The Biological Clock: A Pivotal Hub in Non-alcoholic Fatty Liver Disease Pathogenesis

Gianluigi Mazzoccoli, Salvatore De Cosmo, Tommaso Mazza, Gianluigi Mazzoccoli, Salvatore De Cosmo, Tommaso Mazza

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most frequent hepatic pathology in the Western world and may evolve into steatohepatitis (NASH), increasing the risk of cirrhosis, portal hypertension and hepatocellular carcinoma. NAFLD derives from the accumulation of hepatic fat due to discrepant free fatty acid metabolism. Other factors contributing to this are deranged nutrients and bile acids fluxes as well as alterations in nuclear receptors, hormones, and intermediary metabolites, which impact on signaling pathways involved in metabolism and inflammation. Autophagy and host gut-microbiota interplay are also relevant to NAFLD pathogenesis. Notably, liver metabolic pathways and bile acid synthesis as well as autophagic and immune/inflammatory processes all show circadian patterns driven by the biological clock. Gut microbiota impacts on the biological clock, at the same time as the appropriate timing of metabolic fluxes, hormone secretion, bile acid turnover, autophagy and inflammation with behavioural cycles of fasting/feeding and sleeping/waking is required to circumvent hepatosteatosis, indicating significant interactions of the gut and circadian processes in NAFLD pathophysiology. Several time-related factors and processes interplay in NAFLD development, with the biological clock proposed to act as a network level hub. Deranged physiological rhythms (chronodisruption) may also play a role in liver steatosis pathogenesis. The current article reviews how the circadian clock circuitry intimately interacts with several mechanisms involved in the onset of hepatosteatosis and its progression to NASH, thereby contributing to the global NAFLD epidemic.

Keywords: NAFLD; chronodisruption; circadian; clock gene; metabolism; rhythm.

Figures

Figure 1
Figure 1
Schematic representation of the biological clock. The several cogs of the molecular clockwork are connected by lines representing interaction, arrow-headed lines representing activation, bar-headed lines representing inhibition. ARNTL, CLOCK, and RORA encode transcriptional activators; PER1/2, CRY1/2, and Rev-erbα encode transcriptional repressors; CK and Ph symbolize casein kinases and inorganic phosphate operating by post-translational modification of circadian proteins. ARNTL drives the expression of downstream genes encoding transcriptional activators, such as DEC1-2, DBP, TEF, HLF, PPARA. CLOCK acetyltransferase activity and SIRT1 deacetylase activity is crucial for the functioning of the biological clock. Molecular interactions were manually retrieved and curated from the scientific literature.
Figure 2
Figure 2
Gene regulatory network involved in non-alcoholic fatty liver disease pathogenesis. Gene are nodes of the network and are visualized as blue-colored ellipses. Most nodes are involved in multiple signaling pathways and are clustered in functionally related groups. Interaction data are retrieved from the Ingenuity Knowledge Base (QIAGEN Inc., https://www.qiagenbioinformatics.com/). Graphical layout was obtained by Cytoscape 3.4.0 (www.cytoscape.org/).
Figure 3
Figure 3
Visualization of a unifying concept of the involvement of the biological clock in the control of the relevant pathways and biological processes involved in non-alcoholic fatty liver disease pathogenesis. Each pathway/process is represented as a blue-rounded rectangle. Arrow-headed lines represent activation, bar-headed lines represent inhibition. Molecular interactions were manually retrieved and curated from the scientific literature. Graphical layout was obtained by Cytoscape 3.4.0 (www.cytoscape.org/).

