Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation

Nikunj A Bhagat, Nuray Yozbatiran, Jennifer L Sullivan, Ruta Paranjape, Colin Losey, Zachary Hernandez, Zafer Keser, Robert Grossman, Gerard E Francisco, Marcia K O'Malley, Jose L Contreras-Vidal, Nikunj A Bhagat, Nuray Yozbatiran, Jennifer L Sullivan, Ruta Paranjape, Colin Losey, Zachary Hernandez, Zafer Keser, Robert Grossman, Gerard E Francisco, Marcia K O'Malley, Jose L Contreras-Vidal

Abstract

Brain-machine interfaces (BMI) based on scalp EEG have the potential to promote cortical plasticity following stroke, which has been shown to improve motor recovery outcomes. However, the efficacy of BMI enabled robotic training for upper-limb recovery is seldom quantified using clinical, EEG-based, and kinematics-based metrics. Further, a movement related neural correlate that can predict the extent of motor recovery still remains elusive, which impedes the clinical translation of BMI-based stroke rehabilitation. To address above knowledge gaps, 10 chronic stroke individuals with stable baseline clinical scores were recruited to participate in 12 therapy sessions involving a BMI enabled powered exoskeleton for elbow training. On average, 132 ± 22 repetitions were performed per participant, per session. BMI accuracy across all sessions and subjects was 79 ± 18% with a false positives rate of 23 ± 20%. Post-training clinical assessments found that FMA for upper extremity and ARAT scores significantly improved over baseline by 3.92 ± 3.73 and 5.35 ± 4.62 points, respectively. Also, 80% participants (7 with moderate-mild impairment, 1 with severe impairment) achieved minimal clinically important difference (MCID: FMA-UE >5.2 or ARAT >5.7) during the course of the study. Kinematic measures indicate that, on average, participants' movements became faster and smoother. Moreover, modulations in movement related cortical potentials, an EEG-based neural correlate measured contralateral to the impaired arm, were significantly correlated with ARAT scores (ρ = 0.72, p < 0.05) and marginally correlated with FMA-UE (ρ = 0.63, p = 0.051). This suggests higher activation of ipsi-lesional hemisphere post-intervention or inhibition of competing contra-lesional hemisphere, which may be evidence of neuroplasticity and cortical reorganization following BMI mediated rehabilitation therapy.

Keywords: Brain-machine interface; Clinical trial; Exoskeletons; Movement related cortical potentials; Stroke rehabilitation.

Conflict of interest statement

N.B. and J.C. have a patent issued (US10,092,205 granted October 9, 2018), which presents methods for detecting motor intentions from EEG signals, including MRCPs. All the remaining authors report no competing interests.

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
CONSORT flow diagram showcasing patient recruitment, intervention and follow-ups.
Fig. 2
Fig. 2
EEG-based BMI control of MAHI exoskeleton for stroke rehabilitation. A) Timeline for the clinical study protocol. B) Schematic representation of the experiment setup, showing a stroke participant’s impaired elbow being trained by the MAHI Exo-II, while EEG and EMG activity are recorded. In this BMI scheme, successful detection of motor intent from EEG is validated against residual EMG activity from impaired arm, before a Go or Wait command is issued to the exoskeleton. A computer screen in front of the participant, cues start and end of trial and provides simultaneous visual feedback of the movement.
Fig. 3
Fig. 3
Longitudinal BMI performance. BMI performance in 10 chronic stroke survivors over 12 therapy sessions, averaged by session in sub-plot A and averaged by online testing vs. calibration in sub-plot B. From top to bottom, mean ± s.d. values for BMI’s prediction accuracy, false positives, early detection time, and user approval rating are shown. Results from 2 participants (P9 and P7) with best and worst BMI accuracy are overlaid on the plots. Dotted lines indicate statistically significant trends in accuracy and user rating.
Fig. 4
Fig. 4
Motor recovery post-intervention. Clinical outcome metrics assessed post-treatment (post-tt) and at 2-week (2wk f/u) and 2-months (2mon f/u) follow-ups relative to baseline. Shaded regions indicate the 4 – 6 weeks long intervention period. Underneath each data point, the number of scores that were averaged to calculate the mean value are shown.
Fig. 5
Fig. 5
Detailed breakdown of motor recovery. Breakdown of FMA-UE and ARAT scores by subscales, shown by averaging across participants (subplot A & B) and individually (subplots C-F) for participants that achieved minimal clinically important difference. Subplots C-F, further group participants based on their FMA-UE and ARAT outcomes at 2 months follow-up. The arrows in subplots A & B indicate the order of administering the test, starting at the first item and then progressing counter-clockwise.
Fig. 6
Fig. 6
Improvement in movement quality between start and end of therapy. Movement quality was derived from joint angle velocity using various kinematic metrics. For all metrics except Number of Peaks, an increase in value corresponds to improvement.
Fig. 7
Fig. 7
Correlation (ρ) between MRCP amplitude and functional assessment scales. Subfigures A & B compare MRCP amplitudes from central and centro-parietal EEG electrodes with clinical outcomes. In these figures, numbers represent participant I.Ds and the dashed lines represent regression lines between changes in MRCP amplitude versus clinical scores. Subfigures C & D show MRCPs recorded from all the participants at start and end of therapy. Note, MRCPs are aligned with respect to movement onset (t = 0 s).

