Integration of Motor Learning Principles Into Virtual Reality Interventions for Individuals With Cerebral Palsy: Systematic Review

Marika Demers, Karen Fung, Sandeep K Subramanian, Martin Lemay, Maxime T Robert, Marika Demers, Karen Fung, Sandeep K Subramanian, Martin Lemay, Maxime T Robert

Abstract

Background: Increasing evidence supports the use of virtual reality systems to improve upper limb motor functions in individuals with cerebral palsy. While virtual reality offers the possibility to include key components to promote motor learning, it remains unclear if and how motor learning principles are incorporated into the development of rehabilitation interventions using virtual reality.

Objective: The objective of this study was to determine the extent to which motor learning principles are integrated into virtual reality interventions targeting upper limb function in individuals with cerebral palsy.

Methods: A systematic review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The search was performed in 10 databases using a combination of keywords related to cerebral palsy, virtual reality, video games, and rehabilitation. Studies were divided into 2 categories: commercial video game platforms and devices and custom virtual reality systems. Study quality was assessed using the modified Downs and Black checklist.

Results: The initial search yielded 1497 publications. A total of 26 studies from 30 publications were included, with most studies classified as "fair" according to the modified Downs and Black checklist. The majority of studies provided enhanced feedback and variable practice and used functionally relevant and motivating virtual tasks. The dosage varied greatly (total training time ranged from 300 to 3360 minutes), with only 6 studies reporting the number of movement repetitions per session. The difficulty progression and the assessment of skills retention and transfer were poorly incorporated, especially for the commercial video games.

Conclusions: Motor learning principles should be better integrated into the development of future virtual reality systems for optimal upper limb motor recovery in individuals with cerebral palsy.

Trial registration: PROSPERO International Prospective Register of Systematic Reviews CRD42020151982; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020151982.

Keywords: active video games; brain damage; feedback; learning; upper limb; virtual rehabilitation.

Conflict of interest statement

Conflicts of Interest: None declared.

©Marika Demers, Karen Fung, Sandeep K Subramanian, Martin Lemay, Maxime T Robert. Originally published in JMIR Serious Games (http://games.jmir.org), 07.04.2021.

Figures

Figure 1
Figure 1
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow chart of study selection.
Figure 2
Figure 2
Characteristics of the reviewed studies according to (A) study design, (B) participants’ age groups (preschoolers: aged 0-4 years; children: aged 4-12 years; teenagers: aged 13-18 years), (C) virtual reality (VR) system type, and (D) delivery environment. RCT: randomized controlled trial.
Figure 3
Figure 3
Percentage of commercial video game platforms and devices and custom virtual reality systems for rehabilitation integrating the principles of motor learning.