References

    1. Acosta-Rodríguez V. A., de Groot M. H. M., Rijo-Ferreira F., Green C. B., Takahashi J. S. (2017). Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab. 26, 267–277. 10.1016/j.cmet.2017.06.007
    1. Anderson G., Beischlag T. V., Vinciguerra M., Mazzoccoli G. (2013). The circadian clock circuitry and the AHR signaling pathway in physiology and pathology. Biochem. Pharmacol. 85, 1405–1416. 10.1016/j.bcp.2013.02.022
    1. Asher G., Reinke H., Altmeyer M., Gutierrez-Arcelus M., Hottiger M. O., Schibler U. (2010). Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953. 10.1016/j.cell.2010.08.016
    1. Atger F., Gobet C., Marquis J., Martin E., Wang J., Weger B., et al. . (2015). Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc. Natl. Acad. Sci. U.S.A. 112, E6579–E6588. 10.1073/pnas.1515308112
    1. Bogdanov P., Corraliza L., Villena J. A., Carvalho A. R., Garcia-Arumí J., Ramos D., et al. . (2014). The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration. PLoS ONE 9:e97302. 10.1371/journal.pone.0097302
    1. Bonora E., Targher G. (2012). Increased risk of cardiovascular disease and chronic kidney disease in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 9, 372–381. 10.1038/nrgastro.2012.79
    1. Bookout A. L., de Groot M. H., Owen B. M., Lee S., Gautron L., Lawrence H. L., et al. . (2013). FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19, 1147–1152. 10.1038/nm.3249
    1. Bosler O., Girardet C., Franc J. L., Becquet D., François-Bellan A. M. (2015). Structural plasticity of the circadian timing system. An overview from flies to mammals. Front. Neuroendocrinol. 38, 50–64. 10.1016/j.yfrne.2015.02.001
    1. Bray M. S., Tsai J. Y., Villegas-Montoya C., Boland B. B., Blasier Z., Egbejimi O., et al. . (2010). Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int. J. Obes. 34, 1589–1598. 10.1038/ijo.2010.63
    1. Bugge A., Feng D., Everett L. J., Briggs E. R., Mullican S. E., Wang F., et al. . (2012). Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657–667. 10.1101/gad.186858.112
    1. Buxton O. M., Cain S. W., O'Connor S. P., Porter J. H., Duffy J. F., Wang W., et al. . (2012). Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 4:129ra43. 10.1126/scitranslmed.3003200
    1. Canaple L., Rambaud J., Dkhissi-Benyahya O., Rayet B., Tan N. S., Michalik L., et al. . (2006). Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol. Endocrinol. 20, 1715–1727. 10.1210/me.2006-0052
    1. Cantó C., Gerhart-Hines Z., Feige J. N., Lagouge M., Noriega L., Milne J. C., et al. . (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060. 10.1038/nature07813
    1. Cela O., Scrima R., Pazienza V., Merla G., Benegiamo G., Augello B., et al. . (2016). Clock genes-dependent acetylation of complex I sets rhythmic activity of mitochondrial OxPhos. Biochim. Biophys. Acta 1863, 596–606. 10.1016/j.bbamcr.2015.12.018
    1. Cermakian N., Lange T., Golombek D., Sarkar D., Nakao A., Shibata S., et al. . (2013). Crosstalk between the circadian clock circuitry and the immune system. Chronobiol. Int. 30, 870–888. 10.3109/07420528.2013.782315
    1. Chaix A., Zarrinpar A., Miu P., Panda S. (2014). Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 20, 991–1005. 10.1016/j.cmet.2014.11.001
    1. Chalasani N., Younossi Z., Lavine J. E., Diehl A. M., Brunt E. M., Cusi K., et al. . (2012). The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55, 2005–2023. 10.1002/hep.25762