References

    1. Ang K.K., Chua K.S.G., Phua K.S., Wang C., Chin Z.Y., Kuah C.W.K., Low W., Guan C. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 2014;46(4):310–320. doi: 10.1177/1550059414522229.
    1. Balasubramanian S., Melendez-Calderon A., Roby-Brami A., Burdet E. On the analysis of movement smoothness. J. NeuroEng. Rehabil. 2015;12(1):112. doi: 10.1186/s12984-015-0090-9.
    1. Bates D., Mächler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Using {lme4} J. Stat. Softw. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01.
    1. Belda-Lois J.-M., Mena-del Horno S., Bermejo-Bosch I., Moreno J.C., Pons J.L., Farina D., Iosa M., Molinari M., Tamburella F., Ramos A., Caria A., Solis-Escalante T., Brunner C., Rea M. Rehabilitation of gait after stroke: a review towards a top-down approach. J. NeuroEng. Rehabil. 2011;8(1):66. doi: 10.1186/1743-0003-8-66.
    1. Bhagat N.A., Venkatakrishnan A., Abibullaev B., Artz E.J., Yozbatiran N., Blank A.A., French J., Karmonik C., Grossman R.G., O’Malley M.K., Francisco G., Contreras-Vidal J.L. Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front. Neurosci. 2016;10(122) doi: 10.3389/fnins.2016.00122.
    1. Biasiucci A., Leeb R., Iturrate I., Perdikis S., Al-Khodairy A., Corbet T., Schnider A., Schmidlin T., Zhang H., Bassolino M., Viceic D., Vuadens P., Guggisberg A.G., Millán J., d. R. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 2018;9(1):2421. doi: 10.1038/s41467-018-04673-z.
    1. Bundy David T., Souders Lauren, Baranyai Kelly, Leonard Laura, Schalk Gerwin, Coker Robert, Moran Daniel W., Huskey Thy, Leuthardt Eric C. Contralesional Brain–Computer Interface Control of a Powered Exoskeleton for Motor Recovery in Chronic Stroke Survivors. Stroke. 2017;48(7):1908–1915. doi: 10.1161/STROKEAHA.116.016304.
    1. Cervera María A., Soekadar Surjo R., Ushiba Junichi, Millán José del R., Liu Meigen, Birbaumer Niels, Garipelli Gangadhar. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neurol. 2018;5(5):651–663. doi: 10.1002/acn3.544.
    1. Coscia, M., Wessel, M. J., Chaudary, U., Millán, J. del R., Micera, S., Guggisberg, A., Vuadens, P., Donoghue, J., Birbaumer, N., Hummel, F.C. (2019). Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain. .
    1. Cui Rongqing, MacKinnon Colum D. The effect of temporal accuracy constraints on movement-related potentials. Exp. Brain Res. 2009;194(3):477–488. doi: 10.1007/s00221-009-1725-5.
    1. Daly Janis J., Wolpaw Jonathan R. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032–1043. doi: 10.1016/S1474-4422(08)70223-0.
    1. Dimyan Michael A., Cohen Leonardo G. Contribution of Transcranial Magnetic Stimulation to the Understanding of Functional Recovery Mechanisms After Stroke. Neurorehabil Neural Repair. 2010;24(2):125–135. doi: 10.1177/1545968309345270.
    1. Fawcett Tom. An introduction to ROC analysis. Pattern Recogn. Lett. 2006;27(8):861–874. doi: 10.1016/j.patrec.2005.10.010.
    1. Fitle K.D., Pehlivan A.U., O’Malley M.K. A robotic exoskeleton for rehabilitation and assessment of the upper limb following incomplete spinal cord injury. IEEE International Conference on Robotics and Automation (ICRA) 2015;2015:4960–4966. doi: 10.1109/ICRA.2015.7139888.
    1. Frolov A.A., Mokienko O., Lyukmanov R., Biryukova E., Kotov S., Turbina L., Nadareyshvily G., Bushkova Y. Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: A randomized controlled multicenter trial. Front. Neurosci. 2017;11(JUL) doi: 10.3389/fnins.2017.00400.
    1. Hwang I.-S., Tung L.-C., Yang J.-F., Chen Y.-C., Yeh C.-Y., Wang C.-H. Electromyographic Analyses of Global Synkinesis in the Paretic Upper Limb After Stroke. Phys. Ther. 2005;85(8):755–765. doi: 10.1093/ptj/85.8.755.
