Longitudinal Changes in Cd4+, Cd8+ T Cell Phenotype and Activation Marker Expression Following Antiretroviral Therapy Initiation among Patients with Cryptococcal Meningitis

Alice Bayiyana, Samuel Okurut, Rose Nabatanzi, Godfrey Zziwa, David R Boulware, Fredrick Lutwama, David Meya, Alice Bayiyana, Samuel Okurut, Rose Nabatanzi, Godfrey Zziwa, David R Boulware, Fredrick Lutwama, David Meya

Abstract

Despite improvement in the prognosis of HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) patients on antiretroviral therapy (ART), cryptococcal meningitis (CM) still causes 10-15% mortality among HIV-infected patients. The immunological impact of ART on the CD4+ and CD8+ T cell repertoire during cryptococcal co-infection is unclear. We determined longitudinal phenotypic changes in T cell subsets among patients with CM after they initiated ART. We hypothesized that ART alters the clonotypic phenotype and structural composition of CD4+ and CD8+ T cells during CM co-infection. For this substudy, peripheral blood mononuclear cells (PBMC) were isolated at four time points from CM patients following ART initiation during the parent study (ClinicalTrials.gov number, NCT01075152). Phenotypic characterization of CD4+ and CD8+ T cells was done using T cell surface marker monoclonal antibodies by flow cytometry. There was variation in the expression of immunophenotypic markers defining central memory (CD27+CD45R0+), effector memory (CD45R0+CD27-), immune activation (CD38+ and Human Leucocyte Antigen DR (HLA-DR+), and exhaustion (Programmed cell death protein one (PD-1) in the CD4+ T cell subset. In comparison to the CD4+ T cell population, the CD8+ central memory subset declined gradually with minimal increase in the effector memory subset. Both CD4+ and CD8+ T cell immune exhaustion and activation markers remained elevated over 12 weeks. The relative surge and decline in the expression of T cell surface markers outlines a variation in the differentiation of CD4+ T cells during ART treatment during CM co-infection.

Keywords: ART; HIV; T cell phenotypes; cryptococcal meningitis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Gating strategy: Flow cytometry analysis of cryptococcal-specific CD4+ and CD8+ T cell memory and phenotypes evaluated in a 6 h assay: (A) We first used a singlet gate to exclude doublets by gating on forward scatter-area (FSC-A) against forward scatter-height (FSC-H). (B) Lymphocytes were then selected using a forward scatter-area (FSC-A) against side scatter-area (SSC-A) gate. (C) Conventional T cells were selected by gating on CD3+ cells from the total lymphocyte population, which were further divided to (D) CD4+ and CD8+ T cells. Memory phenotypes were assessed by variable expression of CD45R0 and CD27 on the CD4+ (E) and CD8+ (I) T cell populations; while T cell activation was assessed by expression of CD38 and HLA-DR on the CD4+ (G) and CD8+ (H) T cell subsets. T cell exhaustion was assessed by expression of PD-1 (F) on both populations. CM represents cryptococcal meningitis. QuaradntDEM.
Figure 2
Figure 2
Recovery of CD4+ and CD8+ T cell populations.
Figure 3
Figure 3
The CD4+ TCM subset frequency remained stable yet the CD8+ TCM subset declined.
Figure 4
Figure 4
CD4+ TEM subset expression shows significant decline contrary to the CD8+ TEM subsets.
Figure 5
Figure 5
Immune activation levels remained elevated with of the T cell subsets.
Figure 6
Figure 6
Immune exhaustion levels remained elevated for CD4+ and CD8+ T cell subpopulations.

References

    1. Alemu A.S., Kempker R.R., Tenna A., Smitson C., Berhe N., Fekade D., Blumberg H.M., Aseffa A. High prevalence of cryptococcal antigenemia among HIV-infected patients receiving antiretroviral therapy in Ethiopia. PLoS ONE. 2013;8:e58377. doi: 10.1371/journal.pone.0058377.
    1. Meya D.B., Okurut S., Zziwa G., Rolfes M.A., Kelsey M., Cose S., Joloba M., Naluyima P., Palmer B.E., Kambugu A., et al. Cellular immune activation in cerebrospinal fluid from Ugandans with cryptococcal meningitis and immune reconstitution inflammatory syndrome. J. Infect. Dis. 2015;211:1597–1606. doi: 10.1093/infdis/jiu664.