    1. Chen Z., Yoo S. H., Takahashi J. S. (2018). Development and therapeutic potential of small-molecule modulators of circadian systems. Annu. Rev. Pharmacol. Toxicol. 58, 231–252. 10.1146/annurev-pharmtox-010617-052645
    1. Cheng X., Vispute S. G., Liu J., Cheng C., Kharitonenkov A., Klaassen C. D. (2014). Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR). Toxicol. Appl. Pharmacol. 278, 65–71. 10.1016/j.taap.2014.04.013
    1. Cho H., Zhao X., Hatori M., Yu R. T., Barish G. D., Lam M. T., et al. . (2012). Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123–127. 10.1038/nature11048
    1. Corkey B. E., Shirihai O. (2012). Metabolic master regulators: sharing information among multiple systems. Trends Endocrinol. Metab. 23, 594–601. 10.1016/j.tem.2012.07.006
    1. Cretenet G., Le Clech M., Gachon F. (2010). Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metab. 11, 47–57. 10.1016/j.cmet.2009.11.002
    1. Dallmann R., Viola A. U., Tarokh L., Cajochen C., Brown S. A. (2012). The human circadian metabolome. Proc. Natl. Acad. Sci. U.S.A. 109, 2625–2629. 10.1073/pnas.1114410109
    1. De Cosmo S., Mazzoccoli G. (2017). Retinoid X receptors intersect the molecular clockwork in the regulation of liver metabolism. Front. Endocrinol. 8:24. 10.3389/fendo.2017.00024
    1. Dong K., Li H., Zhang M., Jiang S., Chen S., Zhou J., et al. . (2015). Endoplasmic reticulum stress induces up-regulation of hepatic β-Klotho expression through ATF4 signaling pathway. Biochem. Biophys. Res. Commun. 459, 300–305. 10.1016/j.bbrc.2015.02.104
    1. Duez H., van der Veen J. N., Duhem C., Pourcet B., Touvier T., Fontaine C., et al. . (2008). Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology 135, 689–698. 10.1053/j.gastro.2008.05.035
    1. Eckel-Mahan K., Sassone-Corsi P. (2013). Metabolism and the circadian clock converge. Physiol. Rev. 93, 107–135. 10.1152/physrev.00016.2012
    1. Eckel-Mahan K. L., Patel V. R., Mohney R. P., Vignola K. S., Baldi P., Sassone-Corsi P. (2012). Coordination of the transcriptome and metabolome by the circadian clock. Proc. Natl. Acad. Sci. U.S.A. 109, 5541–5546. 10.1073/pnas.1118726109
    1. Fabbiano S., Suárez-Zamorano N., Rigo D., Veyrat-Durebex C., Stevanovic Dokic A., Colin D. J., et al. . (2016). Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 24, 434–446. 10.1016/j.cmet.2016.07.023
    1. Fan J. G., Cao H. X. (2013). Role of diet and nutritional management in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 28(Suppl. 4), 81–87. 10.1111/jgh.12244
    1. Feng D., Liu T., Sun Z., Bugge A., Mullican S. E., Alenghat T., et al. . (2011). A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319. 10.1126/science.1198125
    1. Fock K. M., Khoo J. (2013). Diet and exercise in management of obesity and overweight. J. Gastroenterol. Hepatol. 28(Suppl. 4), 59–63. 10.1111/jgh.12407
    1. Foulds C. E., Treviño L. S., York B., Walker C. L. (2017). Endocrine-disrupting chemicals and fatty liver disease. Nat. Rev. Endocrinol. 13, 445–457. 10.1038/nrendo.2017.42
    1. Fucho R., Martínez L., Baulies A., Torres S., Tarrats N., Fernandez A., et al. . (2014). ASMase regulates autophagy and lysosomal membrane permeabilization and its inhibition prevents early stage non-alcoholic steatohepatitis. J. Hepatol. 61, 1126–1134. 10.1016/j.jhep.2014.06.009
    1. Garaulet M., Gómez-Abellán P., Rubio-Sastre P., Madrid J. A., Saxena R., Scheer F. A. (2015). Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans. Metabolism 64, 1650–1657. 10.1016/j.metabol.2015.08.003
