Taiwanese vegetarians and omnivores: dietary composition, prevalence of diabetes and IFG

Tina H T Chiu, Hui-Ya Huang, Yen-Feng Chiu, Wen-Harn Pan, Hui-Yi Kao, Jason P C Chiu, Ming-Nan Lin, Chin-Lon Lin, Tina H T Chiu, Hui-Ya Huang, Yen-Feng Chiu, Wen-Harn Pan, Hui-Yi Kao, Jason P C Chiu, Ming-Nan Lin, Chin-Lon Lin

Abstract

Introduction: Vegetarian diets have been shown to improve glucose metabolism and reduce risk for diabetes in Westerners but whether Chinese vegetarian diets have the same benefits is unknown.

Methods: We evaluated the association between diet and diabetes/impaired fasting glucose (IFG) among 4384 Taiwanese Buddhist volunteers and identified diabetes/IFG cases from a comprehensive review of medical history and fasting plasma glucose.

Results: Vegetarians had higher intakes of carbohydrates, fiber, calcium, magnesium, total and non-heme iron, folate, vitamin A, and lower intakes of saturated fat, cholesterol, and vitamin B12. Besides avoiding meat and fish, vegetarians had higher intakes of soy products, vegetables, whole grains, but similar intakes of dairy and fruits, compared with omnivores. The crude prevalence of diabetes in vegetarians versus omnivores is 0.6% versus 2.3% in pre-menopausal women, 2.8% versus 10% in menopausal women, and 4.3% versus 8.1% in men. Polytomous logistic regression adjusting for age, body mass index, family history of diabetes, education, leisure time physical activity, smoking and alcohol, showed that this vegetarian diet was negatively associated with diabetes and IFG in men (OR for diabetes: 0.49, 95% CI: 0.28-0.89; OR for IFG: 0.66, 95% CI: 0.46-0.95); in pre-menopausal women (OR for diabetes: 0.26, 95% CI: 0.06-1.21; OR for IFG: 0.60, 95% CI: 0.35-1.04); and in menopausal women (OR for diabetes: 0.25, 95% CI: 0.15-0.42; OR for IFG: 0.73, 95% CI: 0.56-0.95).

Conclusion: We found a strong protective association between Taiwanese vegetarian diet and diabetes/IFG, after controlling for various potential confounders and risk factors.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

