Ocular Complications of Diabetes and Therapeutic Approaches

Victoria J Vieira-Potter, Dimitrios Karamichos, Darren J Lee, Victoria J Vieira-Potter, Dimitrios Karamichos, Darren J Lee

Abstract

Diabetes mellitus (DM) is a metabolic disease defined by elevated blood glucose (BG). DM is a global epidemic and the prevalence is anticipated to continue to increase. The ocular complications of DM negatively impact the quality of life and carry an extremely high economic burden. While systemic control of BG can slow the ocular complications they cannot stop them, especially if clinical symptoms are already present. With the advances in biodegradable polymers, implantable ocular devices can slowly release medication to stop, and in some cases reverse, diabetic complications in the eye. In this review we discuss the ocular complications associated with DM, the treatments available with a focus on localized treatments, and what promising treatments are on the horizon.

References

    1. Nathan D. M. Diabetes: advances in diagnosis and treatment. Journal of the American Medical Association. 2015;314(10):1052–1062. doi: 10.1001/jama.2015.9536.
    1. Usuelli V., La Rocca E. Novel therapeutic approaches for diabetic nephropathy and retinopathy. Pharmacological Research. 2015;98:39–44. doi: 10.1016/j.phrs.2014.10.003.
    1. Semeraro F., Cancarini A., dell'Omo R., Rezzola S., Romano M. R., Costagliola C. Diabetic retinopathy: vascular and inflammatory disease. Journal of Diabetes Research. 2015;2015:16. doi: 10.1155/2015/582060.582060
    1. Gologorsky D., Thanos A., Vavvas D. Therapeutic interventions against inflammatory and angiogenic mediators in proliferative diabetic retinopathy. Mediators of Inflammation. 2012;2012:10. doi: 10.1155/2012/629452.629452
    1. Herse P. R. A review of manifestations of diabetes mellitus in the anterior eye and cornea. American Journal of Optometry and Physiological Optics. 1988;65(3):224–230. doi: 10.1097/00006324-198803000-00013.
    1. Foulks G. N., Thoft R. A., Perry H. D., Tolentino F. I. Factors related to corneal epithelial complications after closed vitrectomy in diabetics. Archives of Ophthalmology. 1979;97(6):1076–1078. doi: 10.1001/archopht.1979.01020010530002.
    1. Chung H., Tolentino F. I., Cajita V. N., Acosta J., Refojo M. F. Reevaluation of corneal complications after closed vitrectomy. Archives of Ophthalmology. 1988;106(7):916–919. doi: 10.1001/archopht.1988.01060140062025.
    1. Saini J. S., Khandalavla B. Corneal epithelial fragility in diabetes mellitus. Canadian Journal of Ophthalmology. 1995;30(3):142–146.
    1. Hatchell D. L., Magolan J. J., Jr., Besson M. J., Goldman A. I., Pederson H. J., Schultz K. J. Damage to the epithelial basement membrane in the corneas of diabetic rabbits. Archives of Ophthalmology. 1983;101(3):469–471. doi: 10.1001/archopht.1983.01040010469029.
    1. Cho N., Whiting D., Forouhi N., et al. IDF Diabetes Atlas. 7th. 2015. .
    1. American Diabetes Association. Data from the National Diabetes Statistics Report. 2014.
    1. Van Dieren S., Beulens J. W. J., Van Der Schouw Y. T., Grobbee D. E., Neal B. The global burden of diabetes and its complications: an emerging pandemic. European Journal of Cardiovascular Prevention and Rehabilitation. 2010;17(1):S3–S8. doi: 10.1097/01.hjr.0000368191.86614.5a.
    1. Van Buren P. N., Toto R. Hypertension in diabetic nephropathy: epidemiology, mechanisms, and management. Advances in Chronic Kidney Disease. 2011;18(1):28–41. doi: 10.1053/j.ackd.2010.10.003.
    1. Simó R., Hernández C. Advances in the medical treatment of diabetic retinopathy. Diabetes Care. 2009;32(8):1556–1562. doi: 10.2337/dc09-0565.
    1. Campochiaro P. A. Molecular pathogenesis of retinal and choroidal vascular diseases. Progress in Retinal and Eye Research. 2015;49:67–81. doi: 10.1016/j.preteyeres.2015.06.002.
    1. Hendrick A. M., Gibson M. V., Kulshreshtha A. Diabetic retinopathy. Primary Care. 2015;42(3):451–464. doi: 10.1016/j.pop.2015.05.005.
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820. doi: 10.1038/414813a.
    1. Kumar B., Kowluru A., Kowluru R. A. Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Investigative Ophthalmology and Visual Science. 2015;56(5):2985–2992. doi: 10.1167/iovs.15-16466.
    1. Durham J. T., Herman I. M. Microvascular modifications in diabetic retinopathy. Current Diabetes Reports. 2011;11(4):253–264. doi: 10.1007/s11892-011-0204-0.
    1. Beltramo E., Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Current Medicinal Chemistry. 2013;20(26):3218–3225. doi: 10.2174/09298673113209990022.
    1. Barot M., Gokulgandhi M. R., Patel S., Mitra A. K. Microvascular complications and diabetic retinopathy: recent advances and future implications. Future Medicinal Chemistry. 2013;5(3):301–314. doi: 10.4155/fmc.12.206.
    1. Fong D. S., Aiello L. P., Ferris F. L., III, Klein R. Diabetic retinopathy. Diabetes Care. 2004;27(10):2540–2553. doi: 10.2337/diacare.27.10.2540.
    1. Simó R., Carrasco E., García-Ramírez M., Hernández C. Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Current Diabetes Reviews. 2006;2(1):71–98. doi: 10.2174/157339906775473671.