    1. Gil-Lozano M., Mingomataj E. L., Wu W. K., Ridout S. A., Brubaker P. L. (2014). Circadian secretion of the intestinal hormone GLP-1 by the rodent L cell. Diabetes 63, 3674–3685. 10.2337/db13-1501
    1. Girer N. G., Murray I. A., Omiecinski C. J., Perdew G. H. (2016). Hepatic aryl hydrocarbon receptor attenuates fibroblast growth factor 21 expression. J. Biol. Chem. 291, 15378–15387. 10.1074/jbc.M116.715151
    1. González-Rodríguez A., Mayoral R., Agra N., Valdecantos M. P., Pardo V., Miquilena-Colina M. E., et al. . (2014). Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5:e1179. 10.1038/cddis.2014.162
    1. Gross B., Pawlak M., Lefebvre P., Staels B. (2017). PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 13, 36–49. 10.1038/nrendo.2016.135
    1. Guillaumond F., Gréchez-Cassiau A., Subramaniam M., Brangolo S., Peteri-Brünback B., Staels B., et al. . (2010). Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Mol. Cell. Biol. 30, 3059–3070. 10.1128/MCB.01141-09
    1. Hatori M., Vollmers C., Zarrinpar A., DiTacchio L., Bushong E. A., Gill S., et al. . (2012). Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860. 10.1016/j.cmet.2012.04.019
    1. He B., Nohara K., Park N., Park Y. S., Guillory B., Zhao Z., et al. . (2016). The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab. 23, 610–621. 10.1016/j.cmet.2016.03.007
    1. Henao-Mejia J., Elinav E., Jin C., Hao L., Mehal W. Z., Strowig T., et al. . (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185. 10.1038/nature10809
    1. Hirota T., Kon N., Itagaki T., Hoshina N., Okano T., Fukada Y. (2010). Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells 15, 111–121. 10.1111/j.1365-2443.2009.01371.x
    1. Hirota T., Okano T., Kokame K., Shirotani-Ikejima H., Miyata T., Fukada Y. (2002). Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 277, 44244–44251. 10.1074/jbc.M206233200
    1. Inoue I., Shinoda Y., Ikeda M., Hayashi K., Kanazawa K., Nomura M., et al. . (2005). CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J. Atheroscler. Thromb. 12, 169–174. 10.5551/jat.12.169
    1. Jacobi D., Liu S., Burkewitz K., Kory N., Knudsen N. H., Alexander R. K., et al. . (2015). Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab. 22, 709–720. 10.1016/j.cmet.2015.08.006
    1. Jung T. W., Hong H. C., Hwang H. J., Yoo H. J., Baik S. H., Choi K. M. (2015). C1q/TNF-Related Protein 9 (CTRP9) attenuates hepatic steatosis via the autophagy-mediated inhibition of endoplasmic reticulum stress. Mol. Cell. Endocrinol. 417, 131–140. 10.1016/j.mce.2015.09.027
    1. Kanwal F., Kramer J. R., Duan Z., Yu X., White D., El-Serag H. B. (2016). Trends in the burden of nonalcoholic fatty liver disease in a United States cohort of veterans. Clin. Gastroenterol. Hepatol. 14, 301-8.e1–2. 10.1016/j.cgh.2015.08.010
    1. Kato Y., Kawamoto T., Fujimoto K., Noshiro M. (2014). DEC1/STRA13/SHARP2 and DEC2/SHARP1 coordinate physiological processes, including circadian rhythms in response to environmental stimuli. Curr. Top. Dev. Biol. 110, 339–372. 10.1016/B978-0-12-405943-6.00010-5
    1. Kaur J., Debnath J. (2015). Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16, 461–472. 10.1038/nrm4024
    1. Kettner N. M., Voicu H., Finegold M. J., Coarfa C., Sreekumar A., Putluri N., et al. . (2016). Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 30, 909–924. 10.1016/j.ccell.2016.10.007