References

    1. Zhai F, Wang H, Du S, He Y, Wang Z, et al. (2009) Prospective study on nutrition transition in China. Nutr Rev 67 Suppl 1S56–61.
    1. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, et al. (2009) Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301: 2129–40.
    1. Tonstad S, Butler T, Yan R, Fraser GE (2009) Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 32: 791–6.
    1. Tonstad S, Stewart K, Oda K, Batech M, Herring RP, et al. (2013) Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis 23: 292–9.
    1. Barnard ND, Cohen J, Jenkins DJ, Turner-McGrievy G, Gloede L, et al. (2009) A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr 89: 1588S–1596S.
    1. Kahleova H, Matoulek M, Malinska H, Oliyarnik O, Kazdova L, et al. (2011) Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet Med 28: 549–59.
    1. Hung CJ, Huang PC, Li YH, Lu SC, Ho LT, et al. (2006) Taiwanese vegetarians have higher insulin sensitivity than omnivores. Br J Nutr 95: 129–35.
    1. Kuo CS, Lai NS, Ho LT, Lin CL (2004) Insulin sensitivity in Chinese ovo-lactovegetarians compared with omnivores. Eur J Clin Nutr 58: 312–6.
    1. Chiang JK, Lin YL, Chen CL, Ouyang CM, Wu YT, et al. (2013) Reduced risk for metabolic syndrome and insulin resistance associated with ovo-lacto-vegetarian behavior in female buddhists: a case-control study. PLoS One 8: e71799.
    1. Assari S (2013) Race and Ethnicity, Religion Involvement, Church-based Social Support and Subjective Health in United States: A Case of Moderated Mediation. Int J Prev Med 4: 208–17.
    1. Seawell AH, Toussaint LL, Cheadle AC. (2013) Prospective associations between unforgiveness and physical health and positive mediating mechanisms in a nationally representative sample of older adults. Psychol Health: in press.
    1. Chiu TH, Huang HY, Chen KJ, Wu YR, Chiu JP, et al... (2013) Relative validity and reproducibility of a quantitative FFQ for assessing nutrient intakes of vegetarians in Taiwan. Public Health Nutr: in press.
    1. Nutrient Composition Data Bank for Food in Taiwan Area. Taipei: Department of Health, 1988.
    1. Balder HF, Vogel J, Jansen MC, Weijenberg MP, van den Brandt PA, et al. (2006) Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study. Cancer Epidemiol Biomarkers Prev 15: 717–25.
    1. ADA (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33 Suppl 1S62–9.
    1. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, et al. (2005) Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Executive summary. Cardiol Rev 13: 322–7.
    1. Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE. (2013) Nutrient Profiles of Vegetarian and Nonvegetarian Dietary Patterns. J Acad Nutr Diet: in press.
    1. Davey GK, Spencer EA, Appleby PN, Allen NE, Knox KH, et al. (2003) EPIC-Oxford: lifestyle characteristics and nutrient intakes in a cohort of 33 883 meat-eaters and 31 546 non meat-eaters in the UK. Public Health Nutr 6: 259–69.
    1. Carmody RN, Weintraub GS, Wrangham RW (2011) Energetic consequences of thermal and nonthermal food processing. Proc Natl Acad Sci U S A 108: 19199–203.
    1. Novotny JA, Gebauer SK, Baer DJ (2012) Discrepancy between the Atwater factor predicted and empirically measured energy values of almonds in human diets. Am J Clin Nutr 96: 296–301.
    1. Wollstonecroft MM, Ellis PR, Hillman GC, Fuller DQ, Butterworth PJ. (2012) A calorie is not necessarily a calorie: technical choice, nutrient bioaccessibility, and interspecies differences of edible plants. Proc Natl Acad Sci U S A 109 : E991; author reply E992.
    1. Aune D, Ursin G, Veierod MB (2009) Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia 52: 2277–87.
    1. The-InterAct-Consortium (2013) Association between dietary meat consumption and incident type 2 diabetes: the EPIC-InterAct study. Diabetologia 56: 47–59.
    1. Villegas R, Shu XO, Gao YT, Yang G, Cai H, et al. (2006) The association of meat intake and the risk of type 2 diabetes may be modified by body weight. Int J Med Sci 3: 152–9.
    1. Gu D, Reynolds K, Duan X, Xin X, Chen J, et al. (2003) Prevalence of diabetes and impaired fasting glucose in the Chinese adult population: International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). Diabetologia 46: 1190–8.
    1. Gregg EW, Cadwell BL, Cheng YJ, Cowie CC, Williams DE, et al. (2004) Trends in the prevalence and ratio of diagnosed to undiagnosed diabetes according to obesity levels in the U.S. Diabetes Care. 27: 2806–12.
    1. Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, et al. (2009) The role of iron in type 2 diabetes in humans. Biochim Biophys Acta 1790: 671–81.
    1. Hua NW, Stoohs RA, Facchini FS (2001) Low iron status and enhanced insulin sensitivity in lacto-ovo vegetarians. Br J Nutr 86: 515–9.
    1. Craig WJ, Mangels AR (2009) Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc 109: 1266–82.
    1. Cooper AJ, Forouhi NG, Ye Z, Buijsse B, Arriola L, et al. (2012) Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur J Clin Nutr 66: 1082–1092.
    1. Cooper AJ, Sharp SJ, Lentjes MA, Luben RN, Khaw KT, et al. (2012) A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care 35: 1293–300.
    1. Odegaard AO, Koh WP, Butler LM, Duval S, Gross MD, et al. (2011) Dietary patterns and incident type 2 diabetes in chinese men and women: the singapore chinese health study. Diabetes Care 34: 880–5.
    1. Dong JY, Xun P, He K, Qin LQ (2011) Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 34: 2116–22.
    1. Wells JC, Fewtrell MS (2006) Measuring body composition. Arch Dis Child 91: 612–7.

Source: PubMed

3
購読する