Risk prediction in pulmonary hypertension due to chronic heart failure: incremental prognostic value of pulmonary hemodynamics

Ruilin Quan, Shian Huang, Lingpin Pang, Jieyan Shen, Weifeng Wu, Fangming Tang, Xiulong Zhu, Weiqing Su, Jingzhi Sun, Zaixin Yu, Lemin Wang, Xianyang Zhu, Changming Xiong, Jianguo He, Ruilin Quan, Shian Huang, Lingpin Pang, Jieyan Shen, Weifeng Wu, Fangming Tang, Xiulong Zhu, Weiqing Su, Jingzhi Sun, Zaixin Yu, Lemin Wang, Xianyang Zhu, Changming Xiong, Jianguo He

Abstract

Background: There is no generally accepted comprehensive risk prediction model cooperating risk factors associated with heart failure and pulmonary hemodynamics for patients with pulmonary hypertension due to left heart disease (PH-LHD). We aimed to explore outcome correlates and evaluate incremental prognostic value of pulmonary hemodynamics for risk prediction in PH-LHD.

Methods: Consecutive patients with chronic heart failure undergoing right heart catheterization were prospectively enrolled. The primary endpoint was all-cause mortality. Individual variable selection was performed by machine learning methods. Cox proportional hazards models were conducted to identify the association between variables and mortality. Incremental value of hemodynamics was evaluated based on the Seattle heart failure model (SHFM) and Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) scores.

Results: A total of 276 PH-LHD patients were enrolled, with a median follow-up time of 34.7 months. By L1-penalized regression model and random forest approach, diastolic pressure gradient (DPG) and mixed venous oxygen saturation (SvO2) were the hemodynamic predictors most strongly associated with mortality (coefficient: 0.0255 and -0.0176, respectively), with consistent significance after adjusted for SHFM [DPG: HR 1.067, 95% CI 1.024-1.113, P = 0.022; SvO2: HR 0.969, 95% CI 0.953-0.985, P = 0.002] or MAGGIC (DPG: HR 1.069, 95% CI 1.026-1.114, P = 0.011; SvO2: HR 0.970, 95% CI 0.954-0.986, P = 0.004) scores. The inclusion of DPG and SvO2 improved risk prediction compared with using SHFM [net classification improvement (NRI): 0.468 (0.161-0.752); integrated discriminatory index (IDI): 0.092 (0.035-0.171); likelihood ratio test: P < 0.001] or MAGGIC [NRI: 0.298 (0.106-0.615); IDI: 0.084 (0.033-0.151); likelihood ratio: P < 0.001] scores alone.

Conclusion: In PH-LHD, pulmonary hemodynamics can provide incremental prognostic value for risk prediction.

Clinical trial registration: NCT02164526 at https://clinicaltrials.gov .

Keywords: Heart failure; Pulmonary hemodynamics; Pulmonary hypertension; Risk prediction; Survival.

Conflict of interest statement

The authors have no conflicts of interest to declare.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Patient dispositions. CHF: chronic heart failure; RHC: right heart catheterization; PH: pulmonary hypertension
Fig. 2
Fig. 2
The variable importance plot based on the random forest classifier with the indicator of “all-cause mortality” as the dependent variable. DPG: diastolic pressure gradient; SvO2: mixed venous oxygen saturation; NYHA-FC: New York Heart Association functional class; RVSP: right ventricular systolic pressure; MPAP: mean pulmonary artery pressure; NTpro-BNP: N-terminal pro b-type natriuretic peptide; BUN: blood urea nitrogen; PAC: pulmonary arterial compliance; BMI: body mass index; SBP: systolic blood pressure; MRA: mineralocorticoid receptor antagonist; CHD: coronary heart disease; ARB: angiotensin-receptor blockers; PAWP: pulmonary arterial wedge pressure; LVEF: left ventricular ejection fraction; PVR: pulmonary vascular resistance; CCB: Ca2 + channel blockers
Fig. 3
Fig. 3
Multivariate Cox hazard proportional models for all-cause mortality. A SHFM + hemodynamics as continuous variables; B MAGGIC + hemodynamics as continuous variables; C SHFM + hemodynamics as dichotomous variables; D MAGGIC + hemodynamics as dichotomous variables. DPG: diastolic pressure gradient; SvO2: mixed venous oxygen saturation; SHFM: the Seattle heart failure model; MAGGIC: Meta-Analysis Global Group in Chronic Heart Failure

