164/rccm.201402-0373ST
    1. Barreiro E, Bustamante V, Cejudo P, et al. Guidelines for the evaluation and treatment of muscle dysfunction in patients with chronic obstructive pulmonary disease. Arch Bronconeumol. 2015;51(8):384–395. doi:10.1016/j.arbres.2015.04.011
    1. Seymour JM, Spruit MA, Hopkinson NS, et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J. 2010;36(1):81–88. doi:10.1183/09031936.00104909
    1. Decramer M, Gosselink R, Troosters T, Verschueren M, Evers G. Muscle weakness is related to utilization of health care resources in COPD patients. Eur Respir J. 1997;10(2):417–423.
    1. Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med. 1996;153:976–980. doi:10.1164/ajrccm.153.3.8630582
    1. Coronell C, Orozco-Levi M, Mendez R, Ramirez-Sarmiento A, Galdiz JB, Gea J. Relevance of assessing quadriceps endurance in patients with COPD. Eur Respir J. 2004;24(1):129–136.
    1. Swallow EB, Reyes D, Hopkinson NS, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62(2):115–120. doi:10.1136/thx.2006.062026
    1. Nyberg A, Saey D, Maltais F. Why and how limb muscle mass and function should be measured in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2015;12(9):1269–1277. doi:10.1513/AnnalsATS.201505-278PS
    1. Remels AH, Schrauwen P, Broekhuizen R, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J. 2007;30(2):245–252. doi:10.1183/09031936.00144106
    1. Natanek SA, Gosker HR, Slot IG, et al. Heterogeneity of quadriceps muscle phenotype in chronic obstructive pulmonary disease (COPD); implications for stratified medicine? Muscle Nerve. 2013;48:488–497. doi:10.1002/mus.23784
    1. Gifford JR, Trinity JD, Kwon OS, et al. Altered skeletal muscle mitochondrial phenotype in COPD: disease vs. disuse. J Appl Physiol (1985). 2018;124(4):1045–1053. doi:10.1152/japplphysiol.00788.2017
    1. Shrikrishna D, Patel M, Tanner RJ, et al. Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J. 2012;40(5):1115–1122. doi:10.1183/09031936.00170111
    1. Bernard S, Leblanc P, Whittom F, et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158(2):629–634. doi:10.1164/ajrccm.158.2.9711023
    1. Larsson L. Histochemical characteristics of human skeletal muscle during aging. Acta Physiol Scand. 1983;117(3):469–471. doi:10.1111/j.1748-1716.1983.tb00024.x
    1. Allaire J, Maltais F, Doyon JF, et al. Peripheral muscle endurance and the oxidative profile of the quadriceps in patients with COPD. Thorax. 2004;59(8):673–678. doi:10.1136/thx.2003.020636
    1. Patel MS, Natanek SA, Stratakos G, et al. Vastus lateralis fiber shift is an independent predictor of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;190(3):350–352. doi:10.1164/rccm.201404-0713LE
    1. Maltais F, Leblanc P, Whittom F, et al. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax. 2000;55(10):848–853. doi:10.1136/thorax.55.10.848
    1. Saey D, Lemire BB, Gagnon P, et al. Quadriceps metabolism during constant workrate cycling exercise in chronic obstructive pulmonary disease. J Appl Physiol. 2011;110(1):116–124. doi:10.1152/japplphysiol.00153.2010
    1. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):1725–1789. doi:10.1152/physrev.2001.81.4.1725
    1. Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586(1):161–173. doi:10.1113/jphysiol.2007.141838
    1. Gagnon P, Bussieres JS, Ribeiro F, et al. Influences of spinal anesthesia on exercise tolerance in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(7):606–615. doi:10.1164/rccm.201203-0404OC
    1. Roig M, Eng JJ, MacIntyre DL, Road JD, Reid WD. Associations of the stair climb power test with muscle strength and functional performance in people with chronic obstructive pulmonary disease: a cross-sectional study. Phys Ther. 2010;90(12):1774–1782. doi:10.2522/ptj.20100091