    1. Bandello F., Battaglia Parodi M., Lanzetta P., et al. Diabetic macular edema. Macular Edema: A Practical Approach. 2010;47:73–110. doi: 10.1159/000320075.
    1. Bikbova G., Oshitari T., Baba T., Yamamoto S. Neurotrophic factors for retinal ganglion cell neuropathy-with a special reference to diabetic neuropathy in the retina. Current Diabetes Reviews. 2014;10(3):166–176. doi: 10.2174/1573399810666140508121927.
    1. Barber A. J., Gardner T. W., Abcouwer S. F. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Investigative Ophthalmology and Visual Science. 2011;52(2):1156–1163. doi: 10.1167/iovs.10-6293.
    1. Oshitari T., Yamamoto S., Hata N., Roy S. Mitochondria- and caspase-dependent cell death pathway involved in neuronal degeneration in diabetic retinopathy. British Journal of Ophthalmology. 2008;92(4):552–556. doi: 10.1136/bjo.2007.132308.
    1. Oshitari T., Yoshida-Hata N., Yamamoto S. Effect of neurotrophic factors on neuronal apoptosis and neurite regeneration in cultured rat retinas exposed to high glucose. Brain Research. 2010;1346:43–51. doi: 10.1016/j.brainres.2010.05.073.
    1. Oshitari T., Bikbova G., Yamamoto S. Increased expression of phosphorylated c-Jun and phosphorylated c-Jun N-terminal kinase associated with neuronal cell death in diabetic and high glucose exposed rat retinas. Brain Research Bulletin. 2014;101:18–25. doi: 10.1016/j.brainresbull.2013.12.002.
    1. Tao J.-H., Barbi J., Pan F. Hypoxia-inducible factors in T lymphocyte differentiation and function. A review in the theme: cellular responses to hypoxia. American Journal of Physiology-Cell Physiology. 2015;309(9):C580–C589. doi: 10.1152/ajpcell.00204.2015.
    1. Beynat J., Charles A., Soulié M., Métral P., Creuzot-Garcher C., Bron A. M. Combined glaucoma and diabetic retinopathy screening in Burgundy. Journal Francais d'Ophtalmologie. 2008;31(6, part 1):591–596. doi: 10.1016/s0181-5512(08)75460-3.
    1. Mantravadi A. V., Vadhar N. Glaucoma. Primary Care. 2015;42(3):437–449. doi: 10.1016/j.pop.2015.05.008.
    1. Zheng Y., Wong T. Y., Cheung C. Y.-L., et al. Influence of diabetes and diabetic retinopathy on the performance of heidelberg retina tomography II for diagnosis of glaucoma. Investigative Ophthalmology and Visual Science. 2010;51(11):5519–5524. doi: 10.1167/iovs.09-5060.
    1. Vyas U., Khandekar R., Trivedi N., Desai T., Danayak P. Magnitude and determinants of ocular morbidities among persons with diabetes in a project in ahmedabad, India. Diabetes Technology and Therapeutics. 2009;11(9):601–607. doi: 10.1089/dia.2009.0033.
    1. de Voogd S., Ikram M. K., Wolfs R. C. W., et al. Is diabetes mellitus a risk factor for open-angle glaucoma?. The Rotterdam study. Ophthalmology. 2006;113(10):1827–1831. doi: 10.1016/j.ophtha.2006.03.063.
    1. Tan G. S., Wong T. Y., Fong C.-W., Aung T. Diabetes, metabolic abnormalities, and glaucoma: the Singapore Malay Eye study. Archives of Ophthalmology. 2009;127(10):1354–1361. doi: 10.1001/archophthalmol.2009.268.
    1. Osaadon P., Fagan X. J., Lifshitz T., Levy J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye. 2014;28(5):510–520. doi: 10.1038/eye.2014.13.
    1. Skarbez K., Priestley Y., Hoepf M., Koevary S. B. Comprehensive review of the effects of diabetes on ocular health. Expert Review of Ophthalmology. 2010;5(4):557–577. doi: 10.1586/eop.10.44.
    1. Owen C. G., Newsom R. S. B., Rudnicka A. R., Ellis T. J., Woodward E. G. Vascular response of the bulbar conjunctiva to diabetes and elevated blood pressure. Ophthalmology. 2005;112(10):1801–1808. doi: 10.1016/j.ophtha.2005.04.030.
    1. Schultz R. O., Van Horn D. L., Peters M. A., Klewin K. M., Schutten W. H. Diabetic keratopathy. Transactions of the American Ophthalmological Society. 1981;79:180–199.
    1. Schultz R. O., Matsuda M., Yee R. W., Edelhauser H. F., Schultz K. J. Corneal endothelial changes in type I and type II diabetes mellitus. American Journal of Ophthalmology. 1984;98(4):401–410. doi: 10.1016/0002-9394(84)90120-X.
    1. Mishima S. The effects of the denervation and the stimulation of the sympathetic and the trigeminal nerve on the mitotic rate of the corneal epithelium in the rabbit. Japanese Journal of Ophthalmology. 1957;1:65–73.
    1. Araki K., Ohashi Y., Kinoshita S., Hayashi K., Kuwayama Y., Tano Y. Epithelial wound healing in the denervated cornea. Current Eye Research. 1994;13(3):203–211. doi: 10.3109/02713689408995778.
    1. Alper M. G. The anesthetic eye: an investigation of changes in the anterior ocular segment of the monkey caused by interrupting the trigeminal nerve at various levels along its course. Transactions of the American Ophthalmological Society. 1976;73:323–365.
    1. Baker K. S., Anderson S. C., Romanowski E. G., Thoft R. A., SundarRaj N. Trigeminal ganglion neurons affect corneal epithelial phenotype: influence on type VII collagen expression in vitro. Investigative Ophthalmology and Visual Science. 1993;34(1):137–144.