References

    1. Bishop DVM. Which neurodevelopmental disorders get researched and why? PLoS One. 2010 Nov 30;5(11):e15112. doi: 10.1371/journal.pone.0015112.
    1. Paneth N, Hong T, Korzeniewski S. The descriptive epidemiology of cerebral palsy. Clin Perinatol. 2006 Jun;33(2):251–67. doi: 10.1016/j.clp.2006.03.011.
    1. Oskoui M, Coutinho F, Dykeman J, Jetté Nathalie, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013 Jun;55(6):509–19. doi: 10.1111/dmcn.12080. doi: 10.1111/dmcn.12080.
    1. Rosenbaum Peter, Paneth Nigel, Leviton Alan, Goldstein Murray, Bax Martin, Damiano Diane, Dan Bernard, Jacobsson Bo. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007 Feb;109:8–14.
    1. Shortland A. Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol. 2009 Oct;51 Suppl 4:59–63. doi: 10.1111/j.1469-8749.2009.03434.x. doi: 10.1111/j.1469-8749.2009.03434.x.
    1. Robert MT, Guberek R, Sveistrup H, Levin MF. Motor learning in children with hemiplegic cerebral palsy and the role of sensation in short-term motor training of goal-directed reaching. Dev Med Child Neurol. 2013 Dec;55(12):1121–8. doi: 10.1111/dmcn.12219. doi: 10.1111/dmcn.12219.
    1. Auld ML, Boyd RN, Moseley GL, Ware RS, Johnston LM. Impact of Tactile Dysfunction on Upper-Limb Motor Performance in Children With Unilateral Cerebral Palsy. Arch Phys Med Rehabil. 2012 Apr;93(4):696–702. doi: 10.1016/j.apmr.2011.10.025.
    1. Gupta D, Barachant A, Gordon AM, Ferre C, Kuo H, Carmel JB, Friel KM. Effect of sensory and motor connectivity on hand function in pediatric hemiplegia. Ann Neurol. 2017 Nov;82(5):766–780. doi: 10.1002/ana.25080.
    1. Eliasson A, Gordon AM. Impaired force coordination during object release in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2000 Apr;42(4):228–34. doi: 10.1017/s0012162200000396.
    1. Kurz MJ, Becker KM, Heinrichs-Graham E, Wilson TW. Neurophysiological abnormalities in the sensorimotor cortices during the motor planning and movement execution stages of children with cerebral palsy. Dev Med Child Neurol. 2014 Nov;56(11):1072–7. doi: 10.1111/dmcn.12513. doi: 10.1111/dmcn.12513.
    1. Steenbergen B, Gordon AM. Activity limitation in hemiplegic cerebral palsy: evidence for disorders in motor planning. Dev Med Child Neurol. 2006 Aug 14;48(09):780. doi: 10.1017/s0012162206001666.
    1. Makris T, Dorstyn D, Crettenden A. Quality of life in children and adolescents with cerebral palsy: a systematic review with meta-analysis. Disabil Rehabil. 2021 Feb;43(3):299–308. doi: 10.1080/09638288.2019.1623852.
    1. Novak I, Morgan C, Fahey M, Finch-Edmondson M, Galea C, Hines A, Langdon K, Namara MM, Paton MC, Popat H, Shore B, Khamis A, Stanton E, Finemore OP, Tricks A, Te Velde Anna, Dark L, Morton N, Badawi N. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020 Feb 21;20(2):3. doi: 10.1007/s11910-020-1022-z.
    1. Sakzewski L, Ziviani J, Boyd RN. Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics. 2014 Jan;133(1):e175–204. doi: 10.1542/peds.2013-0675.
    1. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008 Feb;51(1):S225–39. doi: 10.1044/1092-4388(2008/018).
    1. Schmidt R, Lee T, Winstein C, Wulf G, Zelaznik . Motor Control and Learning: A Behavioural Emphasis Sixth Edition. Champaign, IL: Human Kinetics; 2018. Feb 19, pp. 1–552.
    1. Winstein C, Kay D. Translating the science into practice: shaping rehabilitation practice to enhance recovery after brain damage. Prog Brain Res. 2015;218:331–60. doi: 10.1016/bs.pbr.2015.01.004.
    1. Krakauer J. The applicability of motor learning to neurorehabilitation. In: Dietz V, Ward N. S., editors. Oxford Textbook of Neurorehabilitation. 2nd edition. Oxford, United Kingdom: Oxford University Press; 2015. pp. 55–63.