    1. Van’t Hul A, Harlaar J, Gosselink R, Hollander P, Postmus P, Kwakkel G. Quadriceps muscle endurance in patients with chronic obstructive pulmonary disease. Muscle Nerve. 2004;29(2):267–274. doi:10.1002/mus.10552
    1. Frykholm E, Klijn P, Saey D, et al. Effect and feasibility of non-linear periodized resistance training in people with COPD: study protocol for a randomized controlled trial. Trials. 2019;20(1):6. doi:10.1186/s13063-019-3242-6
    1. American College of Sports M. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi:10.1249/MSS.0b013e3181915670
    1. Diehr P, Chen L, Patrick D, Feng Z, Yasui Y. Reliability, effect size, and responsiveness of health status measures in the design of randomized and cluster-randomized trials. Contemp Clin Trials. 2005;26(1):45–58. doi:10.1016/j.cct.2004.11.014
    1. Géphine S, Frykholm E, Nyberg A, Bui K-L, Maltais F, Saey D. Relationship between functional capacity, dynamic and static muscle function assessments in people with Chronic Obstructive Pulmonary Disease (COPD). Eur Respir J. 2018;52(suppl 62):PA4154. doi:10.1183/13993003.01675-2018
    1. Bui K-L, Mathur S, Maia N, et al. Associations between isometric and dynamic quadriceps measures with functional capacity in chronic obstructive pulmonary disease (COPD). Eur Respir J. 2018;52(suppl 62):PA3344. doi:10.1183/13993003.01675-2018
    1. Han TR, Shin HI, Kim IS. Magnetic stimulation of the quadriceps femoris muscle: comparison of pain with electrical stimulation. Am J Phys Med Rehabil. 2006;85(7):593–599. doi:10.1097/01.phm.0000223239.93539.fe
    1. Polkey MI, Kyroussis D, Hamnegard CH, Mills GH, Green M, Moxham J. Quadriceps strength and fatigue assessed by magnetic stimulation of the femoral nerve in man. Muscle Nerve. 1996;19(5):549–555. doi:10.1002/(SICI)1097-4598(199605)19:5<549::AID-MUS1>;2-B
    1. Burtin C, Saey D, Saglam M, et al. Effectiveness of exercise training in patients with COPD: the role of muscle fatigue. Eur Respir J. 2012;40(2):338–344. doi:10.1183/09031936.00111811
    1. Ribeiro F, Lepine PA, Garceau-Bolduc C, et al. Test-retest reliability of lower limb isokinetic endurance in COPD: A comparison of angular velocities. Int J Chron Obstruct Pulmon Dis. 2015;10:1163–1172. doi:10.2147/COPD.S81806
    1. Frykholm E, Gephine S, Saey D, et al. Inter-day test-retest reliability and feasibility of isokinetic, isometric, and isotonic measurements to assess quadriceps endurance in people with chronic obstructive pulmonary disease: A multicenter study. Chron Respir Dis 2019;16:1479973118816497.
    1. Thompson WRG, Neil F Pescatello, Linda S, et al. ACSM's guidelines for exercise testing and prescription. 8th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2010.
    1. Robles PG, Mathur S, Janaudis-Fereira T, Dolmage TE, Goldstein RS, Brooks D. Measurement of peripheral muscle strength in individuals with chronic obstructive pulmonary disease: a systematic review. J Cardiopulm Rehabil Prev. 2011;31(1):11–24. doi:10.1097/HCR.0b013e3181ebf302
    1. Man W, Moxham J, Polkey MI. Magnetic stimulation for the measurement of respiratory and skeletal muscle function. Eur Respir J. 2004;24:846–860. doi:10.1183/09031936.04.00029004
    1. Nyberg A, Saey D, Martin M, Maltais F. Test–re-test reliability of quadriceps muscle strength measures in people with more severe chronic obstructive pulmonary disease. J Rehabil Med. 2018;50:759–764. doi:10.2340/16501977-2354
    1. Vaidya T, Beaumont M, de Bisschop C, et al. Determining the minimally important difference in quadriceps strength in individuals with COPD using a fixed dynamometer. Int J Chron Obstruct Pulmon Dis. 2018;13:2685–2693. doi:10.2147/COPD.S161342
    1. Machado Rodrigues F, Demeyer H, Hornikx M, et al. Validity and reliability of strain gauge measurement of volitional quadriceps force in patients with COPD. Chron Respir Dis. 2017;14:1479972316687210.