    1. Khapre R. V., Kondratova A. A., Patel S., Dubrovsky Y., Wrobel M., Antoch M. P., et al. . (2014). BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging 6, 48–57. 10.18632/aging.100633
    1. Kim J., Kundu M., Viollet B., Guan K. L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141. 10.1038/ncb2152
    1. Kim K. H., Jeong Y. T., Oh H., Kim S. H., Cho J. M., Kim Y. N., et al. . (2013). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83–92. 10.1038/nm.3014
    1. Lambert J. E., Ramos-Roman M. A., Browning J. D., Parks E. J. (2014). Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735. 10.1053/j.gastro.2013.11.049
    1. Lamia K. A., Papp S. J., Yu R. T., Barish G. D., Uhlenhaut N. H., Jonker J. W., et al. . (2011). Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552–556. 10.1038/nature10700
    1. Lamia K. A., Storch K. F., Weitz C. J. (2008). Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. U.S.A. 105, 15172–15177. 10.1073/pnas.0806717105
    1. Lane J. M., Chang A. M., Bjonnes A. C., Aeschbach D., Anderson C., Cade B. E. (2016). Impact of common diabetes risk variant in MTNR1B on sleep, circadian, and melatonin physiology. Diabetes 65, 1741–1751. 10.2337/db15-0999
    1. Lazo M., Solga S. F., Horska A., Bonekamp S., Diehl A. M., Brancati F. L., et al. (2010). Fatty liver subgroup of the look AHEAD research group. Effect of a 12-month intensive lifestyle intervention on hepatic steatosis in adults with type 2 diabetes. Diabetes Care 33, 2156–2163. 10.2337/dc10-0856
    1. Lee J. M., Wagner M., Xiao R., Kim K. H., Feng D., Lazar M. A., et al. . (2014). Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112–115. 10.1038/nature13961
    1. Lee S. M., Zhang Y., Tsuchiya H., Smalling R., Jetten A. M., Wang L. (2015). Small heterodimer partner/neuronal PAS domain protein 2 axis regulates the oscillation of liver lipid metabolism. Hepatology 61, 497–505. 10.1002/hep.27437
    1. Leone V., Gibbons S. M., Martinez K., Hutchison A. L., Huang E. Y., Cham C. M., et al. . (2015). Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689. 10.1016/j.chom.2015.03.006
    1. Li G., Xie C., Lu S., Nichols R. G., Tian Y., Li L., et al. (2017). Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 26, 672–685. 10.1016/j.cmet.2017.08.019
    1. Li M. D., Ruan H. B., Hughes M. E., Lee J. S., Singh J. P., Jones S. P., et al. . (2013). O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab. 17, 303–310. 10.1016/j.cmet.2012.12.015
    1. Li Y., Wong K., Giles A., Jiang J., Lee J. W., Adams A. C., et al. . (2014). Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology 146, 539–49.e7. 10.1053/j.gastro.2013.10.059
    1. Lin C. W., Zhang H., Li M., Xiong X., Chen X., Chen X., et al. . (2013). Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J. Hepatol. 58, 993–999. 10.1016/j.jhep.2013.01.011
    1. Longo V. D., Panda S. (2016). Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059. 10.1016/j.cmet.2016.06.001
    1. Loomba R., Sanyal A. J. (2013). The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10, 686–690. 10.1038/nrgastro.2013.171
    1. Loomba R., Seguritan V., Li W., Long T., Klitgord N., Bhatt A., et al. . (2017). Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054-1062.e5. 10.1016/j.cmet.2017.04.001
    1. Lopez-Minguez J., Saxena R., Bandín C., Scheer F. A., Garaulet M. (2017). Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: a randomized, cross-over study. Clin. Nutr. 10.1016/j.clnu.2017.04.003 [Epub ahead of print].