    1. Durski K.N., Kuntz K.M., Yasukawa K., Virnig B.A., Meya D.B., Boulware D.R. Cost-effective diagnostic checklists for meningitis in resource limited settings. J. Acquir. Immune Defic. Syndr. 2013;63:e101–e108. doi: 10.1097/QAI.0b013e31828e1e56.
    1. Warkentien T., Crum-cianflone N.F. An update on cryptococcosis among HIV-infected persons. Int. J. STD AIDS. 2010;21:679–684. doi: 10.1258/ijsa.2010.010182.
    1. Zheng C.F., Ma L.L., Jones G.J., Gill M.J., Krensky A.M., Kubes P., Mody C.H. Cytotoxic CD4+ T cells use granulysin to kill Cryptococcus neoformans, and activation of this pathway is defective in HIV patients. Blood. 2007;109:2049–2057. doi: 10.1182/blood-2006-03-009720.
    1. Retini C., Vecchiarelli A., Monari C., Bistoni F., Kozel T.R. Encapsulation of Cryptococcus neoformans with glucuronoxylomannan inhibits the antigen-presenting capacity of monocytes. Infect. Immun. 1998;66:664–669.
    1. Jarvis J.N., Casazza J.P., Stone H.H., Meintjes G., Lawn S.D., Levitz S.M., Harrison T.S., Koup R.A. The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis. J. Infect. Dis. 2013;207:1817–1828. doi: 10.1093/infdis/jit099.
    1. Moir S., Chun T.W., Fauci A.S. Pathogenic mechanisms of HIV disease. Annu. Rev. Pathol. 2011;6:223–248. doi: 10.1146/annurev-pathol-011110-130254.
    1. Tenforde M.W., Scriven J.E., Harrison T.S., Jarvis J.N. Immune correlates of HIV-associated cryptococcal meningitis. PLoS Pathog. 2017;13:e1006207. doi: 10.1371/journal.ppat.1006207.
    1. De Rosa S.C., Herzenberg L.A., Herzenberg L.A., Roederer M. 11-color, 13-parameter flow cytometry: Identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat. Med. 2001;7:245–248. doi: 10.1038/84701.
    1. Lacabaratz-Porret C., Urrutia A., Doisne J.M., Goujard C., Deveau C., Dalod M., Meyer L., Rouzioux C., Delfraissy J.F., Venet A., et al. Impact of antiretroviral therapy and changes in virus load on human immunodeficiency virus (HIV)–specific T cell responses in primary HIV infection. J. Infect. Dis. 2003;187:748–757. doi: 10.1086/368333.
    1. Herout S., Mandorfer M., Breitenecker F., Reiberger T., Grabmeier-Pfistershammer K., Rieger A., Aichelburg M.C. Impact of early initiation of antiretroviral therapy in patients with acute HIV infection in Vienna, Austria. PLoS ONE. 2016;11:e0152910. doi: 10.1371/journal.pone.0152910.
    1. Holtick U., Frenzel L., Fröhlich H., Shimabukuro-Vornhagen A., Theurich S., Claasen J., Scheid C., von Bergwelt-Baildon M., Wendtner C., Chemnitz J. Increased Functional T Cell. Defects In Patients With Low Cd4 Counts After Allogeneic Hematopoietic Stem Cell Transplantation. Bone Marrow Transplant. 2014;49:S558–S559.
    1. Boulware D.R., Meya D.B., Muzoora C., Rolfes M.A., Huppler Hullsiek K., Musubire A., Taseera K., Nabeta H., Schutz C., Williams D., et al. Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N. Engl. J. Med. 2014;370:2487–2498. doi: 10.1056/NEJMoa1312884.
    1. Meya D., Rajasingham R., Nalintya E., Tenforde M., Jarvis J.N. Preventing Cryptococcosis—Shifting the Paradigm in the Era of Highly Active Antiretroviral Therapy. Curr. Trop. Med. Rep. 2015;2:81–89. doi: 10.1007/s40475-015-0045-z.