    1. Schultz R. O., Peters M. A., Sobocinski K., Nassif K., Schultz K. J. Diabetic keratopathy as a manifestation of peripheral neuropathy. American Journal of Ophthalmology. 1983;96(3):368–371. doi: 10.1016/s0002-9394(14)77829-8.
    1. Dogru M., Katakami C., Inoue M. Tear function and ocular surface changes in noninsulin-dependent diabetes mellitus. Ophthalmology. 2001;108(3):586–592. doi: 10.1016/S0161-6420(00)00599-6.
    1. Yoon K.-C., Im S.-K., Seo M.-S. Changes of tear film and ocular surface in diabetes mellitus. Korean Journal of Ophthalmology. 2004;18(2):168–174. doi: 10.3341/kjo.2004.18.2.168.
    1. Goebbels M. Tear secretion and tear film function in insulin dependent diabetics. British Journal of Ophthalmology. 2000;84(1):19–21. doi: 10.1136/bjo.84.1.19.
    1. Saito J., Enoki M., Hara M., Morishige N., Chikama T.-I., Nishida T. Correlation of corneal sensation, but not of basal or reflex tear secretion, with the stage of diabetic retinopathy. Cornea. 2003;22(1):15–18. doi: 10.1097/00003226-200301000-00004.
    1. Inoue K., Kato S., Ohara C., Numaga J., Amano S., Oshika T. Ocular and systemic factors relevant to diabetic keratoepitheliopathy. Cornea. 2001;20(8):798–801. doi: 10.1097/00003226-200111000-00004.
    1. Schwartz D. E. Corneal sensitivity in diabetics. Archives of Ophthalmology. 1974;91(3):174–178. doi: 10.1001/archopht.1974.03900060182003.
    1. Rosenberg M. E., Tervo T. M. T., Immonen I. J., Muller L. J., Gronhagen-Riska C., Vesaluoma M. H. Corneal structure and sensitivity in type 1 diabetes mellitus. Investigative Ophthalmology and Visual Science. 2000;41(10):2915–2921.
    1. Gekka M., Miyata K., Nagai Y., et al. Corneal epithelial barrier function in diabetic patients. Cornea. 2004;23(1):35–37. doi: 10.1097/00003226-200401000-00006.
    1. Göbbels M., Spitznas M., Oldendoerp J. Impairment of corneal epithelial barrier function in diabetics. Graefe's Archive for Clinical and Experimental Ophthalmology. 1989;227(2):142–144. doi: 10.1007/BF02169787.
    1. Busted N., Olsen T., Schmitz O. Clinical observations on the corneal thickness and the corneal endothelium in diabetes mellitus. British Journal of Ophthalmology. 1981;65(10):687–690. doi: 10.1136/bjo.65.10.687.
    1. Su D. H. W., Wong T. Y., Wong W.-L., et al. Diabetes, hyperglycemia, and central corneal thickness: the Singapore Malay Eye Study. Ophthalmology. 2008;115(6):964–968.e1. doi: 10.1016/j.ophtha.2007.08.021.
    1. Saini J. S., Mittal S. In vivo assessment of corneal endothelial function in diabetes mellitus. Archives of Ophthalmology. 1996;114(6):649–653. doi: 10.1001/archopht.1996.01100130641001.
    1. Lee J. S., Oum B. S., Choi H. Y., Lee J. E., Cho B. M. Differences in corneal thickness and corneal endothelium related to duration in diabetes. Eye. 2006;20(3):315–318. doi: 10.1038/sj.eye.6701868.
    1. Karumanchi D. K., Gaillard E. R., Dillon J. Early diagnosis of diabetes through the eye. Photochemistry and Photobiology. 2015;91(6):1497–1504. doi: 10.1111/php.12524.
    1. Toygar O., Sizmaz S., Pelit A., Toygar B., Yabas kiziloğlu Ö., Akova Y. Central corneal thickness in type II diabetes mellitus: is it related to the severity of diabetic retinopathy? Turkish Journal of Medical Sciences. 2015;45(3):651–654. doi: 10.3906/sag-1404-153.
    1. DeMill D. L., Hussain M., Pop-Busui R., Shtein R. M. Ocular surface disease in patients with diabetic peripheral neuropathy. British Journal of Ophthalmology. 2015 doi: 10.1136/bjophthalmol-2015-307369.
    1. Henriques J., Vaz-Pereira S., Nascimento J., Rosa P. C. Diabetic eye disease. Acta Medica Portuguesa. 2015;28(1):107–113. doi: 10.20344/amp.5361.
    1. Ishibazawa A., Nagaoka T., Minami Y., Kitahara M., Yamashita T., Yoshida A. Choroidal thickness evaluation before and after hemodialysis in patients with and without diabetes. Investigative Ophthalmology and Visual Science. 2015;56(11):6534–6541. doi: 10.1167/iovs.15-16719.
    1. Misra S. L., Craig J. P., Patel D. V., et al. In vivo confocal microscopy of corneal nerves: an ocular biomarker for peripheral and cardiac autonomic neuropathy in type 1 diabetes mellitus. Investigative Ophthalmology and Visual Science. 2015;56(9):5060–5065. doi: 10.1167/iovs.15-16711.
    1. Baek J., Doh S. H., Chung S. K. Assessment of the tear meniscus using optical coherence tomography in patients with type 2 diabetes mellitus. Cornea. 2015;34(12):1534–1540. doi: 10.1097/ico.0000000000000651.
    1. Utsunomiya T., Nagaoka T., Hanada K., et al. Imaging of the corneal subbasal whorl-like nerve plexus: more accurate depiction of the extent of corneal nerve damage in patients with diabetes. Investigative Ophthalmology and Visual Science. 2015;56(9):5417–5423. doi: 10.1167/iovs.15-16609.
