The combined effect of lifestyle intervention and antioxidant therapy on sperm DNA fragmentation and seminal oxidative stress in IVF patients: a pilot study

Peter Humaidan, Thor Haahr, Betina Boel Povlsen, Louise Kofod, Rita Jakubcionyte Laursen, Birgit Alsbjerg, Helle Olesen Elbaek, Sandro C Esteves, Peter Humaidan, Thor Haahr, Betina Boel Povlsen, Louise Kofod, Rita Jakubcionyte Laursen, Birgit Alsbjerg, Helle Olesen Elbaek, Sandro C Esteves

Abstract

Purpose: Sperm DNA fragmentation (SDF) and seminal oxidative stress are emerging measurable factors in male factor infertility, which interventions could potentially reduce. We evaluated (i) the impact of lifestyle changes combined with oral antioxidant intake on sperm DNA fragmentation index (DFI) and static oxidation-reduction potential (sORP), and (ii) the correlation between DFI and sORP.

Materials and methods: We conducted a prospective study involving 93 infertile males with a history of failed IVF/ICSI. Ten healthy male volunteers served as controls. Semen analysis was carried out according to 2010 WHO manual, whereas seminal sORP was measured using the MiOXSYS platform. SDF was assessed by sperm chromatin structure assay. Participants with DFI >15% underwent a three-month lifestyle intervention program, primarily based on diet and exercise, combined with oral antioxidant therapy using multivitamins, coenzyme Q10, omega-3, and oligo-elements. We assessed changes in semen parameters, DFI, and sORP, and compared DFI results to those of volunteers obtained two weeks apart. Spearman rank correlation tests were computed for sORP and DFI results.

Results: Thirty-eight (40.8%) patients had DFI >15%, of whom 31 participated in the intervention program. A significant decrease in median DFI from 25.8% to 18.0% was seen after the intervention (P <0.0001). The mean DFI decrease was 7.2% (95% CI: 4.8-9.5%; P <0.0001), whereas it was 0.42% (95%CI; -4.8 to 5.6%) in volunteers (P <0.00001). No differences were observed in sperm parameters and sORP. Based on paired sORP and DFI data from 86 patients, no correlation was observed between sORP and DFI values (rho=0.03).

Conclusion: A 3-month lifestyle intervention program combined with antioxidant therapy reduced DFI in infertile men with elevated SDF and a history of failed IVF/ICSI. A personalized lifestyle and antioxidant intervention could improve fertility of subfertile couples through a reduction in DFI, albeit controlled trials evaluating reproductive outcomes are needed before firm conclusions can be made. Trial registration number and date: clinicaltrials.gov NCT03898752, April 2, 2019.

Keywords: DNA Fragmentation; Infertility; Reproductive Techniques, Assisted.

Conflict of interest statement

None declared.

Copyright® by the International Brazilian Journal of Urology.

Figures

Figure 1. Flow diagram showing total patient…
Figure 1. Flow diagram showing total patient breakdown.
Figure 2. Boxplots showing the difference between…
Figure 2. Boxplots showing the difference between sperm DNA fragmentation (DFI) measurements of 10 healthy controls who delivered two semen specimens within a 14-day interval and 31 IVF patients with baseline DFI >15% who had lifestyle intervention and antioxidant therapy for 3 months. The boxplot includes the median (horizontal line in the box), 25-75% interquartile range box (i.e., representing 50% of the data), minimum and maximum values excluding outliers (whiskers extending outside of the box), and outlier (blue dot). The DFI differences between the groups were significant (P
Figure 3. Scatterplot of the correlation between…
Figure 3. Scatterplot of the correlation between Sperm DNA Fragmentation and Seminal Oxidation Reduction Potential, excluding patients with sperm concentration below 1 million/mL. A total of 86 patients was included. As raw data did not meet the assumptions to fit a linear model, a Spearman's rank correlation was run to test the overall hypothesis of monotonic correlation between sORP and DFI (A), and sORP normalized for motility and DFI (B). The test indicated a very weak correlation: rho=0.03 and -0.09, respectively.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf04.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf05.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf06.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf07.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf08.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf09.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf10.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf11.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf12.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf13.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf14.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf15.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf16.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf17.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf18.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf19.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf20.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf21.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf22.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf23.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf24.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf25.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf26.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf27.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf28.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf29.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf30.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf31.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf32.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf33.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf34.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf35.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf36.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf37.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691235/bin/1677-6119-ibju-48-01-0131-gf38.jpg

