High altitude reduces infection rate of COVID-19 but not case-fatality rate

Jose Segovia-Juarez, Jesús M Castagnetto, Gustavo F Gonzales, Jose Segovia-Juarez, Jesús M Castagnetto, Gustavo F Gonzales

Abstract

Coronavirus disease 19 (COVID-19) is a pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). It is suggested that life at high altitude may reduce COVID-19 infections and case-fatality rates (cases/deaths). We study data from Peru COVID-19 pandemics, which first case was recorded on March 6th, 2020. By June 13, 2020 there were 6498 deaths, and 224,132 SARS-CoV-2 positives. Using data from 185 capitals of provinces with altitudes ranging from 3 to 4342 m, we confirm previous reports that infection with COVID-19 at high altitude is reduced. However, case-fatality rate is not dependent of altitude. We have also presented first evidence that female protection towards death by COVID-19 is reduced as altitude of residence increases.

Keywords: Altitude; COVID-19; Fatality rate; Hypoxia.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Copyright © 2020 Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Number of Cases (Log Positive counts/population density) according to altitude (meters) of residence in Peru: (A) All positive cases, (B) Male cases, (C) Female cases, (D) Male/female ratio.
Fig. 2
Fig. 2
Number of Deaths by COVID-19 (Log deaths/population density) according to altitude (meters) of residence in Peru. A) All deaths, (B) Male deaths, (C) Female deaths, (D) Male/female ratio.
Fig. 3
Fig. 3
Cumulative case-fatality rate by COVID-19 in Peru according to altitude of residence.

References

    1. Arias-Reyes C., Zubieta-DeUrioste N., Poma-Machicao L., Aliaga-Raduan F., Carvajal-Rodriguez F., Dutschmann M., Schneider-Gasser E.M., Zubieta-Calleja G., Soliz J. Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude? Respir. Physiol. Neurobiol. 2020;277:103443. [PMC free article] [PubMed] [Google Scholar]
    1. Burtscher J., Burtscher M., Millet G.P. Caution is needed on the effect of altitude on the pathogenesis of SAR-CoV-2 virus [published online ahead of print, 2020 May 21] Respir. Physiol. Neurobiol. 2020;279 doi: 10.1016/j.resp.2020.103464.
    1. CDC . 2019. Principles of Epidemiology in Public Health Practice. Third Edition. An Introduction to Applied Epidemiology and Biostatistics. Retrieved from.
    1. Channappanavar R., Fett C., Mack M., Ten Eyck P.P., Meyerholz D.K., Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 2017;198:4046–4053.
    1. Debnath M., Banerjee M., Berk M. Genetic gateways to COVID-19 infection: implications for risk, severity, and outcomes [published online ahead of print, 2020 Jun 11] FASEB J. 2020 doi: 10.1096/fj.202001115R.
    1. Duijf, P.H.G. (2020). Baseline pulmonary levels of CD8+ T cells and NK cells inversely correlate with expression of the SARS-CoV-2 entry receptor ACE2. Preprint. bioRxiv. 2020; 2020.05.04.075291. Published 2020 May 5. 10.1101/2020.05.04.075291.
    1. Gemmati D., Bramanti B., Serino M.L., Secchiero P., Zauli G., Tisato V. COVID-19 and individual genetic Susceptibility/Receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X-chromosome in females Be protective against SARS-CoV-2 compared to the single X-Chromosome in males? Int. J. Mol. Sci. 2020;21(10):E3474. doi: 10.3390/ijms21103474. Published 2020 May 14.
    1. Ghazizadeh Z., Majd H., Richter M. 2020. Androgen Regulates SARS-CoV-2 Receptor Levels and Is Associated With Severe COVID-19 Symptoms in Men. Preprint. bioRxiv. 2020.05.12.091082. Published 2020 May 15.
    1. Gonzales G.F., Góñez C., Villena A. Adrenopause or decline of serum adrenal androgens with age in women living at sea level or at high altitude. J. Endocrinol. 2002;173(1):95–101. doi: 10.1677/joe.0.1730095.
    1. Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence that vitamin d supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12:988. [PMC free article] [PubMed] [Google Scholar]
    1. Hirschler V., Molinari C., Maccallini G., Intersimone P., Gonzalez C.D. Vitamin d levels and cardiometabolic markers in indigenous argentinean children living at different altitudes. Glob. Pediatr. Health. 2019;6 doi: 10.1177/2333794X18821942. Published 2019 Jan 8.
    1. Huamaní C., Velásquez L., Montes S., Miranda-Solis F. Propagation by COVID-19 at high altitude: cusco case [published online ahead of print, 2020 May 8] Respir. Physiol. Neurobiol. 2020;279 doi: 10.1016/j.resp.2020.103448.
    1. Karlberg J., Chong D.S., Lai W.Y. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am. J. Epidemiol. 2004;159:229–231. [CrossRef] [PubMed]
    1. Leiva-Revilla J., Guerra-Castañon F., Olcese-Mori P. [Effect of red maca (Lepidium meyenii) on INF-γ levels in ovariectomized rats] Rev. Peru. Med. Exp. Salud Publica. 2014;31(4):683–688.
    1. Leong H.N., Earnest A., Lim H.H., Chin C.F., Tan C., Puhaindran M.E., Tan A., Chen M.I., Leo Y.S. SARS in Singapore–predictors of disease severity. Ann. Acad. Med. Singap. 2006;35:326–331. [PubMed]
    1. Lingappan K., Karmouty-Quintana H., Davies J., Akkanti B., Harting M.T. Understanding the age divide in COVID-19: why are children overwhelmingly spared? [published online ahead of print, 2020 Jun 3] Am. J. Physiol. Lung Cell Mol. Physiol. 2020 doi: 10.1152/ajplung.00183.2020.
    1. Mendes M.M., Darling A.L., Hart K.H., Morse S., Murphy R.J., Lanham-New S.A. Impact of high latitude, urban living and ethnicity on 25-hydroxyvitamin D status: a need for multidisciplinary action? J. Steroid Biochem. Mol. Biol. 2019;188:95–102. doi: 10.1016/j.jsbmb.2018.12.012.
    1. Pinto B.G.G., Oliveira A.E.R., Singh Y. ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19 [published online ahead of print, 2020 Jun 11] J. Infect. Dis. 2020 doi: 10.1093/infdis/jiaa332. jiaa332.
    1. Puthucheary Z., Skipworth J.R., Rawal J., Loosemore M., Van Someren K., Montgomery H.E. The ACE gene and human performance: 12 years on. Sports Med. 2011;41(6):433–448. doi: 10.2165/11588720-000000000-00000. 2011.
    1. Siddiqi H.K., Mehra M.R. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020;39(5):405–407. doi: 10.1016/j.healun.2020.03.012.
    1. Wang Y., Lu H., Chen Y., Luo Y. The association of angiotensin-converting enzyme gene insertion/deletion polymorphisms with adaptation to high altitude: a meta-analysis. J. Renin. Angiotensin. Aldosterone Syst. 2016;17(1) doi: 10.1177/1470320315627410. Published 2016 Mar 23.
    1. Wang A., Chiou J., Poirion O.B. Single nucleus multiomic profiling reveals age dynamic regulation of host genes associated with SARS-CoV-2 infection. bioRxiv. 2020 doi: 10.1101/2020.04.12.-37580. 2020.04.12.- 37580.
    1. Woods D.R., Montgomery H.E. Angiotensin-converting enzyme and genetics at high altitude. High Alt. Med. Biol. 2001;2(2):201–210. doi: 10.1089/152702901750265305.

Source: PubMed

3
購読する