    1. Misra S. L., Braatvedt G. D., Patel D. V. Impact of diabetes mellitus on the ocular surface: a review. Clinical & Experimental Ophthalmology. 2015 doi: 10.1111/ceo.12690.
    1. Efron N. Contact lens-induced changes in the anterior eye as observed in vivo with the confocal microscope. Progress in Retinal and Eye Research. 2007;26(4):398–436. doi: 10.1016/j.preteyeres.2007.03.003.
    1. Grupcheva C. N., Chew G. S. M., Edwards M., Craig J. P., McGhee C. N. J. Imaging posterior polymorphous corneal dystrophy by in vivo confocal microscopy. Clinical and Experimental Ophthalmology. 2001;29(4):256–259. doi: 10.1046/j.1442-9071.2001.00432.x.
    1. Niederer R. L., Perumal D., Sherwin T., McGhee C. N. J. Laser scanning in vivo confocal microscopy reveals reduced innervation and reduction in cell density in all layers of the keratoconic cornea. Investigative Ophthalmology and Visual Science. 2008;49(7):2964–2970. doi: 10.1167/iovs.07-0968.
    1. Patel D. V., Grupcheva C. N., McGhee C. N. J. In vivo confocal microscopy of posterior polymorphous dystrophy. Cornea. 2005;24(5):550–554. doi: 10.1097/01.ico.0000153557.59407.20.
    1. Edwards K., Pritchard N., Gosschalk K., et al. Wide-field assessment of the human corneal subbasal nerve plexus in diabetic neuropathy using a novel mapping technique. Cornea. 2012;31(9):1078–1082. doi: 10.1097/ICO.0b013e318245c012.
    1. Messmer E. M., Schmid-Tannwald C., Zapp D., Kampik A. In vivo confocal microscopy of corneal small fiber damage in diabetes mellitus. Graefe's Archive for Clinical and Experimental Ophthalmology. 2010;248(9):1307–1312. doi: 10.1007/s00417-010-1396-8.
    1. Misra S., Ahn H. N., Craig J. P., Pradhan M., Patel D. V., McGhee C. N. J. Effect of panretinal photocoagulation on corneal sensation and the corneal subbasal nerve plexus in diabetes mellitus. Investigative Ophthalmology and Visual Science. 2013;54(7):4485–4490. doi: 10.1167/iovs.12-10571.
    1. Hertz P., Bril V., Orszag A., et al. Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabetic Medicine. 2011;28(10):1253–1260. doi: 10.1111/j.1464-5491.2011.03299.x.
    1. Tavakoli M., Kallinikos P., Iqbal A., et al. Corneal confocal microscopy detects improvement in corneal nerve morphology with an improvement in risk factors for diabetic neuropathy. Diabetic Medicine. 2011;28(10):1261–1267. doi: 10.1111/j.1464-5491.2011.03372.x.
    1. Klein B. E. K., Klein R., Moss S. E. Prevalence of cataracts in a population-based study of persons with diabetes mellitus. Ophthalmology. 1985;92(9):1191–1196. doi: 10.1016/s0161-6420(85)33877-0.
    1. Negahban K., Chern K. Cataracts associated with systemic disorders and syndromes. Current Opinion in Ophthalmology. 2002;13(6):419–422. doi: 10.1097/00055735-200212000-00013.
    1. Krepler K., Biowski R., Schrey S., Jandrasits K., Wedrich A. Cataract surgery in patients with diabetic retinopathy: visual outcome, progression of diabetic retinopathy, and incidence of diabetic macular oedema. Graefe's Archive for Clinical and Experimental Ophthalmology. 2002;240(9):735–738. doi: 10.1007/s00417-002-0530-7.
    1. Squirrell D., Bhola R., Bush J., Winder S., Talbot J. F. A prospective, case controlled study of the natural history of diabetic retinopathy and maculopathy after uncomplicated phacoemulsification cataract surgery in patients with type 2 diabetes. British Journal of Ophthalmology. 2002;86(5):565–571. doi: 10.1136/bjo.86.5.565.
    1. Romero-Aroca P., Fernández-Ballart J., Almena-Garcia M., Méndez-Marín I., Salvat-Serra M., Buil-Calvo J. A. Nonproliferative diabetic retinopathy and macular edema progression after phacoemulsification: prospective study. Journal of Cataract and Refractive Surgery. 2006;32(9):1438–1444. doi: 10.1016/j.jcrs.2006.03.039.
    1. Dowler J. G. F., Hykin P. G., Hamilton A. M. P. Phacoemulsification versus extracapsular cataract extraction in patients with diabetes. Ophthalmology. 2000;107(3):457–462. doi: 10.1016/s0161-6420(99)00136-0.
    1. Dowler J. G. F., Hykin P. G., Lightman S. L., Hamilton A. M. Visual acuity following extracapsular cataract extraction in diabetes: a meta-analysis. Eye. 1995;9(3):313–317. doi: 10.1038/eye.1995.61.
    1. Kodama T., Hayasaka S., Setogawa T. Plasma glucose levels, postoperative complications, and progression of retinopathy in diabetic patients undergoing intraocular lens implantation. Graefe's Archive for Clinical and Experimental Ophthalmology. 1993;231(8):439–443. doi: 10.1007/bf02044228.
    1. Suto C., Hori S., Kato S. Management of type 2 diabetics requiring panretinal photocoagulation and cataract surgery. Journal of Cataract and Refractive Surgery. 2008;34(6):1001–1006. doi: 10.1016/j.jcrs.2008.02.019.
    1. Park C. Y., Lee J. K., Gore P. K., Lim C.-Y., Chuck R. S. Keratoplasty in the United States. A 10-Year review from 2005 through 2014. Ophthalmology. 2015;122(12):2432–2442. doi: 10.1016/j.ophtha.2015.08.017.