    1. Jeong M, Kang HK, Song P, et al. Hand grip strength in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:2385–2390. doi:10.2147/COPD.S140915
    1. Beaumont M, Kerautret G, Peran L, Pichon R, Le Ber C, Cabillic M. Reproductibilité de la mesure de la force et de l’endurance du quadriceps dans la BPCO. Rev Mal Respir. 2017;34(9):1000–1006. doi:10.1016/j.rmr.2016.11.004
    1. Bui K-L, Mathur S, Dechman G, Maltais F, Camp PG, Saey D. Fixed handheld dynamometry provides reliable and valid values for quadriceps isometric strength in patients with COPD: a multicenter study. Phys Ther. 2019;pii: pzz059. doi:10.1093/ptj/pzz059
    1. Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol. 2008;586(1):11–23. doi:10.1113/jphysiol.2007.139477
    1. Evans R, Kaplovitch E, Beauchamp MK, et al. Is quadriceps endurance reduced in COPD? Chest J. 2015;147(3):673. doi:10.1378/chest.14-1079
    1. Nyberg A, Tornberg A, Wadell K. Correlation between limb muscle endurance, strength, and functional capacity in people with chronic obstructive pulmonary disease. Physiother Can. 2016;68(1):46–53. doi:10.3138/ptc.2014-93
    1. Nyberg A, Lindstrom B, Rickenlund A, Wadell K. Low-load/high-repetition elastic band resistance training in patients with COPD: a randomized, controlled, multicenter trial. Clin Respir J. 2015;9(3):278–288. doi:10.1111/crj.12141
    1. Nyberg A, Saey D, Martin M, Maltais F. Acute effects of low-load/high-repetition single-limb resistance training in COPD. Med Sci Sports Exerc. 2016;48(12):2353–2361. doi:10.1249/MSS.0000000000001027
    1. Clark CJ, Cochrane L, Mackay E. Low intensity peripheral muscle conditioning improves exercise tolerance and breathlessness in COPD. Eur Respir J. 1996;9:2590–2596.
    1. Rausch-Osthoff A-K, Kohler M, Sievi NA, Clarenbach CF, van Gestel A Jr. Association between peripheral muscle strength, exercise performance, and physical activity in daily life in patients with chronic obstructive pulmonary disease. Multidiscip Respir Med. 2014;9(1):37. doi:10.1186/2049-6958-9-37
    1. Johnston KN, Potter AJ, Phillips A. Measurement properties of short lower extremity functional exercise tests in people with chronic obstructive pulmonary disease: systematic Review. Phys Ther. 2017;97(9):926–943. doi:10.1093/ptj/pzx063
    1. Mathur S, Dechman G, Bui K-L, Camp PG, Saey D. Evaluation of limb muscle strength and function in people with chronic obstructive pulmonary disease. Cardiopulm Phys Ther J. 2018;30(1):24–34. doi:10.1097/CPT.0000000000000090
    1. Bui K-L, Nyberg A, Maltais F, Saey D. Functional tests in chronic obstructive pulmonary disease, part 1: clinical relevance and links to the international classification of functioning, disability, and health. Ann Am Thorac Soc. 2017;14(5):778–784. doi:10.1513/AnnalsATS.201609-733AS
    1. Bernabeu-Mora R, Gimenez-Gimenez LM, Montilla-Herrador J, Garcia-Guillamon G, Garcia-Vidal JA, Medina-Mirapeix F. Determinants of each domain of the short physical performance battery in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:2539–2544. doi:10.2147/COPD.S138402
    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: european consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Ageing. 2010;39(4):412–423. doi:10.1093/ageing/afq034
    1. Jones SE, Maddocks M, Kon SS, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213–218. doi:10.1136/thoraxjnl-2014-206440
    1. Sapega A, Drillings G. The definition and assessment of muscular power. J Orthop Sports Phys Ther. 1983;5(1):7–9. doi:10.2519/jospt.1983.5.1.7