    1. Klamroth-Marganska Verena, Blanco Javier, Campen Katrin, Curt Armin, Dietz Volker, Ettlin Thierry, Felder Morena, Fellinghauer Bernd, Guidali Marco, Kollmar Anja, Luft Andreas, Nef Tobias, Schuster-Amft Corina, Stahel Werner, Riener Robert. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–166. doi: 10.1016/S1474-4422(13)70305-3.
    1. Koessler L., Maillard L., Benhadid A., Vignal J.P., Felblinger J., Vespignani H., Braun M. Automated cortical projection of EEG sensors: Anatomical correlation via the international 10–10 system. NeuroImage. 2009;46(1):64–72. doi: 10.1016/j.neuroimage.2009.02.006.
    1. Lan T., Erdogmus D., Adami A., Pavel M., Mathan S. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. 2005. Salient EEG Channel Selection in Brain Computer Interfaces by Mutual Information Maximization; pp. 7064–7067.
    1. Lawrence, E.S., Coshall, C., Dundas, R., Stewart, J., Rudd, A.G., Howard, R., Wolfe, C.D.A. (2001). Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke, 32(6), 1279–1284. .
    1. Lee J.H. Van Der, Groot V. De, Beckerman H., Wagenaar R.C., Lankhorst G.J., Bouter L.M., Jh A.V.D.L., V, D. G., & Beckerman, H. The Intra- and Interrater Reliability of the Action Research Arm Test : A Practical Test of Upper Extremity Function in Patients With. Stroke. 2001;82(January):14–19. doi: 10.1053/apmr.2001.18668.
    1. Liew S.-L., Santarnecchi E., Buch E.R., Cohen L.G. Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front. Hum. Neurosci. 2014;8:378. doi: 10.3389/fnhum.2014.00378.
    1. Lo Albert C., Guarino Peter D., Richards Lorie G., Haselkorn Jodie K., Wittenberg George F., Federman Daniel G., Ringer Robert J., Wagner Todd H., Krebs Hermano I., Volpe Bruce T., Bever Christopher T., Jr., Bravata Dawn M., Duncan Pamela W., Corn Barbara H., Maffucci Alysia D., Nadeau Stephen E., Conroy Susan S., Powell Janet M., Huang Grant D., Peduzzi Peter. Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke. N. Engl. J. Med. 2010;362(19):1772–1783. doi: 10.1056/NEJMoa0911341.
    1. López Noelia Díaz, Monge Pereira Esther, Centeno Estefanía Jodra, Miangolarra Page Juan Carlos. Motor imagery as a complementary technique for functional recovery after stroke: a systematic review. Topics in Stroke Rehabilitation. 2019;26(8):576–587. doi: 10.1080/10749357.2019.1640000.
    1. Lotte F., Congedo M., Lécuyer A., Lamarche F., Arnaldi B. A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 2007;4(2):R1–R13. doi: 10.1088/1741-2560/4/2/R01.
    1. Makowski N.S., Knutson J.S., Chae J., Crago P.E. Functional Electrical Stimulation to augment poststroke reach and hand opening in the presence of voluntary effort: a pilot study. Neurorehabilitation Neural Repair. 2014;28(3):241–249. doi: 10.1016/j.biotechadv.2011.08.021.Secreted.
    1. Muller-Gethmann Hiltraut, Rinkenauer Gerhard, Stahl Jutta, Ulrich Rolf. Preparation of response force and movement direction: Onset effects on the lateralized readiness potential. Psychophysiology. 2000;37(4):507–514. doi: 10.1111/1469-8986.3740507.
    1. Page Stephen J., Levine Peter, Leonard Anthony. Mental Practice in Chronic Stroke: Results of a Randomized, Placebo-Controlled Trial. Stroke. 2007;38(4):1293–1297. doi: 10.1161/01.STR.0000260205.67348.2b.
    1. Peng H.C., Long F.H., Ding C. Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans. on Pattern Analysis and Machine. Intelligence. 2005;27(8):1226–1238. doi: 10.1109/TPAMI.2005.159.
    1. Pichiorri Floriana, Morone Giovanni, Petti Manuela, Toppi Jlenia, Pisotta Iolanda, Molinari Marco, Paolucci Stefano, Inghilleri Maurizio, Astolfi Laura, Cincotti Febo, Mattia Donatella. Brain-computer interface boosts motor imagery practice during stroke recovery: BCI and Motor Imagery. Ann Neurol. 2015;77(5):851–865. doi: 10.1002/ana.24390.