    1. Darlington J. K., Adrean S. D., Schwab I. R. Trends of penetrating keratoplasty in the United States from 1980 to 2004. Ophthalmology. 2006;113(12):2171–2175. doi: 10.1016/j.ophtha.2006.06.034.
    1. Price F. W., Jr., Price M. O. Descemet's stripping with endothelial keratoplasty in 50 eyes: a refractive neutral corneal transplant. Journal of Refractive Surgery. 2005;21(4):339–345.
    1. Gorovoy M. S. Descemet-stripping automated endothelial keratoplasty. Cornea. 2006;25(8):886–889. doi: 10.1097/01.ico.0000214224.90743.01.
    1. Lie J. T., Groeneveld-van Beek E. A., Ham L., van der Wees J., Melles G. R. J. More efficient use of donor corneal tissue with Descemet membrane endothelial keratoplasty (DMEK): two lamellar keratoplasty procedures with one donor cornea. British Journal of Ophthalmology. 2010;94(9):1265–1266. doi: 10.1136/bjo.2009.171629.
    1. Melles G. R. J., Ong T. S., Ververs B., van der Wees J. Preliminary clinical results of descemet membrane endothelial keratoplasty. American Journal of Ophthalmology. 2008;145(2):222–227. doi: 10.1016/j.ajo.2007.09.021.
    1. Chikama T.-I., Wakuta M., Liu Y., Nishida T. Deviated mechanism of wound healing in diabetic corneas. Cornea. 2007;26(9) supplement 1:S75–S81. doi: 10.1097/ico.0b013e31812f6d8e.
    1. Fraunfelder F. W., Rich L. F. Laser-assisted in situ keratomileusis complications in diabetes mellitus. Cornea. 2002;21(3):246–248. doi: 10.1097/00003226-200204000-00002.
    1. Gimbel H. V., van Westenbrugge J. A., Anderson Penno E. E., Ferensowicz M., Feinerman G. A., Chen R. Simultaneous bilateral laser in situ keratomileusis: safety and efficacy. Ophthalmology. 1999;106(8):1461–1468. doi: 10.1016/s0161-6420(99)90438-4.
    1. Wang M. Y., Maloney R. K. Epithelial ingrowth after laser in situ keratomileusis. American Journal of Ophthalmology. 2000;129(6):746–751. doi: 10.1016/s0002-9394(00)00357-3.
    1. Stulting R. D., Carr J. D., Thompson K. P., Waring G. O., III, Wiley W. M., Walker J. G. Complications of laser in situ keratomileusis for the correction of myopia. Ophthalmology. 1999;106(1):13–20. doi: 10.1016/S0161-6420(99)90000-3.
    1. Jabbur N. S., Chicani C. F., Kuo I. C., O'Brien T. P. Risk factors in interface epithelialization after laser in situ keratomileusis. Journal of Refractive Surgery. 2004;20(4):343–348.
    1. Ghanbari H., Ahmadieh H. Aggravation of proliferative diabetic retinopathy after laser in situ keratomileusis. Journal of Cataract and Refractive Surgery. 2003;29(11):2232–2233. doi: 10.1016/s0886-3350(03)00355-9.
    1. Pettit G. H. The ideal excimer beam for refractive surgery. Journal of Refractive Surgery. 2006;22(9):S969–S972.
    1. Kim J. Y., Kim M. J., Kim T. I., Choi H. J., Pak J. H., Tchah H. A femtosecond laser creates a stronger flap than a mechanical microkeratome. Investigative Ophthalmology & Visual Science. 2006;47(2):599–604.
    1. Stein R. Photorefractive keratectomy. International Ophthalmology Clinics. 2000;40(3):35–56. doi: 10.1097/00004397-200007000-00007.
    1. Slade S. G. The use of the femtosecond laser in the customization of corneal flaps in laser in situ keratomileusis. Current Opinion in Ophthalmology. 2007;18(4):314–317. doi: 10.1097/icu.0b013e3281bd88a0.
    1. Nagy Z. Z., Fekete O., Süveges I. Photorefractive keratectomy for myopia with the meditec MEL 70G-Scan flying spot laser. Journal of Refractive Surgery. 2001;17(3):319–326.
    1. Xuan B., McClellan D. A., Moore R., Chiou G. C. Y. Alternative delivery of insulin via eye drops. Diabetes Technology and Therapeutics. 2005;7(5):695–698. doi: 10.1089/dia.2005.7.695.
    1. Pillion D. J., Atchison J. A., Stott J., McCracken D., Gargiulo C., Meezan E. Efficacy of insulin eyedrops. Journal of Ocular Pharmacology. 1994;10(2):461–470. doi: 10.1089/jop.1994.10.461.
    1. Liu S. X. L., Chiou G. C. Y. Feasibility of insulin eyedrops for human use. Journal of Ocular Pharmacology. 1994;10(3):587–590. doi: 10.1089/jop.1994.10.587.
    1. Bartlett J. D., Turner-Henson A., Atchison J. A., Woolley T. W., Pillion D. J. Insulin administration to the eyes of normoglycemic human volunteers. Journal of Ocular Pharmacology. 1994;10(4):683–690. doi: 10.1089/jop.1994.10.683.
    1. Barclay R. Google Scientists Create Contact Lens to Measure Blood Sugar Levels in Tears. 2014. .
    1. Hasslacher C., Auffarth G., Platten I., et al. Safety and accuracy of a new long-term subconjunctival glucose sensor. Journal of Diabetes. 2012;4(3):291–296. doi: 10.1111/j.1753-0407.2012.00192.x.
    1. Müller A. J., Knuth M., Nikolaus K. S., Herbrechtsmeier P. First clinical evaluation of a new long-term subconjunctival glucose sensor. Journal of Diabetes Science and Technology. 2012;6(4):875–883. doi: 10.1177/193229681200600419.