    1. Meya D.B., Manabe Y.C., Castelnuovo B., Cook B.A., Elbireer A.M., Kambugu A., Kamya M.R., Bohjanen P.R., Boulware D.R. Cost-effectiveness of serum cryptococcal antigen screening to prevent deaths among HIV-infected persons with a CD4+ cell count ≤ 100 cells/μL who start HIV therapy in resource-limited settings. Clin. Infect. Dis. 2010;51:448–455. doi: 10.1086/655143.
    1. Conrad J.A., Ramalingam R.K., Duncan C.B., Smith R.M., Wei J., Barnett L., Simons B.C., Lorey S.L., Kalams S.A. Antiretroviral Therapy Reduces the Magnitude and T Cell Receptor Repertoire Diversity of HIV-Specific T Cell Responses without Changing T Cell Clonotype Dominance. J. Virol. 2012;86:4213–4221. doi: 10.1128/JVI.06000-11.
    1. Bicanic T., Meintjes G., Wood R., Hayes M., Rebe K., Bekker L.G., Harrison T. Fungal burden, early fungicidal activity, and outcome in cryptococcal meningitis in antiretroviral-naive or antiretroviral-experienced patients treated with amphotericin B or fluconazole. Clin. Infect. Dis. 2007;45:76–80. doi: 10.1086/518607.
    1. Velu V., Shetty R.D., Larsson M., Shankar E.M. Role of PD-1 co-inhibitory pathway in HIV infection and potential therapeutic options. Retrovirology. 2015;12:14. doi: 10.1186/s12977-015-0144-x.
    1. Catalfamo M., Wilhelm C., Tcheung L., Proschan M., Friesen T., Park J.H., Adelsberger J., Baseler M., Maldarelli F., Davey R., et al. CD4 and CD8 T cell immune activation during chronic HIV infection: Roles of homeostasis, HIV, type I IFN, and IL-7. J. Immunol. 2011;186:2106–2116. doi: 10.4049/jimmunol.1002000.
    1. Rallón N., Sempere-Ortells J.M., Soriano V., Benito J.M. Central memory CD4 T cells are associated with incomplete restoration of the CD4 T cell pool after treatment-induced long-term undetectable HIV viraemia. J. Antimicrob. Chemother. 2013;68:2616–2625. doi: 10.1093/jac/dkt245.
    1. Jarvis J.N., Harrison T.S. HIV-associated cryptococcal meningitis. AIDS. 2007;21:2119–2129. doi: 10.1097/QAD.0b013e3282a4a64d.
    1. Akakpo K.P., Quayson S.E., Lartey M. Disseminated cryptococcosis in a patient with HIV/AIDS at a teaching hospital in Ghana. SAGE Open Med. Case Rep. 2015;3:2050313X14565421. doi: 10.1177/2050313X14565421.
    1. Voelz K., May R.C. Cryptococcal interactions with the host immune system. Eukaryot. Cell. 2010;9:835–846. doi: 10.1128/EC.00039-10.
    1. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. [(accessed on 10 June 2016)];2016 Available online: .
    1. World Health Organisation STEPS Sample Size Calculator and Sampling Spreadsheet. [(accessed on 10 January 2017)]; Available online:
    1. Streeck H., Jessen H., Alter G., Teigen N., Waring M.T., Jessen A., Stahmer I., van Lunzen J., Lichterfeld M., Gao X., et al. Immunological and virological impact of highly active antiretroviral therapy initiated during acute HIV-1 infection. J. Infect. Dis. 2006;194:734–739. doi: 10.1086/503811.
    1. Wilson E.M., Sereti I. Immune restoration after antiretroviral therapy: The pitfalls of hasty or incomplete repairs. Immunol. Rev. 2013;254:343–354. doi: 10.1111/imr.12064.
    1. Sallusto F., Geginat J., Lanzavecchia A. Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu. Rev. Immunol. 2004;22:745–763. doi: 10.1146/annurev.immunol.22.012703.104702.
    1. Lanzavecchia A., Sallusto F. Understanding the generation and function of memory T cell subsets. Curr. Opin. Immunol. 2005;17:326–332. doi: 10.1016/j.coi.2005.04.010.
    1. Von Wyl V., Gianella S., Fischer M., Niederoest B., Kuster H., Battegay M., Bernasconi E., Cavassini M., Rauch A., Hirschel B., et al. Early antiretroviral therapy during primary HIV-1 infection results in a transient reduction of the viral setpoint upon treatment interruption. PLoS ONE. 2011;6:e27463. doi: 10.1371/journal.pone.0027463.