References

    1. Naeije R, Gerges M, Vachiery JL, Caravita S, Gerges C, Lang IM. Hemodynamic phenotyping of pulmonary hypertension in left heart failure. Circ Heart Fail. 2017;10(9):e004082. doi: 10.1161/CIRCHEARTFAILURE.117.004082.
    1. Guazzi M, Naeije R. Pulmonary hypertension in heart failure: pathophysiology, pathobiology, and emerging clinical perspectives. J Am Coll Cardiol. 2017;69(13):1718–1734. doi: 10.1016/j.jacc.2017.01.051.
    1. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2012, 14(8):803–869.
    1. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT) Eur Heart J. 2016;37(1):67–119. doi: 10.1093/eurheartj/ehv317.
    1. Adir Y, Guazzi M, Offer A, Temporelli PL, Cannito A, Ghio S. Pulmonary hemodynamics in heart failure patients with reduced or preserved ejection fraction and pulmonary hypertension: Similarities and disparities. Am Heart J. 2017;192:120–127. doi: 10.1016/j.ahj.2017.06.006.
    1. Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 2013;1(4):290–299. doi: 10.1016/j.jchf.2013.05.001.
    1. Gerges M, Gerges C, Pistritto AM, Lang MB, Trip P, Jakowitsch J, Binder T, Lang IM. Pulmonary hypertension in heart failure. Epidemiology, right ventricular function, and survival. Am J Respir Crit Care Med. 2015;192(10):1234–1246. doi: 10.1164/rccm.201503-0529OC.
    1. Vanderpool RR, Saul M, Nouraie M, Gladwin MT, Simon MA. Association between hemodynamic markers of pulmonary hypertension and outcomes in heart failure with preserved ejection fraction. JAMA Cardiol. 2018;3(4):298–306. doi: 10.1001/jamacardio.2018.0128.
    1. Palazzini M, Dardi F, Manes A, Bacchi Reggiani ML, Gotti E, Rinaldi A, Albini A, Monti E, Galie N. Pulmonary hypertension due to left heart disease: analysis of survival according to the haemodynamic classification of the 2015 ESC/ERS guidelines and insights for future changes. Eur J Heart Fail. 2018;20(2):248–255. doi: 10.1002/ejhf.860.
    1. Ibe T, Wada H, Sakakura K, Ikeda N, Yamada Y, Sugawara Y, Mitsuhashi T, Ako J, Fujita H, Momomura S. Pulmonary hypertension due to left heart disease: the prognostic implications of diastolic pulmonary vascular pressure gradient. J Cardiol. 2016;67(6):555–559. doi: 10.1016/j.jjcc.2015.07.015.
    1. Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey CS, Frost A, Barst RJ, Badesch DB, Elliott CG, et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) Circulation. 2010;122(2):164–172. doi: 10.1161/CIRCULATIONAHA.109.898122.
    1. Kylhammar D, Kjellstrom B, Hjalmarsson C, Jansson K, Nisell M, Soderberg S, Wikstrom G, Radegran G. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur Heart J. 2018;39(47):4175–4181. doi: 10.1093/eurheartj/ehx257.
    1. Hoeper MM, Kramer T, Pan Z, Eichstaedt CA, Spiesshoefer J, Benjamin N, Olsson KM, Meyer K, Vizza CD, Vonk-Noordegraaf A, et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J. 2017;50(2):10. doi: 10.1183/13993003.00740-2017.
    1. Boucly A, Weatherald J, Savale L, Jais X, Cottin V, Prevot G, Picard F, de Groote P, Jevnikar M, Bergot E, et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 2017;50(2):10. doi: 10.1183/13993003.00889-2017.
    1. Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Køber L, Squire IB, Swedberg K, Dobson J, Poppe KK, Whalley GA, et al. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J. 2013;34(19):1404–1413. doi: 10.1093/eurheartj/ehs337.
    1. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni A, Burton P, Sullivan MD, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113(11):1424–1433. doi: 10.1161/CIRCULATIONAHA.105.584102.
    1. Agarwal R, Shah SJ, Foreman AJ, Glassner C, Bartolome SD, Safdar Z, Coslet SL, Anderson AS, Gomberg-Maitland M. Risk assessment in pulmonary hypertension associated with heart failure and preserved ejection fraction. J Heart Lung Transplant. 2012;31(5):467–477. doi: 10.1016/j.healun.2011.11.017.
    1. Benza RL, Gomberg-Maitland M, Miller DP, Frost A, Frantz RP, Foreman AJ, Badesch DB, McGoon MD. The REVEAL Registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest. 2012;141(2):354–362. doi: 10.1378/chest.11-0676.
    1. Vachiery JL, Tedford RJ, Rosenkranz S, Palazzini M, Lang I, Guazzi M, Coghlan G, Chazova I, De Marco T. Pulmonary hypertension due to left heart disease. Eur Respir J. 2019;53(1):10. doi: 10.1183/13993003.01897-2018.
    1. Bloos F, Reinhart K. Venous oximetry. Intensive Care Med. 2005;31(7):911–913. doi: 10.1007/s00134-005-2670-9.
    1. Holm J, Håkanson E, Vánky F, Svedjeholm R. Mixed venous oxygen saturation predicts short- and long-term outcome after coronary artery bypass grafting surgery: a retrospective cohort analysis. Br J Anaesth. 2011;107(3):344–350. doi: 10.1093/bja/aer166.
    1. Onoue T, Iwataki M, Araki M, Akashi J, Kitano T, Nabeshima Y, Hei S, Nagata Y, Hayashi A, Tsuda Y, et al. Novel noninvasive estimation of mixed venous oxygen saturation by echocardiography and expired gas analysis. Am J Physiol Heart Circ Physiol. 2020;319(5):H1078–h1086. doi: 10.1152/ajpheart.00429.2020.
    1. Bilchick KC, Wang Y, Cheng A, Curtis JP, Dharmarajan K, Stukenborg GJ, Shadman R, Anand I, Lund LH, Dahlström U, et al. Seattle heart failure and proportional risk models predict benefit from implantable cardioverter-defibrillators. J Am Coll Cardiol. 2017;69(21):2606–2618. doi: 10.1016/j.jacc.2017.03.568.

Source: PubMed

3
購読する