Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude?

Christian Arias-Reyes, Natalia Zubieta-DeUrioste, Liliana Poma-Machicao, Fernanda Aliaga-Raduan, Favio Carvajal-Rodriguez, Mathias Dutschmann, Edith M Schneider-Gasser, Gustavo Zubieta-Calleja, Jorge Soliz, Christian Arias-Reyes, Natalia Zubieta-DeUrioste, Liliana Poma-Machicao, Fernanda Aliaga-Raduan, Favio Carvajal-Rodriguez, Mathias Dutschmann, Edith M Schneider-Gasser, Gustavo Zubieta-Calleja, Jorge Soliz

Abstract

In the present study we analyze the epidemiological data of COVID-19 of Tibet and high-altitude regions of Bolivia and Ecuador, and compare to lowland data, to test the hypothesis that high-altitude inhabitants (+2,500 m above sea-level) are less susceptible to develop severe adverse effects in acute SARS-CoV-2 virus infection. Analysis of available epidemiological data suggest that physiological acclimatization/adaptation that counterbalance the hypoxic environment in high-altitude may protect from severe impact of acute SARS-CoV-2 virus infection. Potential underlying mechanisms such as: (i) a compromised half-live of the virus caused by the high-altitude environment, and (ii) a hypoxia mediated down regulation of angiotensin-converting enzyme 2 (ACE2), which is the main binding target of SARS-CoV-2 virus in the pulmonary epithelium are discussed.

Keywords: COVID-19; Hypoxia; Lung remodeling; UV.

Copyright © 2020. Published by Elsevier B.V.

Figures

Fig. 1
Fig. 1
A) Geographic and altitudinal distribution of COVID-19 pandemic in China. The blue dots represent COVID-19 positive cases. Geographic coordinates were retrieved from the real-time database elaborated by Xu et al. on March 30th (Xu et al., 2020). Altitude data were extracted from the digital elevation model of BIOCLIM. B) Geographic altitudinal distribution of COVID-19 pandemic in Bolivia. The blue dots represent COVID-19 positive cases. Geographic coordinates were included following the method used by Xu et al. on March 30th (Xu et al., 2020). Altitude data were extracted from the digital elevation model of BIOCLIM. This data is available at https://docs.google.com/spreadsheets/d/1sSK9-n0uoxzcRRQgQe2EYhDXb2zPea86gj1TjJnC9eo/edit?usp=sharing. In order to maintain this article up to date, the daily updated version of this graphic will be available in the following link until the end of the pandemic: https://altitudeclinic.com/blog/2020/04/covid-2-bolivia/.
Fig. 2
Fig. 2
Altitudinal distribution of COVID-19 pandemic in the World. The altitude for positive cases of COVID-19 was calculated using de digital elevation model of BIOCLIM and the geographic data from the real-time database elaborated by Xu et al. on March 31st (Xu et al., 2020).