    1. Muratori LM, Lamberg EM, Quinn L, Duff SV. Applying principles of motor learning and control to upper extremity rehabilitation. J Hand Ther. 2013;26(2):94–102; quiz 103. doi: 10.1016/j.jht.2012.12.007.
    1. Robert MT, Sambasivan K, Levin MF. Extrinsic feedback and upper limb motor skill learning in typically-developing children and children with cerebral palsy: Review. Restor Neurol Neurosci. 2017;35(2):171–184. doi: 10.3233/RNN-160688.
    1. Onla-or S, Winstein CJ. Determining the optimal challenge point for motor skill learning in adults with moderately severe Parkinson's disease. Neurorehabil Neural Repair. 2008;22(4):385–95. doi: 10.1177/1545968307313508.
    1. Johansen T, Strøm Vegard, Simic J, Rike P. Effectiveness of training with motion-controlled commercial video games on hand and arm function in young people with cerebral palsy: A systematic review and meta-analysis. J Rehabil Med. 2019 Dec 03;52(1):jrm00012. doi: 10.2340/16501977-2633.
    1. Leal AF, da Silva TD, Lopes PB, Bahadori S, de Araújo Luciano Vieira, da Costa MVB, de Moraes ?AP, Marques RH, Crocetta TB, de Abreu LC, Monteiro CBDM. The use of a task through virtual reality in cerebral palsy using two different interaction devices (concrete and abstract) - a cross-sectional randomized study. J Neuroeng Rehabil. 2020 Apr 29;17(1):59. doi: 10.1186/s12984-020-00689-z.
    1. Metin Ökmen Burcu, Doğan Aslan Meryem, Nakipoğlu Yüzer Güldal Funda, Özgirgin Neşe. Effect of virtual reality therapy on functional development in children with cerebral palsy: A single-blind, prospective, randomized-controlled study. Turk J Phys Med Rehabil. 2019 Jun;65(4):371–378. doi: 10.5606/tftrd.2019.2388.
    1. Weiss PL, Tirosh E, Fehlings D. Role of virtual reality for cerebral palsy management. J Child Neurol. 2014 Aug;29(8):1119–24. doi: 10.1177/0883073814533007.
    1. Burke JW, McNeill MDJ, Charles DK, Morrow PJ, Crosbie JH, McDonough SM. Optimising engagement for stroke rehabilitation using serious games. Vis Comput. 2009 Aug 27;25(12):1085–1099. doi: 10.1007/s00371-009-0387-4.
    1. Snider L, Majnemer A, Darsaklis V. Virtual reality as a therapeutic modality for children with cerebral palsy. Dev Neurorehabil. 2010;13(2):120–8. doi: 10.3109/17518420903357753.
    1. Gordon AM, Okita SY. Augmenting pediatric constraint-induced movement therapy and bimanual training with video gaming technology. Technol Disabil. 2010 Dec 01;22(4):179–191. doi: 10.3233/TAD-2010-0302.
    1. Rizzo A, Cohen I, Weiss P, Kim J G, Yeh S C, Zali B, Hwang J. Design and development of virtual reality based perceptual-motor rehabilitation scenarios. Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4852–5. doi: 10.1109/IEMBS.2004.1404342.
    1. Weiss P, Klinger E. Moving beyond single user, local virtual environments for rehabilitation. Stud Health Technol Inform. 2009;145:263–76.
    1. Bryanton C, Bossé J, Brien M, McLean J, McCormick A, Sveistrup H. Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychol Behav. 2006 Apr;9(2):123–8. doi: 10.1089/cpb.2006.9.123.
    1. Levac D, Sveistrup H. Motor Learning in Virtual Reality. In: Weiss PL, Keshner EA, Levin MF, editors. Virtual Reality for Physical and Motor Rehabilitation. New York (NY): Springer; 2014. pp. 25–43.
    1. Rathinam C, Mohan V, Peirson J, Skinner J, Nethaji KS, Kuhn I. Effectiveness of virtual reality in the treatment of hand function in children with cerebral palsy: A systematic review. J Hand Ther. 2019;32(4):426–434.e1. doi: 10.1016/j.jht.2018.01.006.
    1. Chen Y, Lee S, Howard AM. Effect of virtual reality on upper extremity function in children with cerebral palsy: a meta-analysis. Pediatr Phys Ther. 2014;26(3):289–300. doi: 10.1097/PEP.0000000000000046.