    1. Serrano-Villar S., Gutierrez C., Vallejo A., Hernandez-Novoa B., Diaz L., Fernandez M.A., Madrid N., Dronda F., Zamora J., Munoz-Fernandez M.A., et al. The CD4/CD8 ratio in HIV-infected subjects is independently associated with T-cell activation despite long-term viral suppression. J. Infect. 2013;66:57–66. doi: 10.1016/j.jinf.2012.09.013.
    1. Gengis E.H., Deeks S.G. CD4+ T cell recovery with antiretroviral therapy: More than the sum of the parts. Clin. Infect. Dis. 2009;48:362–364. doi: 10.1086/595889.
    1. Jenkins M.K., Moon J.J. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J. Immunol. 2012;188:4135–4140. doi: 10.4049/jimmunol.1102661.
    1. Butler E.K., Boulware D.R., Bohjanen P.R., Meya D.B. Long Term 5-Year Survival of Persons with Cryptococcal Meningitis or Asymptomatic Subclinical Antigenemia in Uganda. PLoS ONE. 2012;7:e51291. doi: 10.1371/journal.pone.0051291.
    1. Robbins G.K., Spritzler J.G., Chan E.S., Asmuth D.M., Gandhi R.T., Rodriguez B.A., Skowron G., Skolnik P.R., Shafer R.W., Pollard R.B., et al. Incomplete reconstitution of T cell subsets on combination antiretroviral therapy in the AIDS Clinical Trials Group protocol 384. Clin. Infect. Dis. 2009;48:350–361. doi: 10.1086/595888.
    1. Bucy R.P., Hockett R.D., Derdeyn C.A., Saag M.S., Squires K., Sillers M., Mitsuyasu R.T., Kilby J.M. Initial increase in blood CD4+ lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues. J. Clin. Investig. 1999;103:1391–1398. doi: 10.1172/JCI5863.
    1. Smith C.J., Sabin C.A., Youle M.S., Kinloch-de Loes S., Lampe F.C., Madge S., Cropley I., Johnson M.A., Phillips A.N. Factors influencing increases in CD4 cell counts of HIV-positive persons receiving long-term highly active antiretroviral therapy. J. Infect. Dis. 2004;190:1860–1868. doi: 10.1086/425075.
    1. Kambugu A., Meya D.B., Rhein J., O’brien M., Janoff E.N., Ronald A.R., Kamya M.R., Mayanja-Kizza H., Sande M.A., Bohjanen P.R., et al. Outcomes of cryptococcal meningitis in Uganda before and after the availability of highly active antiretroviral therapy. Clin. Infect. Dis. 2008;46:1694–1701. doi: 10.1086/587667.
    1. Jarvis J.N., Bicanic T., Loyse A., Namarika D., Jackson A., Nussbaum J.C., Longley N., Muzoora C., Phulusa J., Taseera K., et al. Determinants of mortality in a combined cohort of 501 patients with HIV-associated cryptococcal meningitis: Implications for improving outcomes. Clin. Infect. Dis. 2014;58:736–745. doi: 10.1093/cid/cit794.
    1. Wang W., Carm A.R. Clinical manifestations of AIDS with cryptococcal meningitis. Chin. Med. J. 2001;114:841–843.
    1. Moore R.D., Keruly J.C. CD4+ cell count 6 years after commencement of highly active antiretroviral therapy in persons with sustained virologic suppression. Clin. Infect. Dis. 2007;44:441–446. doi: 10.1086/510746.
    1. Goldman D.L., Lee S.C., Mednick A.J., Montella L., Casadevall A. Persistent Cryptococcus neoformansPulmonary Infection in the Rat Is Associated with Intracellular Parasitism, Decreased Inducible Nitric Oxide Synthase Expression, and Altered Antibody Responsiveness to Cryptococcal Polysaccharide. Infect. Immun. 2000;68:832–838. doi: 10.1128/IAI.68.2.832-838.2000.
    1. Chéret A., Bacchus-Souffan C., Avettand-Fenoël V., Mélard A., Nembot G., Blanc C., Samri A., Sáez-Cirión A., Hocqueloux L., Lascoux-Combe C., et al. Combined ART started during acute HIV infection protects central memory CD4+ T cells and can induce remission. J. Antimicrob. Chemother. 2015;70:2108–2120.