    1. Müller A. J., Knuth M., Nikolaus K. S., et al. Blood glucose self-monitoring with a long-term subconjunctival glucose sensor. Journal of Diabetes Science and Technology. 2013;7(1):24–34. doi: 10.1177/193229681300700104.
    1. Ljubimov A. V., Saghizadeh M. Progress in corneal wound healing. Progress in Retinal and Eye Research. 2015;49:17–45. doi: 10.1016/j.preteyeres.2015.07.002.
    1. Logothetis H. D., Leikin S. M., Patrianakos T. Management of anterior segment trauma. Disease-a-Month. 2014;60(6):247–253. doi: 10.1016/j.disamonth.2014.03.004.
    1. Messman A. M. Ocular injuries: new strategies in emergency department management. Emergency Medicine Practice. 2015;17(11):1–22.
    1. Torricelli A. A., Santhanam A., Wu J., Singh V., Wilson S. E. The corneal fibrosis response to epithelial-stromal injury. Experimental Eye Research. 2016;142:110–118. doi: 10.1016/j.exer.2014.09.012.
    1. Ahmed F., House R. J., Feldman B. H. Corneal abrasions and corneal foreign bodies. Primary Care. 2015;42(3):363–375. doi: 10.1016/j.pop.2015.05.004.
    1. Karamichos D., Hjortdal J. Keratoconus: tissue engineering and biomaterials. Journal of Functional Biomaterials. 2014;5(3):111–134. doi: 10.3390/jfb5030111.
    1. Stepp M. A., Zieske J. D., Trinkaus-Randall V., et al. Wounding the cornea to learn how it heals. Experimental Eye Research. 2014;121:178–193. doi: 10.1016/j.exer.2014.02.007.
    1. Hamill C. E., Bozorg S., Peggy Chang H.-Y., et al. Corneal alkali burns: a review of the literature and proposed protocol for evaluation and treatment. International Ophthalmology Clinics. 2013;53(4):185–194. doi: 10.1097/iio.0b013e31829ceefa.
    1. Gil-Cazorla R., Teus M. A., Hernández-Verdejo J. L., De Benito-Llopis L., García-González M. Comparative study of two silicone hydrogel contact lenses used as bandage contact lenses after LASEK. Optometry and Vision Science. 2008;85(9):884–888. doi: 10.1097/opx.0b013e31818527fd.
    1. Szaflik J. P., Ambroziak A. M., Szaflik J. Therapeutic use of a lotrafilcon A silicone hydrogel soft contact lens as a bandage after LASEK surgery. Eye and Contact Lens. 2004;30(1):59–62. doi: 10.1097/01.icl.0000107181.42704.d8.
    1. Cormier G., Brunette I., Boisjoly H. M., LeFrançois M., Shi Z. H., Guertin M.-C. Anterior stromal punctures for bullous keratopathy. Archives of Ophthalmology. 1996;114(6):654–658. doi: 10.1001/archopht.1996.01100130646002.
    1. Koenig S. B., Schultz R. O. Penetrating keratoplasty for pseudophakic bullous keratopathy after extracapsular cataract extraction. American Journal of Ophthalmology. 1988;105(4):348–353. doi: 10.1016/0002-9394(88)90295-4.
    1. Manche E. E., Holland G. N., Maloney R. K. Deep lamellar keratoplasty using viscoelastic dissection. Archives of Ophthalmology. 1999;117(11):1561–1565. doi: 10.1001/archopht.117.11.1561.
    1. Anwar M., Teichmann K. D. Big-bubble technique to bare Descemet's membrane in anterior lamellar keratoplasty. Journal of Cataract and Refractive Surgery. 2002;28(3):398–403. doi: 10.1016/s0886-3350(01)01181-6.
    1. Kubaloglu A., Sari E. S., Unal M., et al. Long-term results of deep anterior lamellar keratoplasty for the treatment of keratoconus. American Journal of Ophthalmology. 2011;151(5):760–767. doi: 10.1016/j.ajo.2010.11.020.
    1. Guilbert E., Bullet J., Sandali O., Basli E., Laroche L., Borderie V. M. Long-term rejection incidence and reversibility after penetrating and lamellar keratoplasty. American Journal of Ophthalmology. 2013;155(3):560.e2–569.e2. doi: 10.1016/j.ajo.2012.09.027.
    1. Woodward M. A., Titus M., Mavin K., Shtein R. M. Corneal donor tissue preparation for endothelial keratoplasty. Journal of Visualized Experiments. 2012;(64):p. e3847.
    1. Moshirfar M., Imbornoni L. M., Muthappan V., et al. In vitro pilot analysis of uniformity, circularity, and concentricity of DSAEK donor endothelial grafts prepared by a microkeratome. Cornea. 2014;33(2):191–196. doi: 10.1097/ico.0000000000000031.
    1. Vetter J. M., Butsch C., Faust M., et al. Irregularity of the posterior corneal surface after curved interface femtosecond laser-assisted versus microkeratome-assisted descemet stripping automated endothelial keratoplasty. Cornea. 2013;32(2):118–124. doi: 10.1097/ICO.0b013e31826ae2d8.
    1. Mootha V. V., Heck E., Verity S. M., et al. Comparative study of descemet stripping automated endothelial keratoplasty donor preparation by moria cbm microkeratome, horizon microkeratome, and intralase FS60. Cornea. 2011;30(3):320–324. doi: 10.1097/ICO.0b013e3181f22cc3.
    1. Busin M., Patel A. K., Scorcia V., Ponzin D. Microkeratome-assisted preparation of ultrathin grafts for descemet stripping automated endothelial keratoplasty. Investigative Ophthalmology & Visual Science. 2012;53(1):521–524. doi: 10.1167/iovs.11-7753.