    1. Galvin J, McDonald R, Catroppa C, Anderson V. Does intervention using virtual reality improve upper limb function in children with neurological impairment: a systematic review of the evidence. Brain Inj. 2011;25(5):435–42. doi: 10.3109/02699052.2011.558047.
    1. Massetti T, Silva TD, Ribeiro D. Motor learning through virtual reality in cerebral palsy - a literature review. Med Express. 2014;1(6):302–306. doi: 10.5935/medicalexpress.2014.06.04.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul 21;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Maier M, Rubio Ballester B, Duff A, Duarte Oller E, Verschure PFMJ. Effect of Specific Over Nonspecific VR-Based Rehabilitation on Poststroke Motor Recovery: A Systematic Meta-analysis. Neurorehabil Neural Repair. 2019 Feb;33(2):112–129. doi: 10.1177/1545968318820169.
    1. Morton S, Barton CJ, Rice S, Morrissey D. Risk factors and successful interventions for cricket-related low back pain: a systematic review. Br J Sports Med. 2014 Apr;48(8):685–91. doi: 10.1136/bjsports-2012-091782.
    1. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998 Jun;52(6):377–84. doi: 10.1136/jech.52.6.377.
    1. O'Connor Seán R, Tully MA, Ryan B, Bradley JM, Baxter GD, McDonough SM. Failure of a numerical quality assessment scale to identify potential risk of bias in a systematic review: a comparison study. BMC Res Notes. 2015 Jun 06;8:224. doi: 10.1186/s13104-015-1181-1.
    1. Effective Public Health Practice Project Quality assessment tool for quantitative studies. National Collaborating Centre for Methods and Tools, McMaster University, Hamilton, Ontario. 1998. [2021-03-24]. .
    1. Subramanian S, Caramba S, Hernandez O, Morgan Q, Cross M, Hirschhauser C. Is the Downs and Black scale a better tool to appraise the quality of the studies using virtual rehabilitation for post-stroke upper limb rehabilitation? InInternational Conference on Virtual Rehabilitation (ICVR). International Conference on Virtual Rehabilitation; 2019; Tel Aviv, Israel. IEEE; 2019.
    1. Avcil E, Tarakci D, Arman N, Tarakci E. Upper extremity rehabilitation using video games in cerebral palsy: a randomized clinical trial. Acta Neurol Belg. 2020 Jun 11; doi: 10.1007/s13760-020-01400-8.
    1. Bedair R, Al-Talawy H, Shoukry K, Abdul-Raouf E. Impact of virtual reality games as an adjunct treatment tool on upper extremity function of spastic hemiplegic children. Int J PharmTech Res. 2016;9(6):1–8.
    1. Chen Y, Kang L, Chuang T, Doong J, Lee S, Tsai Mei-Wun, Jeng Suh-Fang, Sung Wen-Hsu. Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys Ther. 2007 Nov;87(11):1441–57. doi: 10.2522/ptj.20060062.
    1. Sharan D, Ajeesh PS, Rameshkumar R, Mathankumar M, Paulina RJ, Manjula M. Virtual reality based therapy for post operative rehabilitation of children with cerebral palsy. Work. 2012;41 Suppl 1:3612–5. doi: 10.3233/WOR-2012-0667-3612.
    1. El-Shamy SM. Efficacy of Armeo® Robotic Therapy Versus Conventional Therapy on Upper Limb Function in Children With Hemiplegic Cerebral Palsy. Am J Phys Med Rehabil. 2018 Mar;97(3):164–169. doi: 10.1097/PHM.0000000000000852.
    1. Fluet G, Qiu Q, Saleh S. Robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with upper extremity hemiplegia. International Conference on Virtual Rehabilitation; 9 June-2 July 2009; Haifa, Israel. 2009. pp. 189–192.
    1. Fluet GG, Qiu Q, Kelly D, Parikh HD, Ramirez D, Saleh S, Adamovich SV. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Dev Neurorehabil. 2010;13(5):335–45. doi: 10.3109/17518423.2010.501362.
    1. Hernández Hamilton A, Khan A, Fay L, Roy J, Biddiss E. Force Resistance Training in Hand Grasp and Arm Therapy: Feasibility of a Low-Cost Videogame Controller. Games Health J. 2018 Aug;7(4):277–287. doi: 10.1089/g4h.2017.0193.
