Guideline on management of the acute asthma attack in children by Italian Society of Pediatrics

Luciana Indinnimeo, Elena Chiappini, Michele Miraglia Del Giudice, Italian Panel for the management of acute asthma attack in children Roberto Bernardini, Carlo Capristo, Fabio Cardinale, Salvatore Cazzato, Giampiero Chiamenti, Iolanda Chinellato, Giovanni Corsello, Renato Cutrera, Liviana Da Dalt, Marzia Duse, Filippo Festini, Sandra Frateiacci, Domenico Minasi, Andrea Novelli, Giorgio Piacentini, Pietro Scoppi, Eleonora Tappi, Luciana Indinnimeo, Elena Chiappini, Michele Miraglia Del Giudice, Italian Panel for the management of acute asthma attack in children Roberto Bernardini, Carlo Capristo, Fabio Cardinale, Salvatore Cazzato, Giampiero Chiamenti, Iolanda Chinellato, Giovanni Corsello, Renato Cutrera, Liviana Da Dalt, Marzia Duse, Filippo Festini, Sandra Frateiacci, Domenico Minasi, Andrea Novelli, Giorgio Piacentini, Pietro Scoppi, Eleonora Tappi

Abstract

Background: Acute asthma attack is a frequent condition in children. It is one of the most common reasons for emergency department (ED) visit and hospitalization. Appropriate care is fundamental, considering both the high prevalence of asthma in children, and its life-threatening risks. Italian Society of Pediatrics recently issued a guideline on the management of acute asthma attack in children over age 2, in ambulatory and emergency department settings.

Methods: The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was adopted. A literature search was performed using the Cochrane Library and Medline/PubMed databases, retrieving studies in English or Italian and including children over age 2 year.

Results: Inhaled ß2 agonists are the first line drugs for acute asthma attack in children. Ipratropium bromide should be added in moderate/severe attacks. Early use of systemic steroids is associated with reduced risk of ED visits and hospitalization. High doses of inhaled steroids should not replace systemic steroids. Aminophylline use should be avoided in mild/moderate attacks. Weak evidence supports its use in life-threatening attacks. Epinephrine should not be used in the treatment of acute asthma for its lower cost / benefit ratio, compared to β2 agonists. Intravenous magnesium solphate could be used in children with severe attacks and/or forced expiratory volume1 (FEV1) lower than 60% predicted, unresponsive to initial inhaled therapy. Heliox could be administered in life-threatening attacks. Leukotriene receptor antagonists are not recommended.

Conclusions: This Guideline is expected to be a useful resource in managing acute asthma attacks in children over age 2.