    1. Lu P., Yan J., Liu K., Garbacz W. G., Wang P., Xu M., et al. . (2015). Activation of aryl hydrocarbon receptor dissociates fatty liver from insulin resistance by inducing fibroblast growth factor 21. Hepatology 61, 1908–1919. 10.1002/hep.27719
    1. Ma D., Li S., Molusky M. M., Lin J. D. (2012). Circadian autophagy rhythm: a link between clock and metabolism? Trends Endocrinol. Metab. 23, 319–325. 10.1016/j.tem.2012.03.004
    1. Ma D., Panda S., Lin J. D. (2011). Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J. 30, 4642–4651. 10.1038/emboj.2011.322
    1. Maillo C., Martín J., Sebastián D., Hernández-Alvarez M., García-Rocha M., Reina O., et al. . (2017). Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nat. Cell Biol. 19, 94–105. 10.1038/ncb3461
    1. Marcheva B., Ramsey K. M., Buhr E. D., Kobayashi Y., Su H., Ko C. H., et al. . (2010). Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627–631. 10.1038/nature09253
    1. Martinez-Lopez N., Singh R. (2015). Autophagy and lipid droplets in the liver. Annu. Rev. Nutr. 35, 215–237. 10.1146/annurev-nutr-071813-105336
    1. Masri S., Patel V. R., Eckel-Mahan K. L., Peleg S., Forne I., Ladurner A. G., et al. . (2013). Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc. Natl. Acad. Sci. U.S.A. 110, 3339–3344. 10.1073/pnas.1217632110
    1. Mattson M. P., Allison D. B., Fontana L., Harvie M., Longo V. D., Malaisse W. J., et al. . (2014). Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. U.S.A. 111, 16647–16653. 10.1073/pnas.1413965111
    1. Mazzoccoli G., Laukkanen M. O., Vinciguerra M., Colangelo T., Colantuoni V. (2016). A timeless link between circadian patterns and disease. Trends Mol. Med. 22, 68–81. 10.1016/j.molmed.2015.11.007
    1. Mazzoccoli G., Pazienza V., Vinciguerra M. (2012). Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol. Int. 29, 227–251. 10.3109/07420528.2012.658127
    1. Mazzoccoli G., Vinciguerra M., Oben J., Tarquini R., De Cosmo S. (2014). Non-alcoholic fatty liver disease: the role of nuclear receptors and circadian rhythmicity. Liver Int. 34, 1133–1152. 10.1111/liv.12534
    1. McHill A. W., Phillips A. J., Czeisler C. A., Keating L., Yee K., Barger L. K., et al. . (2017). Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 106, 1213–1219. 10.3945/ajcn.117.161588
    1. Mirzaei K., Xu M., Qi Q., de Jonge L., Bray G. A., Sacks F., et al. . (2014). Variants in glucose- and circadian rhythm-related genes affect the response of energy expenditure to weight-loss diets: the POUNDS LOST Trial. Am. J. Clin. Nutr. 99, 392–399. 10.3945/ajcn.113.072066
    1. Montagner A., Polizzi A., Fouché E., Ducheix S., Lippi Y., Lasserre F., et al. . (2016). Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65, 1202–1214. 10.1136/gutjnl-2015-310798
    1. Moore R. Y. (2013). The suprachiasmatic nucleus and the circadian timing system. Prog. Mol. Biol. Transl. Sci. 119, 1–28. 10.1016/B978-0-12-396971-2.00001-4
    1. Mukherji A., Kobiita A., Ye T., Chambon P. (2013). Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153, 812–827. 10.1016/j.cell.2013.04.020
    1. Musso G., Gambino R., Tabibian J. H., Ekstedt M., Kechagias S., et al. . (2014). Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 11:e1001680. 10.1371/journal.pmed.1001680
    1. Neufeld-Cohen A., Robles M. S., Aviram R., Manella G., Adamovich Y., Ladeuix B., et al. . (2016). Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc. Natl. Acad. Sci. U.S.A. 113, E1673–E1682. 10.1073/pnas.1519650113
    1. Nies V. J., Sancar G., Liu W., van Zutphen T., Struik D., Yu R. T., et al. . (2016). Fibroblast growth factor signaling in metabolic regulation. Front. Endocrinol. 6:193. 10.3389/fendo.2015.00193