    1. Jannink MJA, van der Wilden Gelske J, Navis DW, Visser G, Gussinklo J, Ijzerman M. A low-cost video game applied for training of upper extremity function in children with cerebral palsy: a pilot study. Cyberpsychol Behav. 2008 Feb;11(1):27–32. doi: 10.1089/cpb.2007.0014.
    1. Kassee C, Hunt C, Holmes MW, Lloyd M. Home-based Nintendo Wii training to improve upper-limb function in children ages 7 to 12 with spastic hemiplegic cerebral palsy. J Pediatr Rehabil Med. 2017 May 17;10(2):145–154. doi: 10.3233/PRM-170439.
    1. Odle B, Irving A, Foulds R. Usability of an adaptable video game platform for children with cerebral palsy. Bioeng Proc Northeast Conf; 3-5 April 2009; Cambridge, MA, USA. 2009. pp. 1–2.
    1. Rostami HR, Arastoo AA, Nejad SJ, Mahany MK, Malamiri RA, Goharpey S. Effects of modified constraint-induced movement therapy in virtual environment on upper-limb function in children with spastic hemiparetic cerebral palsy: a randomised controlled trial. NeuroRehabilitation. 2012;31(4):357–65. doi: 10.3233/NRE-2012-00804.
    1. Şahin S, Köse Barkın, Aran OT, Bahadır Ağce Z, Kayıhan H. The Effects of Virtual Reality on Motor Functions and Daily Life Activities in Unilateral Spastic Cerebral Palsy: A Single-Blind Randomized Controlled Trial. Games Health J. 2020 Feb;9(1):45–52. doi: 10.1089/g4h.2019.0020.
    1. Sandlund M, Domellöf E, Grip H, Rönnqvist L, Häger CK. Training of goal directed arm movements with motion interactive video games in children with cerebral palsy - a kinematic evaluation. Dev Neurorehabil. 2014 Oct;17(5):318–26. doi: 10.3109/17518423.2013.776124.
    1. Turconi AC, Biffi E, Maghini C, Peri E, Servodio Iammarone F, Gagliardi C. Can new technologies improve upper limb performance in grown-up diplegic children? Eur J Phys Rehabil Med. 2016 Oct;52(5):672–681.
    1. Weightman Andrew, Preston Nick, Levesley Martin, Holt Raymond, Mon-Williams Mark, Clarke Mike, Cozens Alastair J, Bhakta Bipin. Home based computer-assisted upper limb exercise for young children with cerebral palsy: a feasibility study investigating impact on motor control and functional outcome. J Rehabil Med. 2011 Mar;43(4):359–63. doi: 10.2340/16501977-0679.
    1. Winkels DGM, Kottink AIR, Temmink RAJ, Nijlant JMM, Buurke JH. Wii™-habilitation of upper extremity function in children with cerebral palsy. An explorative study. Dev Neurorehabil. 2013;16(1):44–51. doi: 10.3109/17518423.2012.713401.
    1. Do J, Yoo E, Jung M, Park HY. The effects of virtual reality-based bilateral arm training on hemiplegic children's upper limb motor skills. NeuroRehabilitation. 2016;38(2):115–27. doi: 10.3233/NRE-161302.
    1. Sandlund M, Waterworth EL, Häger Ch. Using motion interactive games to promote physical activity and enhance motor performance in children with cerebral palsy. Dev Neurorehabil. 2011;14(1):15–21. doi: 10.3109/17518423.2010.533329.
    1. Chang Y, Chen S, Huang J. A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res Dev Disabil. 2011;32(6):2566–70. doi: 10.1016/j.ridd.2011.07.002.
    1. Reifenberg G, Gabrosek G, Tanner K, Harpster K, Proffitt R, Persch A. Feasibility of Pediatric Game-Based Neurorehabilitation Using Telehealth Technologies: A Case Report. Am J Occup Ther. 2017;71(3):7103190040p1–7103190040p8. doi: 10.5014/ajot.2017.024976.
    1. Rios DC, Gilbertson T, McCoy SW, Price R, Gutman K, Miller KEF, Fechko A, Moritz CT. NeuroGame Therapy to improve wrist control in children with cerebral palsy: a case series. Dev Neurorehabil. 2013 Dec;16(6):398–409. doi: 10.3109/17518423.2013.766818.
    1. Robert M, Guberek R, Levin M, Sveistrup H. Motor learning of the upper limb in children with cerebral palsy after virtual and physical training intervention. International Conference on Virtual Rehabilitation ICVR; 2013; Valencia, Spain. 2013. pp. 194–195.