    1. Izquierdo M, Ibanez J, Gorostiaga E, et al. Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men. Acta Physiol Scan. 1999;167(1):57–68. doi:10.1046/j.1365-201x.1999.00590.x
    1. Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M. Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports. 2010;20(1):49–64. doi:10.1111/j.1600-0838.2009.01084.x
    1. Webber S, Porter M. Reliability of ankle isometric, isotonic and isokinetic strength and power testing in older women. Phys Ther. 2010;90(10):1165–1175. doi:10.2522/ptj.20090394
    1. Reid KF, Fielding RA. Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev. 2012;40(1):4–12. doi:10.1097/JES.0b013e31823b5f13
    1. Hernandez M, Zambom-Ferraresi F, Cebollero P, Hueto J, Cascante JA, Anton MM. The relationships between muscle power and physical activity in older men with chronic obstructive pulmonary disease. J Aging Phys Act. 2017;25(3):360–366. doi:10.1123/japa.2016-0144
    1. Bean J, Leveille S, Kiely D, Bandinelli S, Guralnik J, Ferrucci L. A comparison of leg power and leg strength within the InCHIANTI study: which influences mobility more? J Gerontol. 2003;58A(8):728–733.
    1. Cheng AJ, Rice CL. Fatigue and recovery of power and isometric torque following isotonic knee extensions. J Appl Physiol (1985). 2005;99(4):1446–1452. doi:10.1152/japplphysiol.00452.2005
    1. De Brandt J, Spruit MA, Hansen D, et al. Changes in lower limb muscle function and muscle mass following exercise-based interventions in patients with chronic obstructive pulmonary disease: A review of the English-language literature. Chron Respir Dis. 2018;15(2):182–219. doi:10.1177/1479972317709642
    1. Zanini A, Aiello M, Cherubino F, et al. The one repetition maximum test and the sit-to-stand test in the assessment of a specific pulmonary rehabilitation program on peripheral muscle strength in COPD patients. Int J Chron Obstruct Pulmon Dis. 2015;10:2423–2430. doi:10.2147/COPD.S91176
    1. Carpinelli R. A critical analysis of the national strength and conditioning association’s opinion that free weights are superior to machines for increasing muscular strength and power. Medicina Sportiva Practica. 2017;18(2):21–39.
    1. Boyer BT. A comparison of the effects of three strength training programs on women. J Appl Sport Sci Res. 1990;4(5):88–94.
    1. Ehsani H, Mohler MJ, Golden T, Toosizadeh N. Upper-extremity function prospectively predicts adverse discharge and all-cause COPD readmissions: a pilot study. Int J Chron Obstruct Pulmon Dis. 2019;14:39–49. doi:10.2147/COPD.S182802
    1. Toosizadeh N, Berry C, Bime C, Najafi B, Kraft M, Mohler J. Assessing upper-extremity motion: an innovative method to quantify functional capacity in patients with chronic obstructive pulmonary disease. PLoS One. 2017;12(2):e0172766. doi:10.1371/journal.pone.0172766
    1. Boccia G, Coratella G, Dardanello D, et al. Severe COPD alters muscle fiber conduction velocity during knee extensors fatiguing contraction. COPD. 2016;13(5):583–588. doi:10.3109/15412555.2016.1139561
    1. Boccia G, Dardanello D, Rinaldo N, Coratella G, Schena F, Rainoldi A. Electromyographic manifestations of fatigue correlate with pulmonary function, 6 min walk test, and time to exhaustion in COPD. Respir Care. 2015;60(9):1295–1302. doi:10.4187/respcare.04138
    1. Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur J Appl Physiol. 2012;112(1):267–275. doi:10.1007/s00421-011-1975-3