    1. R Core Team. (2017). R: A Language and Environment for Statistical Computing.
    1. Ramos-murguialday A., Broetz D., Rea M., Yilmaz Ö., Brasil F.L., Liberati G., Marco R., Garcia-cossio E., Vyziotis A., Cho W., Cohen L.G., Birbaumer N. Brain-Machine-Interface in Chronic Stroke Rehabilitation: A Controlled Study. Ann. Neurol. 2013;74(1):100–108. doi: 10.1002/ana.23879.Brain-Machine-Interface.
    1. Rathee D., Chowdhury A., Meena Y.K., Dutta A., McDonough S., Prasad G. Brain-Machine Interface-Driven Post-Stroke Upper-Limb Functional Recovery Correlates With Beta-Band Mediated Cortical Networks. IEEE Trans. Neural Syst. Rehabilitation Eng. 2019;27(5):1020–1031. doi: 10.1109/TNSRE.2019.2908125.
    1. Soekadar S.R., Birbaumer N., Slutzky M.W., Cohen L.G. Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol. Disease. 2015;83:172–179. doi: 10.1016/j.nbd.2014.11.025.
    1. Song J., Nair V.A., Young B.M., Walton L.M., Nigogosyan Z., Remsik A., Tyler M.E., Farrar-Edwards D., Caldera K.E., Sattin J.A., Williams J.C., Prabhakaran V. DTI measures track and predict motor function outcomes in stroke rehabilitation utilizing BCI technology. Front. Hum. Neurosci. 2015;9:p. 195).
    1. Stinear C.M. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol. 2017;16(10):826–836. doi: 10.1016/S1474-4422(17)30283-1.
    1. Sullivan J.L., Bhagat N.A., Yozbatiran N., Paranjape R., Losey C.G., Grossman R.G., Contreras-Vidal J.L., Francisco G.E., O’Malley M.K. Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial. IEEE International Conference on Rehabilitation Robotics. 2017 doi: 10.1109/ICORR.2017.8009233.
    1. Sullivan K.J., Tilson J.K., Cen S.Y., Rose D.K., Hershberg J., Correa A., Gallichio J., McLeod M., Moore C., Wu S.S., Duncan P.W. Fugl-meyer assessment of sensorimotor function after stroke: Standardized training procedure for clinical practice and clinical trials. Stroke. 2011;42(2):427–432. doi: 10.1161/STROKEAHA.110.592766.
    1. Tenan M.S., Tweedell A.J., Haynes C.A. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography. PLoS ONE. 2017;12(5):1–14. doi: 10.1371/journal.pone.0177312.
    1. Venkatakrishnan A., Francisco G.E., Contreras-Vidal J.L. Applications of Brain-Machine Interface Systems in Stroke Recovery and Rehabilitation. Curr. Phys. Med. Rehabilitation Rep. 2014;2(2):93–105. doi: 10.1007/s40141-014-0051-4.
    1. Wainwright Advantages of Mixed Effects Models over Traditional ANOVA Models in Developmental Studies: A Worked Example in a Mouse Model of Fetal Alcohol Syndrome. Dev. Psychobiol. 2007;49(2):165–171. doi: 10.1002/dev.
    1. Whitall J., McCombe Waller S., Silver K.H., Macko R.F. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000;31(10):2390–2395. doi: 10.1161/01.str.31.10.2390.
    1. Wolf S.L., Winstein C.J., Miller J.P., Thompson P.A., Taub E., Uswatte G., Morris D., Blanton S., Nichols-Larsen D., Clark P.C. Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol. 2008;7(1):33–40. doi: 10.1016/S1474-4422(07)70294-6.
    1. Woytowicz E.J., Rietschel J.C., Goodman R.N., Conroy S.S., Sorkin J.D., Whitall J., McCombe Waller S. Determining Levels of Upper Extremity Movement Impairment by Applying a Cluster Analysis to the Fugl-Meyer Assessment of the Upper Extremity in Chronic Stroke. Arch. Phys. Med. Rehabil. 2017;98(3):456–462. doi: 10.1016/j.apmr.2016.06.023.
    1. Yilmaz O., Birbaumer N., Ramos-Murguialday A. Movement related slow cortical potentials in severely paralyzed chronic stroke patients. Front. Hum. Neurosci. 2015;8(January):1–8. doi: 10.3389/fnhum.2014.01033.
    1. Yozbatiran N., Der-Yeghiaian L., Cramer S.C. A standardized approach to performing the action research arm test. Neurorehabilitation Neural Repair. 2008;22(1):78–90. doi: 10.1177/1545968307305353.

Source: PubMed

3
購読する