    1. van Hedel H, Wick K, Meyer-Heim A, Eng K. Improving dexterity in children with cerebral palsy. International Conference on Virtual Rehabilitation ICVR; 2011; Zurich, Switzerland. IEEE; 2011. pp. 1–2.
    1. Dinomais M, Veaux F, Yamaguchi T, Richard P, Richard I, Nguyen S. A new virtual reality tool for unilateral cerebral palsy rehabilitation: two single-case studies. Dev Neurorehabil. 2013 Dec;16(6):418–22. doi: 10.3109/17518423.2013.778347.
    1. Golomb MR, Warden SJ, Fess E, Rabin B, Yonkman J, Shirley B, Burdea GC. Maintained hand function and forearm bone health 14 months after an in-home virtual-reality videogame hand telerehabilitation intervention in an adolescent with hemiplegic cerebral palsy. J Child Neurol. 2011 Mar;26(3):389–93. doi: 10.1177/0883073810394847.
    1. Huber M, Rabin B, Docan C. PlayStation 3-based tele-rehabilitation for children with hemiplegia. International Conference on Virtual Rehabilitation ICVR; Aug 25-28, 2008; Vancouver, Canada. 2008. pp. 105–112.
    1. Qiu Q, Ramirez DA, Saleh S, Fluet GG, Parikh HD, Kelly D, Adamovich SV. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study. J Neuroeng Rehabil. 2009 Nov 16;6:40. doi: 10.1186/1743-0003-6-40.
    1. Chang Y, Chen S, Huang J. A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res Dev Disabil. 2011;32(6):2566–70. doi: 10.1016/j.ridd.2011.07.002.
    1. Golomb MR, McDonald BC, Warden SJ, Yonkman J, Saykin AJ, Shirley B, Huber M, Rabin B, Abdelbaky Moustafa, Nwosu ME, Barkat-Masih M, Burdea GC. In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch Phys Med Rehabil. 2010 Jan;91(1):1–8.e1. doi: 10.1016/j.apmr.2009.08.153.
    1. Charles J, Gordon AM. Development of hand-arm bimanual intensive training (HABIT) for improving bimanual coordination in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2006 Nov;48(11):931–6. doi: 10.1017/S0012162206002039. doi: 10.1017/S0012162206002039.
    1. Gordon AM, Charles J, Wolf SL. Methods of constraint-induced movement therapy for children with hemiplegic cerebral palsy: development of a child-friendly intervention for improving upper-extremity function. Arch Phys Med Rehabil. 2005 Apr;86(4):837–44. doi: 10.1016/j.apmr.2004.10.008.
    1. Nudo R. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med. 2003 May;(41 Suppl):7–10. doi: 10.1080/16501960310010070.
    1. Demers M, Mbiya N, Levin M. Industry and academia collaboration in the design of virtual reality applications for rehabilitation. International Conference on Virtual Rehabilitation; June 19-22, 2017; Montreal, Canada. IEEE; 2017. pp. 1–2.
    1. Winstein CJ, Schmidt RA. Reduced frequency of knowledge of results enhances motor skill learning. J Exp Psychol Learn Mem Cogn. 1990;16(4):677–691. doi: 10.1037/0278-7393.16.4.677.
    1. Laufer Y, Weiss P L. Virtual reality in the assessment and treatment of children with motor impairment: A systematic review. J Phys Ther Educ. 2011;25(1):59–71. doi: 10.1097/00001416-201110000-00011.
    1. Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013 Feb;20(1):21–53. doi: 10.3758/s13423-012-0333-8.
    1. Chiviacowsky S, Wulf G, de Medeiros FL, Kaefer A, Wally R. Self-controlled feedback in 10-year-old children: higher feedback frequencies enhance learning. Res Q Exerc Sport. 2008 Mar;79(1):122–7. doi: 10.1080/02701367.2008.10599467.
    1. Hemayattalab R, Arabameri E, Pourazar M, Ardakani MD, Kashefi M. Effects of self-controlled feedback on learning of a throwing task in children with spastic hemiplegic cerebral palsy. Res Dev Disabil. 2013 Sep;34(9):2884–9. doi: 10.1016/j.ridd.2013.05.008.
    1. Subramanian SK, Massie CL, Malcolm MP, Levin MF. Does provision of extrinsic feedback result in improved motor learning in the upper limb poststroke? A systematic review of the evidence. Neurorehabil Neural Repair. 2010 Feb;24(2):113–24. doi: 10.1177/1545968309349941.