Keywords: Asthma; Asthma attack; Children; Guidelines.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Indinnimeo L, Barbato A, Cutrera R, et al. Gestione dell’attacco acuto d’asma in età pediatrica. Ital J Pediatr. 2008;33:14–33.
    1. . National Health, Lung and Blood Institute. Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention. Publication n. 95–3659, 1995 Bethesda, Maryland, revised 2015.
    1. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ. GRADE working group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Br Med J. 2008;336:924–926. doi: 10.1136/.
    1. Boychuk RB, Yamamoto LG, De Mesa CJ, et al. Correlation of initial emergency department pulse oximetry values in asthma severity classes (steps) with the risk of hospitalization. Am J Emerg Med. 2006;24:48–52. doi: 10.1016/j.ajem.2005.07.012.
    1. Koga T, Tokuyama K, Itano A, et al. Usefulness of modified pulmonary index score (mPIS) as a quantitative tool for the evaluation of severe acute exacerbation in asthmatic children. Allergol Int. 2015;64:139–144. doi: 10.1016/j.alit.2014.10.003.
    1. Maekawa T, Oba MS, Katsunuma T, et al. Modified pulmonary index score was sufficiently reliable to assess the severity of acute asthma exacerbations in children. Allergol Int. 2014;63:603–607. doi: 10.2332/allergolint.13-OA-0681.
    1. Alnaji F, Zemek R, Barrowman N, et al. PRAM score as predictor of pediatric asthma hospitalization. Acad Emerg Med. 2014;21:872–878. doi: 10.1111/acem.12422.
    1. Kamps AW, Veeger NJ, Heijsman SM, et al. An innovative childhood asthma score predicts the need for bronchodilator nebulization in children with acute asthma independent of auscultative findings. Respir Care. 2014;59:1710–1715. doi: 10.4187/respcare.02991.
    1. Gouin S, Robidas I, Gravel J, et al. Prospective evaluation of two clinical scores for acute asthma in children 18 months to 7 years of age. Acad Emerg Med. 2010;17:598–503. doi: 10.1111/j.1553-2712.2010.00775.x.
    1. Lehr AR, McKinney ML, Gouin S, et al. Development and pretesting of an electronic learning module to train health care professionals on the use of the pediatric respiratory assessment measure to assess acute asthma severity. Can Respir J. 2013;20:435–441. doi: 10.1155/2013/148645.
    1. Bekhof J, Reimink R, Brand PL. Systematic review: insufficient validation of clinical scores for the assessment of acute dyspnoea in wheezing children. Peadiatr Respir Rev. 2014;15:98–12.
    1. Schneider WV, Bulloch B, Wilkinson M, et al. Utility of portable spirometry in a pediatric emergency department in children with acute exacerbation of asthma. J Asthma. 2011;48:248–252. doi: 10.3109/02770903.2011.555036.
    1. Eggink H, Brand P, Reimink R, Bekhof J. Clinical scores for Dyspnoea severity in children: a prospective validation study. PLoS One. 2016;11:e0157724. doi: 10.1371/journal.pone.0157724.
    1. Arnold DH, Jenkins CA, Hartert TV. Noninvasive assessment of asthma severity using pulse oximeter plethysmograph estimate of pulsus paradoxus physiology. BMC Pulm Med. 2010;29:10–17.
    1. Arnold DH, Gebretsadik T, Moons KG, et al. Development and internal validation of a pediatric acute asthma prediction rule for hospitalization. J Allerly Clin Immunol Pract. 2015;3:228–235. doi: 10.1016/j.jaip.2014.09.017.
    1. National Hearth, Lung and Blood Institute . Expert Panel Report 3 (EPR-3) N Y: Guidelines for the diagnosis and Management of Asthma; 2007. pp. 08–4051.
    1. British Thoracic Society, Scottish Intercollegiate Guidelines Network . “British guideline on the Management of Asthma”. Revised. 2016.
    1. Andrzejowski P, Carroll W. Salbutamol in paediatrics: pharmacology, prescribing and controversies. Arch Dis Child Educ Pract Ed. 2016;101:194–197. doi: 10.1136/archdischild-2014-307285.
    1. Camargo CA, Spooner CH, Rowe BH. Continuous versus intermittent beta-agonists for acute asthma. Cochrane Database Syst Rev. 2003;4:CD001115.
    1. Khine H, Fuchs SM, Saville AL. Continuous versus intermittent nebulized albuterol for emergency management of asthma. Acad Emerg Med. 1996;3:1019–1024. doi: 10.1111/j.1553-2712.1996.tb03346.x.
    1. Cates CJ, Welsh EJ, Rowe BH. Holding chambers (spacers) versus nebulisers for beta-agonist treatment of acute asthma. Cochrane database Syst rev. Cochrane Database Syst Rev. 2013;9:CD000052.
    1. Mitselou N, Hedlin G, Hederos CA. Spacers versus nebulizers in treatment of acute asthma - a prospective randomized study in preschool children. J Asthma. 2016;53:1059–1062. doi: 10.1080/02770903.2016.1185114.
    1. Travers AH, Milan SJ, Jones AP, et al. Addition of intravenous beta(2)-agonists to inhaled beta(2)- agonists for acute asthma. Cochrane Database Syst Rev. 2012;12:CD010179.