References

    1. Andrade M. Pagina siete; Bolivia: 2020. La radiación ultravioleta en tiempos de cuarentena.
    1. Cohen J.E., Small C. Hypsographic demography: the distribution of human population by altitude. Proc. Natl. Acad. Sci. U. S. A. 1998;95(24):14009–14014. doi: 10.1073/pnas.95.24.14009.
    1. Dang Z., Su S., Jin G., Nan X., Ma L., Li Z., Lu D., Ge R. Tsantan Sumtang attenuated chronic hypoxia-induced right ventricular structure remodeling and fibrosis by equilibrating local ACE-AngII-AT1R/ACE2-Ang1-7-Mas axis in rat. J. Ethnopharmacol. 2020;250:112470. doi: 10.1016/j.jep.2019.112470.
    1. Gelek L. Radio Free Asia; 2020. Schools in Tibet to Reopen as COVID-19 Fears Subside.
    1. Gobierno-de-la-Republica-de-Ecuador . 2020. Coronavirus Ecuador.
    1. Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570.
    1. Hampl V., Herget J., Bibova J., Banasova A., Huskova Z., Vanourkova Z., Jichova S., Kujal P., Vernerova Z., Sadowski J., Cervenka L. Intrapulmonary activation of the angiotensin-converting enzyme type 2/angiotensin 1-7/G-protein-coupled Mas receptor axis attenuates pulmonary hypertension in Ren-2 transgenic rats exposed to chronic hypoxia. Physiol. Res. 2015;64(1):25–38.
    1. Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978.
    1. Instituto-Nacional-de-Estadística . 2018. Producto Interno Bruto Departamental (ID TABLA: 4020301)
    1. Jia H.P., Look D.C., Shi L., Hickey M., Pewe L., Netland J., Farzan M., Wohlford-Lenane C., Perlman S., McCray P.B., Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 2005;79(23):14614–14621. doi: 10.1128/JVI.79.23.14614-14621.2005.
    1. Kimakova P., Solar P., Solarova Z., Komel R., Debeljak N. Erythropoietin and its angiogenic activity. Int. J. Mol. Sci. 2017;18(7) doi: 10.3390/ijms18071519.
    1. Lei Y., Huang X., Lang B., Lan Y., Lu J., Zeng F. Clinical features of imported cases of coronavirus disease 2019 in Tibetan patients in the Plateau area. MedRxiv. 2020 doi: 10.1101/2020.03.09.20033126.
    1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W.J., Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi: 10.1016/S0140-6736(20)30251-8.
    1. Lundby C., Thomsen J.J., Boushel R., Koskolou M., Warberg J., Calbet J.A., Robach P. Erythropoietin treatment elevates haemoglobin concentration by increasing red cell volume and depressing plasma volume. J. Physiol. 2007;578(Pt 1):309–314. doi: 10.1113/jphysiol.2006.122689.
    1. Ministerio-de-Comunicación . 2020. COVID-19 Bolivia. Gaceta Oficial.
    1. Ministerio-de-Comunicación . Portal de información estatal; 2017. El Alto es la segunda ciudad con más población de Bolivia Publicación ENLACE.
    1. Prensa-Latina . Agencia Informativa Latinoamericana; 2020. Santa Cruz departamento de Bolivia con mas casos de COVID-19.
    1. Ren L.L., Wang Y.M., Wu Z.Q., Xiang Z.C., Guo L., Xu T., Jiang Y.Z., Xiong Y., Li Y.J., Li X.W., Li H., Fan G.H., Gu X.Y., Xiao Y., Gao H., Xu J.Y., Yang F., Wang X.M., Wu C., Chen L., Liu Y.W., Liu B., Yang J., Wang X.R., Dong J., Li L., Huang C.L., Zhao J.P., Hu Y., Cheng Z.S., Liu L.L., Qian Z.H., Qin C., Jin Q., Cao B., Wang J.W. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin. Med. J. (Engl.) 2020 doi: 10.1097/CM9.0000000000000722. [Epub ahead of print]
    1. Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020 doi: 10.1016/j.jaut.2020.102433.
    1. Soliz J., Joseph V., Soulage C., Becskei C., Vogel J., Pequignot J.M., Ogunshola O., Gassmann M. Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. J. Physiol. 2005;568(Pt2):559–571.
    1. Tseten T. Central Tibetan Administration; 2020. Wuhan Coronavirus: A Growing Concern for Tibetans Inside Tibet.
    1. United-States-Environmental-Protection-Agency . 2017. Calculating the UV Index.
    1. van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I., Lloyd-Smith J.O., de Wit E., Munster V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020 doi: 10.1056/NEJMc2004973.
    1. World-Health-Organization . 2020. Rolling Updates on Coronavirus Disease (COVID-19)
    1. Wu T. The Qinghai–Tibetan Plateau: how high do Tibetans live? High Alt. Med. Biol. 2001;2(4):489–499.
    1. Xu B., Gutierrez B., Mekaru S., Sewalk K., Goodwin L., Loskill A., Cohn E.L., Hswen Y., Hill S.C., Cobo M.M., Zarebski A.E., Li S., Wu C.H., Hulland E., Morgan J.D., Wang L., O’Brien K., Scarpino S.V., Brownstein J.S., Pybus O.G., Pigott D.M., Kraemer M.U.G. Epidemiological data from the COVID-19 outbreak, real-time case information. Sci. Data. 2020;7(1):106. doi: 10.1038/s41597-020-0448-0.
    1. Zhang R., Wu Y., Zhao M., Liu C., Zhou L., Shen S., Liao S., Yang K., Li Q., Wan H. Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2009;297(4):L631–640. doi: 10.1152/ajplung.90415.2008.
    1. Zubieta-Calleja G. 2020. Covid-19 Pandemia Essential Suggestions.
    1. Zubieta-Calleja G. 2020. Las ventajas de la radiación ultravioleta en el control del coronavirus en la altura. La razon.
    1. Zubieta-Calleja G.R., Zubieta-DeUrioste N.A. Extended longevity at high altitude: benefits of exposure to chronic hypoxia. Blde Univ. J. Health Sci. 2017;2(2):80–90.

Source: PubMed

3
購読する