    1. Schüler T, Ferreira dos Santos L, Hoermann S. Designing virtual environments for motor rehabilitation: Towards a framework for the integration of best-practice information. International Conference on Virtual Rehabilitation; 2015; Valencia, Spain. 2015. pp. 145–146.
    1. Guadagnoli MA, Lee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004 Jun;36(2):212–24. doi: 10.3200/JMBR.36.2.212-224.
    1. Metcalfe J. Learning from Errors. Annu Rev Psychol. 2017 Jan 03;68:465–489. doi: 10.1146/annurev-psych-010416-044022.
    1. Levac DE, Miller PA. Integrating virtual reality video games into practice: clinicians' experiences. Physiother Theory Pract. 2013 Oct;29(7):504–12. doi: 10.3109/09593985.2012.762078.
    1. Majnemer A. Importance of motivation to children's participation: a motivation to change. Phys Occup Ther Pediatr. 2011 Feb;31(1):1–3. doi: 10.3109/01942638.2011.541747.
    1. Meyns P, Roman de Mettelinge T, van der Spank J, Coussens M, Van Waelvelde H. Motivation in pediatric motor rehabilitation: A systematic search of the literature using the self-determination theory as a conceptual framework. Dev Neurorehabil. 2018 Aug;21(6):371–390. doi: 10.1080/17518423.2017.1295286.
    1. Majnemer A, Shikako-Thomas K, Lach L, Shevell M, Law M, Schmitz N, QUALA group Mastery motivation in adolescents with cerebral palsy. Res Dev Disabil. 2013 Oct;34(10):3384–92. doi: 10.1016/j.ridd.2013.07.002.
    1. Tatla SK, Sauve K, Jarus T, Virji-Babul N, Holsti L. The effects of motivating interventions on rehabilitation outcomes in children and youth with acquired brain injuries: a systematic review. Brain Inj. 2014;28(8):1022–35. doi: 10.3109/02699052.2014.890747.
    1. Harris K, Reid D. The influence of virtual reality play on children's motivation. Can J Occup Ther. 2005 Feb;72(1):21–9. doi: 10.1177/000841740507200107.
    1. Kitago T, Krakauer J. Motor learning principles for neurorehabilitation. In: Barnes MP, Good DC, editors. Handbook of Clinical Neurology. Vol 110. Amsterdam, Netherlands: Elsevier; 2013. pp. 93–103.
    1. Levac DE, Huber ME, Sternad D. Learning and transfer of complex motor skills in virtual reality: a perspective review. J Neuroeng Rehabil. 2019 Oct 18;16(1):121. doi: 10.1186/s12984-019-0587-8.
    1. Yanovich E, Ronen O. The use of virtual reality in motor learning: A multiple pilot study review. APE. 2015;05(03):188–193. doi: 10.4236/ape.2015.53023.
    1. Breslin G, Hodges NJ, Steenson A, Williams AM. Constant or variable practice: recreating the especial skill effect. Acta Psychol (Amst) 2012 Jun;140(2):154–7. doi: 10.1016/j.actpsy.2012.04.002.
    1. Lage GM, Ugrinowitsch H, Apolinário-Souza Tércio, Vieira MM, Albuquerque MR, Benda RN. Repetition and variation in motor practice: A review of neural correlates. Neurosci Biobehav Rev. 2015 Oct;57:132–41. doi: 10.1016/j.neubiorev.2015.08.012.
    1. Bernstein N. The Co-ordination and Regulation of Movements. Oxford, United Kingdom: Pergamon Press; 1968. Mar,
    1. Guadagnoli MA, Holcomb WR, Weber TJ. The relationship between contextual interference effects and performer expertise on the learning of a putting task. J Hum Mov Stud. 1999;37(1):19–36.
    1. Zipp GP, Gentile AM. Practice Schedule and the Learning of Motor Skills in Children and Adults: Teaching Implications. Journal of College Teaching & Learning. 2010 Nov 03;7(2) doi: 10.19030/tlc.v7i2.87.
    1. Pinto-Zipp G, Gentile A. Practice schedule in motor learning: children versus adults. Soc of Neurosci Abst; Nov 11-16, 1995; San Diego, CA. 1995.
    1. Levin M, Sveistrup H, Subramanian S. Feedback and virtual environments for motor learning and rehabilitation. Schedae. 2010;1:19–36.

Source: PubMed

3
購読する