    1. Teoh L, Cates CJ, Hurwitz M, et al. Anticholinergic therapy for acute asthma in children. Cochrane Database Syst Rev. 2012;4:CD003797.
    1. Griffiths B, Ducharme FM. Combined inhaled anticholinergics and short-acting beta2-agonists for initial treatment of acute asthma in children. Cochrane Database Syst Rev. 2013;8:CD000060.
    1. Wyatt EL, Borland ML, Doyle SK, et al. Metered-dose inhaler ipratropium bromide in moderate acute asthma in children: a single-blinded randomised controlled trial. J Paediatr Child Health. 2015;51:192–198. doi: 10.1111/jpc.12692.
    1. Vézina K, Chauhan BF, Ducharme FM. Inhaled anticholinergics and short-acting beta(2)-agonists versus short-acting beta2-agonists alone for children with acute asthma in hospital. Cochrane Database Syst Rev. 2014;7:CD010283.
    1. Keeney GE, Gray MP, Morrison AK, et al. Dexamethasone for acute asthma exacerbations in children: a meta-analysis. Pediatrics. 2014;133:493–499. doi: 10.1542/peds.2013-2273.
    1. Cronin JJ, McCoy S, Kennedy U, et al. A randomized trial of single-dose oral dexamethasone versus multidose prednisolone for acute exacerbations of asthma in children who attend the emergency department. Ann Emerg Med. 2016;67:593–501. doi: 10.1016/j.annemergmed.2015.08.001.
    1. Meyer JS, Riese J, Biondi EI. Dexamethasone an effective alternative to oral prednisone in the treatment of pediatric asthma exacerbations? Hosp Pediatr. 2014;4:172–180. doi: 10.1542/hpeds.2013-0088.
    1. Normansell R, Kew KM, Mansour G. Different oral corticosteroid regimens for acute asthma. Cochrane Database Syst Rev. 2016;5:CD011801.
    1. Bravo-Soto GA, Harismendy C, Rojas P, Silva R, von Borries PI. Dexamethasone as effective as other corticosteroids for acute asthma exacerbation in children? Medwave. 2017;17:e6931. doi: 10.5867/medwave.2017.6931.
    1. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med. 2005;353:1711–1723. doi: 10.1056/NEJMra050541.
    1. Bhogal SK. A question of time: systemic corticosteroids in managing acute asthma in children. Curr Opin Pulm Med. 2013;19:73–78.
    1. Fernandes RM, Oleszczuk M, Woods CR, et al. The Cochrane library and safety of systemic corticosteroids for acute respiratory conditions in children: an overview of reviews. Evid Based Child Health. 2014;3:733–747. doi: 10.1002/ebch.1980.
    1. van Staa TP, Cooper C, Leufkens HG, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res. 2003;18:913–918. doi: 10.1359/jbmr.2003.18.5.913.
    1. Kelly HW, Van Natta ML, Covar RA, Tonascia J, Green RP, Strunk RC. CAMP research group. Effect of long-term corticosteroid use on bone mineral density in children: a prospective longitudinal assessment in the childhood asthma management program (CAMP) study. Pediatrics. 2008;122:e53–e61. doi: 10.1542/peds.2007-3381.
    1. Chen AH, Zeng GQ, Chen RC, et al. Effects of nebulized high-dose budesonide on moderate-to-severe acute exacerbation of asthma in children: a randomized, double-blind, placebo-controlled study. Respirology. 2013;18(Suppl 3):47–52. doi: 10.1111/resp.12168.
    1. Alangari AA, Malhis N, Mubasher M, et al. Asthma diagnosis and treatment - 1012. The efficacy of budesonide in the treatment of acute asthma in children: a double-blind, randomized, controlled trial. World Allergy Organ J. 2013;6(Suppl 1):P12. doi: 10.1186/1939-4551-6-S1-P12.
    1. Alangari AA, Malhis N, Mubasher M, et al. Budesonide nebulization added to systemic prednisolone in the treatment of acute asthma in children: a double-blind, randomized, controlled trial. Chest. 2014;145:772–778. doi: 10.1378/chest.13-2298.
    1. Upham BD, Mollen CJ, Scarfone RJ, et al. Nebulized budesonide added to standard pediatric emergency department treatment of acute asthma: a randomized, double-blind trial. Acad Emerg Med. 2011;18:665–673. doi: 10.1111/j.1553-2712.2011.01114.x.
    1. Demirca BP, Cagan H, Kiykim A, et al. Nebulized fluticasone propionate, a viable alternative to systemic route in the management of childhood moderate asthma attack: a double-blind, double-dummy study. Respir Med. 2015;109:1120–1125. doi: 10.1016/j.rmed.2015.07.007.
    1. Arulparithi CS, Babu TA, Ravichandran C, et al. Efficacy of nebulised budesonide versus oral prednisolone in acute severe asthma. Indian J Pediatr. 2015;82:328–332. doi: 10.1007/s12098-014-1498-0.
    1. Beckhaus AA, Riutort MC, Castro-Rodriguez JA. Inhaled versus systemic corticosteroids for acute asthma in children. A systematic review. Pediatr Pulmonol. 2014;49:326–334. doi: 10.1002/ppul.22846.