References

    1. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015; 13:37.
    1. De Kretser DM, Baker HW. Infertility in men: recent advances and continuing controversies. J Clin Endocrinol Metab. 1999; 84:3443-50.
    1. Esteves SC, Zini A, Coward RM. Best urological practices on testing and management of infertile men with abnormal sperm DNA fragmentation levels: the SFRAG guidelines. Int Braz J Urol. 2021; 47: 1250-8.
    1. Esteves SC. Are specialized sperm function tests clinically useful in planning assisted reproductive technology? Int Braz J Urol. 2020; 46:116-23.
    1. Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod. 2004; 19:1401-8.
    1. Esteves SC, Zini A, Coward RM, Evenson DP, Gosálvez J, Lewis SEM, et al. Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations. Andrologia. 2021; 53:e13874.
    1. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007; 22:174-9.
    1. Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl. 2017; 19:80-90.
    1. Esteves SC. Testicular versus ejaculated sperm should be used for intracytoplasmic sperm injection (ICSI) in cases of infertility associated with sperm DNA fragmentation | Opinion: Yes. Int Braz J Urol. 2018; 44:667-75.
    1. Esteves SC, Roque M, Bradley CK, Garrido N. Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis. Fertil Steril. 2017; 108:456-467.e1.
    1. Agarwal A, Panner Selvam MK, Arafa M, Okada H, Homa S, Killeen A, et al. Multi-center evaluation of oxidation-reduction potential by the MiOXSYS in males with abnormal semen. Asian J Androl. 2019; 21:565-9.
    1. Arafa M, Agarwal A, Majzoub A, Panner Selvam MK, Baskaran S, Henkel R, et al. Efficacy of Antioxidant Supplementation on Conventional and Advanced Sperm Function Tests in Patients with Idiopathic Male Infertility. Antioxidants (Basel). 2020; 9:219.
    1. Agarwal A, Sharma R, Roychoudhury S, Du Plessis S, Sabanegh E. MiOXSYS: a novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil Steril. 2016 Sep 1;106(3):566-573.e10.
    1. Agarwal A, Roychoudhury S, Sharma R, Gupta S, Majzoub A, Sabanegh E: Diagnostic application of oxidation-reduction potential assay for measurement of oxidative stress: clinical utility in male factor infertility. Reprod Biomed Online. 2017; 34:48-57.
    1. Arafa M, Henkel R, Agarwal A, Majzoub A, Elbardisi H. Correlation of oxidation-reduction potential with hormones, semen parameters and testicular volume. Andrologia. 2019; 51:e13258.
    1. Garcia-Segura S, Ribas-Maynou J, Lara-Cerrillo S, Garcia-Peiró A, Castel AB, Benet J, et al. Relationship of Seminal Oxidation-Reduction Potential with Sperm DNA Integrity and pH in Idiopathic Infertile Patients. Biology (Basel). 2020; 9:262.
    1. Cicek OSY, Kaya G, Alyuruk B, Doger E, Girisen T, Filiz S. The association of seminal oxidation reduction potential with sperm parameters in patients with unexplained and male factor ınfertility. Int Braz J Urol. 2021; 47:112-9.
    1. [No Authors]. World Health Organization. (2010). WHO laboratory manual for the examination and processing of human semen, 5th ed. World Health Organization. [Internet]. Available at. <>
    1. Evenson D, Jost L. Sperm chromatin structure assay for fertility assessment. Curr Protoc Cytom. 2001; Chapter 7: Unit 7.13.
    1. Christensen P, Sills ES, Fischer R, Naether OGJ, Walsh D, Rudolf K, et al. Impact of sperm DNA fragmentation on reproductive outcome following IVF and ICSI: a retrospective analysis of 406 cases. Presented at ESHRE 2013, Poster P-026.
    1. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999; 14:1039-49.
    1. Misell LM, Holochwost D, Boban D, Santi N, Shefi S, Hellerstein MK, et al. A stable isotope-mass spectrometric method for measuring human spermatogenesis kinetics in vivo. J Urol. 2006; 175:242-6.