    1. Kalia V., Sarkar S., Ahmed R. Memory T Cells. Springer; New York, NY, USA: 2010. CD8 T-cell memory differentiation during acute and chronic viral infections; pp. 79–95.
    1. Descours B., Avettand-Fenoel V., Blanc C., Samri A., Mélard A., Supervie V., Theodorou I., Carcelain G., Rouzioux C., Autran B., et al. Immune responses driven by protective human leukocyte antigen alleles from long-term nonprogressors are associated with low HIV reservoir in central memory CD4 T cells. Clin. Infect. Dis. 2012;54:1495–1503. doi: 10.1093/cid/cis188.
    1. Lefrançois L. Development, trafficking, and function of memory T-cell subsets. Immunol. Rev. 2006;211:93–103. doi: 10.1111/j.0105-2896.2006.00393.x.
    1. Lakkis F.G., Sayegh M.H. Memory T cells: A hurdle to immunologic tolerance. J. Am. Soc. Nephrol. 2003;14:2402–2410. doi: 10.1097/01.ASN.0000085020.78117.70.
    1. Sabiiti W., May R.C. Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans. Future Microbiol. 2012;7:1297–1313. doi: 10.2217/fmb.12.102.
    1. Charlier C., Nielsen K., Daou S., Brigitte M., Chretien F., Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect. Immun. 2009;77:120–127. doi: 10.1128/IAI.01065-08.
    1. Williamson P.R. Advancing Translational Immunology in HIV-Associated Cryptococcal Meningitis. J. Infect. Dis. 2013;207:1793–1795. doi: 10.1093/infdis/jit102.
    1. Boulware D.R., Meya D.B., Bergemann T.L., Wiesner D.L., Rhein J., Musubire A., Lee S.J., Kambugu A., Janoff E.N., Bohjanen P.R. Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: A prospective cohort study. PLoS Med. 2010;7:e1000384. doi: 10.1371/journal.pmed.1000384.
    1. Hunt P.W., Cao H.L., Muzoora C., Ssewanyana I., Bennett J., Emenyonu N., Kembabazi A., Neilands T.B., Bangsberg D.R., Deeks S.G., et al. Impact of CD8+ T cell activation on CD4+ T cell recovery and mortality in HIV-infected Ugandans initiating antiretroviral therapy. AIDS. 2011;25:2123–2131. doi: 10.1097/QAD.0b013e32834c4ac1.
    1. Jankovic D., Feng C.G. CD4+ T cell differentiation in infection: Amendments to the Th1/Th2 axiom. Front. Immunol. 2015;6:198. doi: 10.3389/fimmu.2015.00198.
    1. Fauci A.S. Pathogenesis of HIV disease: Opportunities for new prevention interventions. Clin. Infect. Dis. 2007;45:S206–S212. doi: 10.1086/522540.
    1. Jain N., Guerrero A., Fries B.C. Phenotypic switching and its implications for the pathogenesis of Cryptococcus neoformans. FEMS Yeast Res. 2006;6:480–488. doi: 10.1111/j.1567-1364.2006.00039.x.
    1. Hoffmann M., Pantazis N., Martin G.E., Hickling S., Hurst J., Meyerowitz J., Willberg C.B., Robinson N., Brown H., Fisher M., et al. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection. PLoS Pathog. 2016;12:e1005661. doi: 10.1371/journal.ppat.1005661.
    1. Cockerham L.R., Jain V., Sinclair E., Glidden D.V., Hartogenesis W., Hatano H., Hunt P.W., Martin J.N., Pilcher C.D., Sekaly R., et al. Programmed death-1 expression on CD4+ and CD8+ T cells in treated and untreated HIV disease. AIDS. 2014;28:1749. doi: 10.1097/QAD.0000000000000314.
    1. Mora D.J., Fortunato L.R., Andrade-Silva L.E., Ferreira-Paim K., Rocha I.H., Vasconcelos R.R., Silva-Teixeira D.N., Nascentes G.A., Silva-Vergara M.L. Cytokine Profiles at Admission Can Be Related to Outcome in AIDS Patients with Cryptococcal Meningitis. PLoS ONE. 2015;10:e0120297. doi: 10.1371/journal.pone.0120297.

Source: PubMed

3
購読する