    1. Quon BS, Fitzgerald JM, Lemière C, et al. Increased versus stable doses of inhaled corticosteroids for exacerbations of chronic asthma in adults and children. Cochrane Database Syst Rev. 2010;12:CD007524.
    1. Edmonds ML, Milan SJ, Camargo CA, Jr, et al. Early use of inhaled corticosteroids in the emergency department treatment of acute asthma. Cochrane Database Syst Rev. 2012;12:CD002308.
    1. Edmonds ML, Milan SJ, Brenner BE, et al. Inhaled steroids for acute asthma following emergency department discharge. Cochrane Database Syst Rev. 2012;12:CD002316.
    1. Schuh S, Dick PT, Stephens D, Hartley M, Khaikin S, Rodrigues L, et al. High-dose inhaled fluticasone does not replace oral prednisolone in children with mild to moderate acute asthma. Pediatrics. 2006;118:644–650. doi: 10.1542/peds.2005-2842.
    1. Neame M, Aragon O, Fernandes RM, et al. Salbutamol or aminophylline for acute severe asthma: how to choose which one, when and why? Arch Dis Child Educ Pract Ed. 2015;100:215–222. doi: 10.1136/archdischild-2014-306186.
    1. Mitra A, Bassler D, Goodman K, Lasserson TJ, Ducharme FM. Intravenous aminophylline for acute severe asthma in children over two years receiving inhaled bronchodilators. Cochrane Database Syst Rev. 2005;2:CD001276.
    1. Travers AH, Jones AP, Camargo CA, Jr, et al. Intravenous beta(2)-agonists versus intravenous aminophylline for acute asthma. Cochrane Database Syst Rev. 2012;12:CD010256.
    1. Singhi S, Grover S, Bansal A, et al. Randomised comparison of intravenous magnesium sulphate, terbutaline and aminophylline for children with acute severe asthma. Acta Paediatr. 2014;103:1301–1306. doi: 10.1111/apa.12780.
    1. NS EJ, O'Hagan A, Bickel S, Morton R, Jacobson S, Myers JA. Anti-inflammatory dosing of theophylline in the treatment of status asthmaticus in children. Asthma Allergy. 2016;9:183–189. doi: 10.2147/JAA.S113747.
    1. Torres S, Sticco N, Bosch JJ, et al. Effectiveness of magnesium sulphate as initial treatment of acute severe asthma in children, conducted in a tertiary-level university hospital: a randomized, controlled trial. Arch Argent Pediatr. 2012;110:291–296.
    1. Egelund TA, Wassil SK, Edwards EM, et al. High-dose magnesium sulphate infusion protocol for status asthmaticus: a safety and pharmacokinetics cohort study. Intensive Care Med. 2013;39:117–122. doi: 10.1007/s00134-012-2734-6.
    1. Mangat HS, D’Souza GA, Jacob MS. Nebulized magnesium sulphate versus nebulized salbutamol in acute bronchial asthma: a clinical trial. Eur Respir J. 1998;12:341–344. doi: 10.1183/09031936.98.12020341.
    1. Mahajan P, Haritos D, Rosenberg N, et al. Comparison of nebulized magnesium plus albuterol to nebulized albuterol plus saline in children with mild to moderate asthme. J Emerg Med. 2004;27:21–25. doi: 10.1016/j.jemermed.2004.02.006.
    1. Powell CV, Kolamunnage-Dona R, Lowe J, et al. MAGNEsium trial in children (MAGNETIC): a randomised, placebo-controlled trial and economic evaluation of nebulised magnesium sulphate in acute severe asthma in children. Health Technol Assess. 2013;17:1–216. doi: 10.3310/hta17450.
    1. Albuali WH. The use of intravenous and inhaled magnesium sulphate in management of children with bronchial asthma. J Matern Fetal Neonatal Med. 2014;27:1809–1815. doi: 10.3109/14767058.2013.876620.
    1. Sun YX, Gong CH, Liu S, et al. Effect of inhaled MgSO4 on FEV1 and PEF in children with asthma induced by acetylcholine: a randomized controlled clinical trail of 330 cases. J Trop Pediatr. 2014;60:141–147. doi: 10.1093/tropej/fmt099.
    1. Griffiths B, Kew KM. Intravenous magnesium sulfate for treating children with acute asthma in the emergency department. Cochrane Database Syst Rev. 2016;4:CD011050.
    1. Rodrigo G, Pollack C, Rodrigo C, et al. Heliox for nonintubated acute asthma patients. Cochrane Database Syst Rev. 2006;4:CD002884.
    1. Wong JJ, Lee JH, Turner DA, et al. A review of the use of adjunctive therapies in severe acute asthma exacerbation in critically ill children. Expert Rev Respir Med. 2014;8:423–441. doi: 10.1586/17476348.2014.915752.
    1. Rodrigo GJ, Castro-Rodriguez JA. Heliox-driven β2-agonists nebulization for children and adults with acute asthma: a systematic review with meta-analysis. Ann Allergy Asthma Immunol. 2014;112:29–34. doi: 10.1016/j.anai.2013.09.024.
    1. Watts K, Chavasse RJ. Leukotriene receptor antagonists in addition to usual care for acute asthma in adults and children. Cochrane Database Syst Rev. 2012;5:CD006100.
    1. Wang X, Zhou J, Zhao X, Yi X. Montelukast treatment of acute asthma exacerbations in children aged 2 to 5 years: a randomized, double-blind, placebo-controlled trial. Pediatr Emerg Care. 2017; June 7;

Source: PubMed

3
購読する