    1. Pan A., Schernhammer E. S., Sun Q., Hu F. B. (2011). Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 8:e1001141. 10.1371/journal.pmed.1001141
    1. Paschos G. K., Ibrahim S., Song W. L., Kunieda T., Grant G., Reyes T. M., et al. . (2012). Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat. Med. 18, 1768–1777. 10.1038/nm.2979
    1. Peek C. B., Affinati A. H., Ramsey K. M., Kuo H. Y., Yu W., Sena L. A., et al. . (2013). Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342:1243417. 10.1126/science.1243417
    1. Perelis M., Marcheva B., Ramsey K. M., Schipma M. J., Hutchison A. L., Taguchi A., et al. . (2015). Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350:aac4250. 10.1126/science.aac4250
    1. Pulimeno P., Mannic T., Sage D., Giovannoni L., Salmon P., Lemeille S., et al. . (2013). Autonomous and self-sustained circadian oscillators displayed in human islet cells. Diabetologia 56, 497–507. 10.1007/s00125-012-2779-7
    1. Rakshit K., Hsu T. W., Matveyenko A. V. (2016). Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice. Diabetologia 59, 734–743. 10.1007/s00125-015-3859-2
    1. Reinke H., Asher G. (2016). Circadian clock control of liver metabolic functions. Gastroenterology 150, 574–580. 10.1053/j.gastro.2015.11.043
    1. Robles M. S., Humphrey S. J., Mann M. (2017). Phosphorylation is a central mechanism for circadian control of metabolism and physiology. Cell Metab. 25, 118–127. 10.1016/j.cmet.2016.10.004
    1. Rosselot A. E., Hong C. I., Moore S. R. (2016). Rhythm and bugs: circadian clocks, gut microbiota, and enteric infections. Curr. Opin. Gastroenterol. 32, 7–11. 10.1097/MOG.0000000000000227
    1. Rotman Y., Sanyal A. J. (2017). Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut 66, 180–190. 10.1136/gutjnl-2016-312431
    1. Rubio-Sastre P., Scheer F. A., Gómez-Abellán P., Madrid J. A., Garaulet M. (2014). Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening. Sleep 37, 1715–1719. 10.5665/sleep.4088
    1. Rudic R. D., McNamara P., Curtis A. M., Boston R. C., Panda S., Hogenesch J. B., et al. . (2004). BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2:e377. 10.1371/journal.pbio.0020377
    1. Ruiter M., La Fleur S. E., van Heijningen C., van der Vliet J., Kalsbeek A., Buijs R. M. (2003). The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 52, 1709–1715. 10.2337/diabetes.52.7.1709
    1. Sadacca L. A., Lamia K. A., de Lemos A. S., Blum B., Weitz C. J. (2011). An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54, 120–124. 10.1007/s00125-010-1920-8
    1. Saini C., Petrenko V., Pulimeno P., Giovannoni L., Berney T., Hebrok M., et al. . (2016). A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells. Diabetes Obes. Metab. 18, 355–365. 10.1111/dom.12616
    1. Sanz Y., Olivares M., Moya-Pérez Á., Agostoni C. (2015). Understanding the role of gut microbiome in metabolic disease risk. Pediatr. Res. 77, 236–244. 10.1038/pr.2014.170
    1. Scrima R., Cela O., Merla G., Augello B., Rubino R., Quarato G., et al. . (2016). Clock-genes and mitochondrial respiratory activity: evidence of a reciprocal interplay. Biochim. Biophys. Acta 1857, 1344–1351. 10.1016/j.bbabio.2016.03.035
    1. Seok S., Fu T., Choi S. E., Li Y., Zhu R., Kumar S., et al. . (2014). Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 516, 108–111. 10.1038/nature13949
    1. Shimba S., Ogawa T., Hitosugi S., Ichihashi Y., Nakadaira Y., Kobayashi M., et al. . (2011). Deficient of a clock gene, brain and muscle arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS ONE 6:e25231. 10.1371/journal.pone.0025231
    1. Solt L. A., Kojetin D. J., Burris T. P. (2011). The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med. Chem. 3, 623–638. 10.4155/fmc.11.9