    1. Sikder S., Nordgren R. N., Neravetla S. R., Moshirfar M. Ultra-thin donor tissue preparation for endothelial keratoplasty with a double-pass microkeratome. American Journal of Ophthalmology. 2011;152(2):202.e2–208.e2. doi: 10.1016/j.ajo.2011.01.051.
    1. Waite A., Davidson R., Taravella M. J. Descemet-stripping automated endothelial keratoplasty donor tissue preparation using the double-pass microkeratome technique. Journal of Cataract and Refractive Surgery. 2013;39(3):446–450. doi: 10.1016/j.jcrs.2012.10.048.
    1. Abcouwer S. F. Angiogenic factors and cytokines in diabetic retinopathy. Journal of Clinical & Cellular Immunology. 2013;(supplement 1, article 011)
    1. Yasin M. N., Svirskis D., Seyfoddin A., Rupenthal I. D. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. Journal of Controlled Release. 2014;196:208–221. doi: 10.1016/j.jconrel.2014.09.030.
    1. Pardo-López D., Francés-Muñoz E., Gallego-Pinazo R., Díaz-Llopis M. Anterior chamber migration of dexametasone intravitreal implant (Ozurdex®) Graefe's Archive for Clinical and Experimental Ophthalmology. 2012;250(11):1703–1704. doi: 10.1007/s00417-011-1802-x.
    1. Kuno N., Fujii S. Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs and Aging. 2010;27(2):117–134. doi: 10.2165/11530970-000000000-00000.
    1. Choonara Y. E., Pillay V., Danckwerts M. P., Carmichael T. R., du Toit L. C. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. Journal of Pharmaceutical Sciences. 2010;99(5):2219–2239. doi: 10.1002/jps.21987.
    1. Lee D. J. Intraocular implants for the treatment of autoimmune uveitis. Journal of Functional Biomaterials. 2015;6(3):650–666. doi: 10.3390/jfb6030650.
    1. Arcinue C. A., Cerón O. M., Foster C. S. A comparison between the fluocinolone acetonide (Retisert) and dexamethasone (Ozurdex) intravitreal implants in uveitis. Journal of Ocular Pharmacology and Therapeutics. 2013;29(5):501–507. doi: 10.1089/jop.2012.0180.
    1. Lobo A.-M., Sobrin L., Papaliodis G. N. Drug delivery options for the treatment of ocular inflammation. Seminars in Ophthalmology. 2010;25(5-6):283–288. doi: 10.3109/08820538.2010.518522.
    1. Kuppermann B. D., Blumenkranz M. S., Haller J. A., et al. Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Archives of Ophthalmology. 2007;125(3):309–317. doi: 10.1001/archopht.125.3.309.
    1. Williams G. A., Haller J. A., Kuppermann B. D., et al. Dexamethasone posterior-segment drug delivery system in the treatment of macular edema resulting from uveitis or Irvine-Gass syndrome. American Journal of Ophthalmology. 2009;147(6):1048.e2–1054.e2. doi: 10.1016/j.ajo.2008.12.033.
    1. Agarwal A., Afridi R., Hassan M., et al. Novel therapies in development for diabetic macular edema. Current Diabetes Reports. 2015;15(10, article 75) doi: 10.1007/s11892-015-0652-z.
    1. Augustin A. J., Kuppermann B. D., Lanzetta P., et al. Dexamethasone intravitreal implant in previously treated patients with diabetic macular edema: subgroup analysis of the MEAD study. BMC Ophthalmology. 2015;15(1):p. 150. doi: 10.1186/s12886-015-0148-2.
    1. Boyer D. S., Yoon Y. H., Belfort R., et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904–1914. doi: 10.1016/j.ophtha.2014.04.024.
    1. Cabrera M., Yeh S., Albini T. A. Sustained-release corticosteroid options. Journal of Ophthalmology. 2014;2014:5. doi: 10.1155/2014/164692.164692
    1. Pearson P. A., Comstock T. L., Ip M., et al. Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial. Ophthalmology. 2011;118(8):1580–1587. doi: 10.1016/j.ophtha.2011.02.048.
    1. Cunha-Vaz J., Ashton P., Iezzi R., et al. Sustained delivery fluocinolone acetonide vitreous implants: long-term benefit in patients with chronic diabetic macular edema. Ophthalmology. 2014;121(10):1892–1903. doi: 10.1016/j.ophtha.2014.04.019.
    1. Ng E. W. M., Shima D. T., Calias P., Cunningham E. T., Jr., Guyer D. R., Adamis A. P. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Reviews Drug Discovery. 2006;5(2):123–132. doi: 10.1038/nrd1955.
    1. Morjaria R., Chong N. V. Pharmacokinetic evaluation of pegaptanib octasodium for the treatment of diabetic edema. Expert Opinion on Drug Metabolism and Toxicology. 2014;10(8):1185–1192. doi: 10.1517/17425255.2014.922543.
    1. Stewart M. W. Anti-VEGF therapy for diabetic macular edema. Current Diabetes Reports. 2014;14(8, article 510) doi: 10.1007/s11892-014-0510-4.
    1. Papadopoulos N., Martin J., Ruan Q., et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis. 2012;15(2):171–185. doi: 10.1007/s10456-011-9249-6.
    1. Holz F. G., Amoaku W., Donate J., et al. Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study. Ophthalmology. 2011;118(4):663–671. doi: 10.1016/j.ophtha.2010.12.019.
    1. Stewart M. W. Predicted biologic activity of intravitreal bevacizumab. Retina. 2007;27(9):1196–1200. doi: 10.1097/IAE.0b013e318158ea28.
    1. Dawson N. S., Zawieja D. C., Wu M. H., Granger H. J. Signaling pathways mediating VEGF165-induced calcium transients and membrane depolarization in human endothelial cells. The FASEB Journal. 2006;20(7):991–993. doi: 10.1096/fj.05-3923fje.
