The ghrelin and leptin responses to short-term starvation vs a carbohydrate-free diet in men with type 2 diabetes; a controlled, cross-over design study

Frank Quentin Nuttall, Rami Mahmoud Almokayyad, Mary Carol Gannon, Frank Quentin Nuttall, Rami Mahmoud Almokayyad, Mary Carol Gannon

Abstract

Background: We recently have reported the 24-hour glucose, insulin and glucagon responses to a 72-hour fast compared to a 72-hour macronutrient-sufficient, carbohydrate-free diet in men with type 2 diabetes. The 72-hour time period was used because it is the time required for the major metabolic adjustments to a lack of food to be instituted. As part of that study, ghrelin and leptin responses were monitored.

Methods: Twenty-four-hour total ghrelin and overnight fasting leptin concentrations were determined in males with type 2 diabetes when ingesting a standard, mixed meal diet (control), followed by a carbohydrate-free diet for 72 h or were starved for 72 h, using a crossover design.

Results: A rise in ghrelin concentration before and a decrease after meals was present when the standard diet was ingested. However, in contrast to literature reports in normal subjects, a circadian variation was not apparent. Meal related changes were absent with starvation. A carbohydrate-free diet resulted in a daylong decrease in ghrelin. It also resulted in a 19 % decrease in the overnight fasting leptin concentration. Leptin was decreased 54 % with total starvation.

Conclusion: Ingestion of a typical mixed-meal diet results in meal-related changes in ghrelin similar to those reported in normal subjects, although the circadian rhythm was not apparent. Except for the lack of meal-related changes, starvation did not change the concentration. A carbohydrate-free, high fat diet resulted in a daylong suppression of ghrelin. The leptin concentration was decreased by both the carbohydrate-free diet and starvation.

Trial registration: ClinicalTrials.gov Identifier: NCT01469104.

Keywords: 24-hour profile; Carbohydrate-free diet; Dietary carbohydrates; Dietary fats; Ghrelin; Leptin; Type 2 diabetes.

Figures

Fig. 1
Fig. 1
Study Design. A standard diet consisting of 55 % carbohydrate, 15 % protein, and 30 % fat was ingested for dinner at home at 1800 h before admission, and during day 1 in the SDTU. On one occasion during days 2–4 subjects starved, on the other occasion they ingested a carbohydrate-free diet. Meals were ingested at 0800, 1200 and 1800 h. During two 24.5 h periods, from 0730 day 1 to 0800 day 2, and again from 0730 day 4 to 0800 day 5, blood was drawn a total of 42 times (3 baseline, every 15 min for 1 h after a mealtime, every 30 min for the 2nd and 3rd hours after a mealtime, and then every hour until the next mealtime
Fig. 2
Fig. 2
Carbohydrate-Free Diet 24-hour Total Ghrelin Response. Twenty-four hour mean total ghrelin responses in 6 men with type 2 diabetes while ingesting a standard diet (top) and during the last 24 h of a 3-day a carbohydrate-free diet (bottom). B, L, D on the x-axis indicate the time of breakfast, lunch, and dinner. Insert: Control (standard) Diet (286 ± 765 pg.hr/ml) and the CHO-free Diet (-3666 ± 1575 pg.hr/ml) 24 h Ghrelin Net Areas. The differences in area responses are statistically significantly different (P = 0.04)
Fig. 3
Fig. 3
Starvation 24-Hour Total Ghrelin and Insulin Responses. Twenty-four hour mean total ghrelin responses in 7 men with type 2 diabetes while ingesting a standard diet (top) and during the last 24 h of a 3-day fast (bottom). Insert: Control (standard) Diet (118 ± 1042 pg.hr/ml) and Starvation (-56 ± 678 pg.hr/ml) 24 h Ghrelin Net Areas. The differences in area responses were not statistically different (P = 0.72)