    1. Sun X., Dang F., Zhang D., Yuan Y., Zhang C., Wu Y., et al. . (2015). Glucagon-CREB/CRTC2 signaling cascade regulates hepatic BMAL1 protein. J. Biol. Chem. 290, 2189–2197. 10.1074/jbc.M114.612358
    1. Sun Z., Lazar M. A. (2013). Dissociating fatty liver and diabetes. Trends Endocrinol. Metab. 24, 4–12. 10.1016/j.tem.2012.09.005
    1. Tahara Y., Shibata S. (2016). Circadian rhythms of liver physiology and disease: experimental and clinical evidence. Nat. Rev. Gastroenterol. Hepatol. 13, 217–226. 10.1038/nrgastro.2016.8
    1. Takahashi J. S. (2017). Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179. 10.1038/nrg.2016.150
    1. Thaiss C. A., Levy M., Korem T., Dohnalová L., Shapiro H., Jaitin D. A., et al. . (2016). Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510. 10.1016/j.cell.2016.11.003
    1. Thaiss C. A., Zeevi D., Levy M., Zilberman-Schapira G., Suez J., Tengeler A. C., et al. . (2014). Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529. 10.1016/j.cell.2014.09.048
    1. Titchenell P. M., Lazar M. A., Birnbaum M. J. (2017). Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol. Metab. 28, 497–505. 10.1016/j.tem.2017.03.003
    1. Tognini P., Murakami M., Liu Y., Eckel-Mahan K. L., Newman J. C., Verdin E., et al. . (2017). Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab. 26, 523–538. 10.1016/j.cmet.2017.08.015
    1. Tuomi T., Nagorny C. L. F., Singh P., Bennet H., Yu Q., Alenkvist I., et al. . (2016). Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 23, 1067–1077. 10.1016/j.cmet.2016.04.009
    1. Turek F. W., Joshu C., Kohsaka A., Lin E., Ivanova G., McDearmon E., et al. . (2005). Obesity and metabolic syndrome in circadian clock mutant mice. Science 308, 1043–1045. 10.1126/science.1108750
    1. Vinciguerra M., Mazzoccoli G. (2016). Aryl hydrocarbon receptor-fibroblast growth factor 21 dissociation of fatty liver from insulin resistance: a timely matter? Hepatology 63, 1396–1397. 10.1002/hep.27958
    1. Wang L., Liu X., Nie J., Zhang J., Kimball S. R., Zhang H., et al. . (2015). ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis. Hepatology 61, 486–496. 10.1002/hep.27420
    1. Wang N., Yang G., Jia Z., Zhang H., Aoyagi T., Soodvilai S., et al. . (2008). Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab. 8, 482–491. 10.1016/j.cmet.2008.10.009
    1. Wong R. J., Aguilar M., Cheung R., Perumpail R. B., Harrison S. A., Younossi Z. M., et al. . (2015). Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 148, 547–555. 10.1053/j.gastro.2014.11.039
    1. Wu S., Wu F., Ding Y., Hou J., Bi J., Zhang Z. (2016). Association of non-alcoholic fatty liver disease with major adverse cardiovascular events: a systematic review and meta-analysis. Sci. Rep. 6:33386. 10.1038/srep33386
    1. Yasumoto Y., Hashimoto C., Nakao R., Yamazaki H., Hiroyama H., Nemoto T., et al. . (2016). Short-term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice. Metab. Clin. Exp. 65, 714–727. 10.1016/j.metabol.2016.02.003
    1. Yilmaz Y. (2012). Review article: is non-alcoholic fatty liver disease a spectrum, or are steatosis and non-alcoholic steatohepatitis distinct conditions? Aliment. Pharmacol. Ther. 36, 815–823. 10.1111/apt.12046
    1. Yoon M. (2009). The role of PPARalpha in lipid metabolism and obesity: focusing on the effects of estrogen on PPARalpha actions. Pharmacol. Res. 60, 151–159. 10.1016/j.phrs.2009.02.004
    1. Zhang E. E., Liu Y., Dentin R., Pongsawakul P. Y., Liu A. C., Hirota T., et al. . (2010). Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med. 16, 1152–1156. 10.1038/nm.2214
    1. Zhang R., Lahens N. F., Ballance H. I., Hughes M. E., Hogenesch J. B. (2014). A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl. Acad. Sci. U.S.A. 111, 16219–16224. 10.1073/pnas.1408886111

Source: PubMed

3
購読する