    1. Meyer T., Robles-Carrillo L., Robson T., et al. Bevacizumab immune complexes activate platelets and induce thrombosis in FCGR2A transgenic mice. Journal of Thrombosis and Haemostasis. 2009;7(1):171–181. doi: 10.1111/j.1538-7836.2008.03212.x.
    1. Costa R., Carneiro Â., Rocha A., et al. Bevacizumab and ranibizumab on microvascular endothelial cells: a comparative study. Journal of Cellular Biochemistry. 2009;108(6):1410–1417. doi: 10.1002/jcb.22378.
    1. Holash J., Davis S., Papadopoulos N., et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(17):11393–11398. doi: 10.1073/pnas.172398299.
    1. Gahlaut N., Suarez S., Uddin M. I., Gordon A. Y., Evans S. M., Jayagopal A. Nanoengineering of therapeutics for retinal vascular disease. European Journal of Pharmaceutics and Biopharmaceutics. 2015;95:323–330. doi: 10.1016/j.ejpb.2015.05.001.
    1. Yandrapu S. K., Upadhyay A. K., Petrash J. M., Kompella U. B. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Molecular Pharmaceutics. 2013;10(12):4676–4686. doi: 10.1021/mp400487f.
    1. Tyagi P., Barros M., Stansbury J. W., Kompella U. B. Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Molecular Pharmaceutics. 2013;10(8):2858–2867. doi: 10.1021/mp300716t.
    1. Zhang L., Si T., Fischer A. J., et al. Coaxial electrospray of ranibizumab-loaded microparticles for sustained release of anti-VEGF therapies. PLoS ONE. 2015;10(8) doi: 10.1371/journal.pone.0135608.e0135608
    1. Lovett M. L., Wang X., Yucel T., et al. Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics. European Journal of Pharmaceutics and Biopharmaceutics. 2015;95:271–278. doi: 10.1016/j.ejpb.2014.12.029.
    1. Asmus L. R., Grimshaw J. P. A., Richle P., et al. Injectable formulations for an intravitreal sustained-release application of a novel single-chain VEGF antibody fragment. European Journal of Pharmaceutics and Biopharmaceutics. 2015;95:250–260. doi: 10.1016/j.ejpb.2015.02.007.
    1. Treating the Symptoms of Wet AMD—Neurotech Pharmaceuticals, 2015, .
    1. Bourges J. L., Bloquel C., Thomas A., et al. Intraocular implants for extended drug delivery: therapeutic applications. Advanced Drug Delivery Reviews. 2006;58(11):1182–1202. doi: 10.1016/j.addr.2006.07.026.
    1. Calvo P., Abadia B., Ferreras A., Ruiz-Moreno O., Verdes G., Pablo L. E. Diabetic macular edema: options for adjunct therapy. Drugs. 2015;75(13):1461–1469. doi: 10.1007/s40265-015-0447-1.
    1. Stalmans P., Benz M. S., Gandorfer A., et al. Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. The New England Journal of Medicine. 2012;367(7):606–615. doi: 10.1056/nejmoa1110823.
    1. Luo L., Zhang X., Hirano Y., et al. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano. 2013;7(4):3264–3275. doi: 10.1021/nn305958y.
    1. Friedlander M., Theesfeld C. L., Sugita M., et al. Involvement of integrins αvβ3 and αvβ5 in ocular neovascular diseases. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(18):9764–9769. doi: 10.1073/pnas.93.18.9764.
    1. Liu H.-A., Liu Y.-L., Ma Z.-Z., Wang J.-C., Zhang Q. A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model. Investigative Ophthalmology & Visual Science. 2011;52(7):4789–4794. doi: 10.1167/iovs.10-5891.
    1. Keech A., Mitchell P., Summanen P., et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. The Lancet. 2007;370(9600):1687–1697. doi: 10.1016/s0140-6736(07)61607-9.
    1. De Boer I. H. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):24–30. doi: 10.2337/dc13-2113.
    1. Xu F., Zhao L., Su J., et al. The relationship between glycemic variability and diabetic peripheral neuropathy in type 2 diabetes with well-controlled HbA1c. Diabetology & Metabolic Syndrome. 2014;6(1):p. 139. doi: 10.1186/1758-5996-6-139.
    1. Šoupal J., Škrha J., Jr., Fajmon M., et al. Glycemic variability is higher in type 1 diabetes patients with microvascular complications irrespective of glycemic control. Diabetes Technology and Therapeutics. 2014;16(4):198–203. doi: 10.1089/dia.2013.0205.
    1. Ascaso F. J., Huerva V. Noninvasive continuous monitoring of tear glucose using glucose-sensing contact lenses. Optometry & Vision Science. 2015 doi: 10.1097/opx.0000000000000698.
    1. Farandos N. M., Yetisen A. K., Monteiro M. J., Lowe C. R., Yun S. H. Contact lens sensors in ocular diagnostics. Advanced Healthcare Materials. 2015;4(6):792–810. doi: 10.1002/adhm.201400504.
    1. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the epidemiology of diabetes interventions and complications (EDIC) study. Journal of the American Medical Association. 2003;290(16):2159–2167. doi: 10.1001/jama.290.16.2159.
    1. Traktuev D. O., Merfeld-Clauss S., Li J., et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research. 2008;102(1):77–85. doi: 10.1161/circresaha.107.159475.
    1. Zuk P. A., Zhu M., Mizuno H., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering. 2001;7(2):211–228. doi: 10.1089/107632701300062859.
    1. Rehman J., Traktuev D., Li J., et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–1298. doi: 10.1161/01.cir.0000121425.42966.f1.
    1. Rajashekhar G., Ramadan A., Abburi C., et al. Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0084671.e84671

Source: PubMed

3
購読する