Lenalidomide treatment and prognostic markers in relapsed or refractory chronic lymphocytic leukemia: data from the prospective, multicenter phase-II CLL-009 trial

A Bühler, C-M Wendtner, T J Kipps, L Rassenti, G A M Fraser, A-S Michallet, P Hillmen, J Dürig, S A Gregory, M Kalaycio, T Aurran-Schleinitz, L Trentin, J G Gribben, A Chanan-Khan, B Purse, J Zhang, S De Bedout, J Mei, M Hallek, S Stilgenbauer, A Bühler, C-M Wendtner, T J Kipps, L Rassenti, G A M Fraser, A-S Michallet, P Hillmen, J Dürig, S A Gregory, M Kalaycio, T Aurran-Schleinitz, L Trentin, J G Gribben, A Chanan-Khan, B Purse, J Zhang, S De Bedout, J Mei, M Hallek, S Stilgenbauer

Abstract

Efficacy of lenalidomide was investigated in 103 patients with relapsed/refractory chronic lymphocytic leukemia (CLL) treated on the prospective, multicenter randomized phase-II CLL-009 trial. Interphase cytogenetic and mutational analyses identified TP53 mutations, unmutated IGHV, or del(17p) in 36/96 (37.5%), 68/88 (77.3%) or 22/92 (23.9%) patients. The overall response rate (ORR) was 40.4% (42/104). ORRs were similar irrespective of TP53 mutation (36.1% (13/36) vs 43.3% (26/60) for patients with vs without mutation) or IGHV mutation status (45.0% (9/20) vs 39.1% (27/68)); however, patients with del(17p) had lower ORRs than those without del(17p) (21.7% (5/22) vs 47.1% (33/70); P=0.049). No significant differences in progression-free survival and overall survival (OS) were observed when comparing subgroups defined by the presence or absence of high-risk genetic characteristics. In multivariate analyses, only multiple prior therapies (⩾3 lines) significantly impacted outcomes (median OS: 21.2 months vs not reached; P=0.019). This analysis indicates that lenalidomide is active in patients with relapsed/refractory CLL with unfavorable genetic profiles, including TP53 inactivation or unmutated IGHV. (ClinicalTrials.gov identifier: NCT00963105).

Conflict of interest statement

C-MW receives research funding, consultancy and honoraria by Celgene; MH receives research support from Celgene; TJK has served as an advisor to Celgene and received research funding from Celgene; GAMF has received honoraria from Celgene; PH receives honoraria from Celgene; JD has received a research grant and honoraria from Celgene; JGG receives honoraria from Celgene, Roche, Pharmacyclics, Mundipharma and Abbvie, and has received research support grant funding from Celgene; BP is an employee of Celgene and has equity; JZ is an employee of Celgene and has equity; SDB is an employee of Celgene and has equity; JM is an employee of Celgene and has equity; SS has received a research grant and honoraria from Celgene; the remaining authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Progression-free survival curves. Patients with and without (a) TP53 mutations; (b) IGHV mutations; (c) del(11q); and (d) del(17p).

References

    1. Chen CI, Bergsagel PL, Paul H, Xu W, Lau A, Dave N et al. Single-agent lenalidomide in the treatment of previously untreated chronic lymphocytic leukemia. J Clin Oncol 2011; 29: 1175–1181.
    1. Badoux XC, Keating MJ, Wen S, Lee BN, Sivina M, Reuben J et al. Lenalidomide as initial therapy of elderly patients with chronic lymphocytic leukemia. Blood 2011; 118: 3489–3498.
    1. Chanan-Khan A, Miller KC, Musial L, Lawrence D, Padmanabhan S, Takeshita K et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J Clin Oncol 2006; 24: 5343–5349.
    1. Ferrajoli A, Lee BN, Schlette EJ, O'Brien SM, Gao H, Wen S et al. Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood 2008; 111: 5291–5297.
    1. Sher T, Miller KC, Lawrence D, Whitworth A, Hernandez-Ilizaliturri F, Czuczman MS et al. Efficacy of lenalidomide in patients with chronic lymphocytic leukemia with high-risk cytogenetics. Leuk Lymphoma 2010; 51: 85–88.
    1. Wendtner CM, Hillmen P, Mahadevan D, Bühler A, Uharek L, Coutré S et al. Final results of a multicenter phase 1 study of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia. Leuk Lymphoma 2012; 53: 417–423.
    1. Oscier D, Wade R, Davis Z, Morilla A, Best G, Richards S et al. Prognostic factors identified three risk groups in the LRF CLL4 trial, independent of treatment allocation. Haematologica 2010; 95: 1705–1712.
    1. Bulian P, Rossi D, Forconi F, Del Poeta G, Bertoni F, Zucca E et al. IGHV gene mutational status and 17p deletion are independent molecular predictors in a comprehensive clinical-biological prognostic model for overall survival prediction in chronic lymphocytic leukemia. J Transl Med 2012; 10: 18.
    1. Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Döhner K et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 2014; 123: 3247–3254.
    1. Zenz T, Kröber A, Scherer K, Häbe S, Bühler A, Benner A et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 2008; 112: 3322–3329.
    1. Zaja F, Mian M, Volpetti S, Visco C, Sissa C, Nichele I et al. Bendamustine in chronic lymphocytic leukemia: outcome according to different clinical and biological prognostic factors in the everyday clinical practice. Am J Hematol 2013; 88: 955–960.
    1. Byrd JC, Furman RR, Coutre SE, Burger JA, Blum KA, Coleman M et al. Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood 2015; 125: 2497–2506.
    1. Wendtner CM, Hallek M, Fraser GAM, Michallet A-S. Safety and efficacy of different lenalidomide starting doses in patients with relapsed or refractory chronic lymphocytic leukemia: results of an international multicenter double-blinded randomized phase II trial. Leuk Lymphoma 2016; 14: 1–9.
    1. Kröber A, Seiler T, Benner A, Bullinger L, Brückle E, Lichter P et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002; 100: 1410–1416.
    1. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H et al. International Workshop on Chronic Lymphocytic Leukemia. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.
    1. Kater AP, Tonino SH, Egle A, Ramsay AG. How does lenalidomide target the chronic lymphocytic leukemia microenvironment? Blood 2014; 124: 2184–2189.
    1. Fecteau JF, Corral LG, Ghia EM. Lenalidomide inhibits the proliferation of CLL cells via a cereblon/p21WAF1/Cip1-dependent mechanism independent of functional p53. Blood 2014; 124: 1637–1644.

Source: PubMed

3
購読する