    1. [No Authors]. Daily Value on the New Nutrition and Supplement Facts Labels. U. S. Food & DRUG 2021. [Internet]. Available at. <>
    1. Elbardisi H, Finelli R, Agarwal A, Majzoub A, Henkel R, Arafa M. Predictive value of oxidative stress testing in semen for sperm DNA fragmentation assessed by sperm chromatin dispersion test. Andrology. 2020; 8:610-7.
    1. Hallak J, Teixeira TA. Oxidative Stress & Male Infertility - A necessary and conflicted indissociable marriage: How and when to call for evaluation? Int Braz J Urol. 2021; 47:686-9.
    1. Jeremias JT, Belardin LB, Okada FK, Antoniassi MP, Fraietta R, Bertolla RP, et al. Oxidative origin of sperm DNA fragmentation in the adult varicocele. Int Braz J Urol. 2021; 47:275-83.
    1. Pini T, Makloski R, Maruniak K, Schoolcraft WB, Katz-Jaffe MG. Mitigating the Effects of Oxidative Sperm DNA Damage. Antioxidants (Basel). 2020; 9:589.
    1. Steiner AZ, Hansen KR, Barnhart KT, Cedars MI, Legro RS, Diamond MP, et al. The effect of antioxidants on male factor infertility: the Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Fertil Steril. 2020; 113:552-560.e3.
    1. Smits RM, Mackenzie-Proctor R, Yazdani A, Stankiewicz MT, Jordan V, Showell MG. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2019; 3:CD007411.
    1. Esteves SC, Santi D, Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology. 2020; 8:53-81.
    1. Santi D, Spaggiari G, Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management - meta-analyses. Reprod Biomed Online. 2018; 37:315-26.
    1. Roque M, Esteves SC. Effect of varicocele repair on sperm DNA fragmentation: a review. Int Urol Nephrol. 2018; 50:583-603.
    1. Lira Neto FT, Roque M, Esteves SC. Effect of varicocelectomy on sperm deoxyribonucleic acid fragmentation rates in infertile men with clinical varicocele: a systematic review and meta-analysis. Fertil Steril. 2021: S0015-0282, 00288-0. Epub ahead of print.
    1. Esteves SC, Sánchez-Martín F, Sánchez-Martín P, Schneider DT, Gosálvez J. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril. 2015; 104:1398-405.
    1. Jayasena CN, Sharma A, Abbara A, Luo R, White CJ, Hoskin SG, et al. Burdens and awareness of adverse self-reported lifestyle factors in men with sub-fertility: A cross-sectional study in 1149 men. Clin Endocrinol (Oxf). 2020; 93:312-21.
    1. Gaskins AJ, Mendiola J, Afeiche M, Jørgensen N, Swan SH, Chavarro JE. Physical activity and television watching in relation to semen quality in young men. Br J Sports Med. 2015; 49:265-70.
    1. Priskorn L, Jensen TK, Bang AK, Nordkap L, Joensen UN, Lassen TH, et al. Is Sedentary Lifestyle Associated With Testicular Function? A Cross-Sectional Study of 1,210 Men. Am J Epidemiol. 2016; 184:284-94.
    1. Sun B, Messerlian C, Sun ZH, Duan P, Chen HG, Chen YJ, et al. Physical activity and sedentary time in relation to semen quality in healthy men screened as potential sperm donors. Hum Reprod. 2019; 34:2330-9.
    1. Rago R, Salacone P, Caponecchia L, Sebastianelli A, Marcucci I, Calogero AE, et al. The semen quality of the mobile phone users. J Endocrinol Invest. 2013; 36:970-4.
    1. Sciorio R, Tramontano L, Esteves SC. Effects of mobile phone radiofrequency radiation on sperm quality. Zygote. 2021: 1-10. Epub ahead of print.
    1. Hagras AM, Toraih EA, Fawzy MS. Mobile phones electromagnetic radiation and NAD+-dependent isocitrate dehydrogenase as a mitochondrial marker in asthenozoospermia. Biochim Open. 2016; 3:19-25.
    1. Nassan FL, Jensen TK, Priskorn L, Halldorsson TI, Chavarro JE, Jørgensen N. Association of Dietary Patterns With Testicular Function in Young Danish Men. JAMA Netw Open. 2020; 3:e1921610.

Source: PubMed

3
購読する