    1. Singh SJ, Puhan MA, Andrianopoulos V, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1447–1478. doi:10.1183/09031936.00150414
    1. Butcher SJ, Pikaluk BJ, Chura RL, Walkner MJ, Farthing JP, Marciniuk DD. Associations between isokinetic muscle strength, high-level functional performance, and physiological parameters in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2012;7:537–542. doi:10.2147/COPD.S34170
    1. Bean JF, Kiely DK, LaRose S, Alian J, Frontera WR. is stair climb power a clinically relevant measure of leg power impairments in at-risk older adults? Arch Phys Med Rehabil. 2007;88(5):604–609. doi:10.1016/j.apmr.2007.02.004
    1. Bernabeu-Mora R, Medina-Mirapeix F, Llamazares-Herran E, Garcia-Guillamon G, Gimenez-Gimenez LM, Sanchez-Nieto JM. The short physical performance battery is a discriminative tool for identifying patients with COPD at risk of disability. Int J Chron Obstruct Pulmon Dis. 2015;10:2619–2626. doi:10.2147/COPD.S94377
    1. Jones SE, Kon SSC, Canavan JL, et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax. 2013;68(11):1015–1020. doi:10.1136/thoraxjnl-2013-203576
    1. Takahashi T, Jenkins SC, Strauss GR, Watson CP, Lake FR. A new unsupported upper limb exercise test for patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil. 2003;23:430–437.
    1. Janaudis-Ferreira T, Hill K, Goldstein RS, Wadell K, Brooks D. Relationship and responsiveness of three upper-limb tests in patients with chronic obstructive pulmonary disease. Physiother Can. 2012;1(1):1–4.
    1. Medina-Mirapeix F, Bernabeu-Mora R, Llamazares-Herran E, Sanchez-Martinez MP, Garcia-Vidal JA, Escolar-Reina P. Interobserver reliability of peripheral muscle strength tests and short physical performance battery in patients with chronic obstructive pulmonary disease: a prospective observational study. Arch Phys Med Rehabil. 2016;97(11):2002–2005. doi:10.1016/j.apmr.2016.05.004
    1. Mesquita R, Janssen D, Wouters EFM, Schols J, Pitta F, Spruit M. Within-day test-retest reliability of the timed up & go test in patients with advanced chronic organ failure. Arch Phys Med Rehabil. 2013;94(11):2131–2138. doi:10.1016/j.apmr.2013.03.024
    1. Marques A, Cruz J, Quina S, Regencio M, Jacome C. Reliability, agreement and minimal detectable change of the timed up & go and the 10-meter walk tests in older patients with COPD. Chronic Obstr Pulm Dis. 2016;13(3):279–287. doi:10.3109/15412555.2015.1079816
    1. Kon SSC, Patel MS, Canavan JL, et al. Reliability and validity of 4-metre gait speed in COPD. Eur Respir J. 2013;42:333–340. doi:10.1183/09031936.00162712
    1. Kon SSC, Canavan JL, Nolan CM, et al. The 4-metre gait speed in COPD: responsiveness and minimal clinically important difference. Eur Respir J. 2014;43:1298–1305. doi:10.1183/09031936.00088113
    1. Cabrero-Garcia J, Munoz-Mendoza CL, Cabanero-Martinez MJ, Gonzalez-Llopis L, Ramos-Pichardo JD, Reig-Ferrer A. [Short physical performance battery reference values for patients 70 years-old and over in primary health care]. Aten Primaria. 2012;44(9):540–548. doi:10.1016/j.aprim.2012.02.007
    1. Bohannon RW, Williams Andrews A. Normal walking speed: a descriptive meta-analysis. Physiotherapy. 2011;97(3):182–189. doi:10.1016/j.physio.2010.12.004
    1. Bohannon RW. Reference values for the five-repetition sit-to-stand test: a descriptive meta-analysis of data from elders. Percept Mot Skills. 2006;103(1):215–222. doi:10.2466/pms.103.1.215-222

Source: PubMed

3
購読する