References

    1. Nuttall FQ, Almokayyad RM, Gannon MC. Comparison of a carbohydrate-free diet vs. Fasting on plasma glucose, insulin and glucagon in type 2 diabetes. Metabolism. 2015;64:253–62. doi: 10.1016/j.metabol.2014.10.004.
    1. Cahill GF, Jr, Herrera MG, Morgan AP, Soeldner JS, Steinke J, Levy PL, et al. Hormone-fuel interrelationships during fasting. J Clin Invest. 1966;45:1751–69. doi: 10.1172/JCI105481.
    1. Cahill GF., Jr Starvation in man. N Engl J Med. 1970;282:668–75. doi: 10.1056/NEJM197003052821026.
    1. American Diabetes A Standards of medical care in diabetes--2010. Diabetes Care. 2010;33(Suppl 1):S11–61. doi: 10.2337/dc10-S011.
    1. Gannon MC. A computer program to calculate the rate of appearance of glucose in the peripheral circulation following infusion of labeled glucose. Minneapolis: University of Minnesota, Patents and Licensing; 1991.
    1. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9. doi: 10.2337/diabetes.50.8.1714.
    1. Weigle DS, Cummings DE, Newby PD, Breen PA, Frayo RS, Matthys CC, et al. Roles of leptin and ghrelin in the loss of body weight caused by a low fat, high carbohydrate diet. J Clin Endocrinol Metab. 2003;88:1577–86. doi: 10.1210/jc.2002-021262.
    1. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30. doi: 10.1056/NEJMoa012908.
    1. Gannon MC, Nuttall FQ. Effect of a high-protein diet on ghrelin, growth hormone, and insulin-like growth factor-I and binding proteins 1 and 3 in subjects with type 2 diabetes mellitus. Metabolism. 2011;60:1300–11. doi: 10.1016/j.metabol.2011.01.016.
    1. Foster-Schubert KE, Overduin J, Prudom CE, Liu J, Callahan HS, Gaylinn BD, et al. Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates. J Clin Endocrinol Metab. 2008;93:1971–9. doi: 10.1210/jc.2007-2289.
    1. Espelund U, Hansen TK, Hojlund K, Beck-Nielsen H, Clausen JT, Hansen BS, et al. Fasting unmasks a strong inverse association between ghrelin and cortisol in serum: Studies in obese and normal-weight subjects. J Clin Endocrinol Metab. 2005;90:741–6. doi: 10.1210/jc.2004-0604.
    1. Norrelund H, Hansen TK, Orskov H, Hosoda H, Kojima M, Kangawa K, et al. Ghrelin immunoreactivity in human plasma is suppressed by somatostatin. Clin Endocrinol (Oxf) 2002;57:539–46. doi: 10.1046/j.1365-2265.2002.01649.x.
    1. Blom WA, Stafleu A, de Graaf C, Kok FJ, Schaafsma G, Hendriks HF. Ghrelin response to carbohydrate-enriched breakfast is related to insulin. Am J Clin Nutr. 2005;81:367–75.
    1. Nakagawa E, Nagaya N, Okumura H, Enomoto M, Oya H, Ono F, et al. Hyperglycaemia suppresses the secretion of ghrelin, a novel growth-hormone-releasing peptide: Responses to the intravenous and oral administration of glucose. Clin Sci (Lond) 2002;103:325–8. doi: 10.1042/cs1030325.
    1. Nakai Y, Hosoda H, Nin K, Ooya C, Hayashi H, Akamizu T, et al. Plasma levels of active form of ghrelin during oral glucose tolerance test in patients with anorexia nervosa. Eur J Endocrinol. 2003;149:R1–3. doi: 10.1530/eje.0.149R001.
    1. Monteleone P, Bencivenga R, Longobardi N, Serritella C, Maj M. Differential responses of circulating ghrelin to high-fat or high-carbohydrate meal in healthy women. J Clin Endocrinol Metab. 2003;88:5510–4. doi: 10.1210/jc.2003-030797.
    1. Akhavan T, Anderson GH. Effects of glucose-to-fructose ratios in solutions on subjective satiety, food intake, and satiety hormones in young men. Am J Clin Nutr. 2007;86:1354–63.
    1. Erdmann J, Topsch R, Lippl F, Gussmann P, Schusdziarra V. Postprandial response of plasma ghrelin levels to various test meals in relation to food intake, plasma insulin, and glucose. J Clin Endocrinol Metab. 2004;89:3048–54. doi: 10.1210/jc.2003-031610.
    1. Tentolouris N, Kokkinos A, Tsigos C, Kyriaki D, Doupis J, Raptis SA, et al. Differential effects of high-fat and high-carbohydrate content isoenergetic meals on plasma active ghrelin concentrations in lean and obese women. Horm Metab Res. 2004;36:559. doi: 10.1055/s-2004-825761.
    1. Greenman Y, Golani N, Gilad S, Yaron M, Limor R, Stern N. Ghrelin secretion is modulated in a nutrient- and gender-specific manner. Clin Endocrinol (Oxf) 2004;60:382–8. doi: 10.1111/j.1365-2265.2004.01993.x.
    1. Ullrich SS, Otto B, Hutchison AT, Luscombe-Marsh ND, Horowitz M, Feinle-Bisset C. Comparative effects of intraduodenal protein and lipid on ghrelin, peptide YY, and leptin release in healthy men. Am J Physiol Regul Integr Comp Physiol. 2015;308:R300–4. doi: 10.1152/ajpregu.00504.2014.
    1. Parker BA, Doran S, Wishart J, Horowitz M, Chapman IM. Effects of small intestinal and gastric glucose administration on the suppression of plasma ghrelin concentrations in healthy older men and women. Clin Endocrinol (Oxf) 2005;62:539–46. doi: 10.1111/j.1365-2265.2005.02254.x.
    1. Gelling RW, Overduin J, Morrison CD, Morton GJ, Frayo RS, Cummings DE, et al. Effect of uncontrolled diabetes on plasma ghrelin concentrations and ghrelin-induced feeding. Endocrinology. 2004;145:4575–82. doi: 10.1210/en.2004-0605.
    1. Radulescu A, Gannon MC, Nuttall FQ. The effect on glucagon, glucagon-like peptide-1, total and acyl-ghrelin of dietary fats ingested with and without potato. J Clin Endocrinol Metab. 2010;95:3385–91. doi: 10.1210/jc.2009-2559.
    1. Mohlig M, Spranger J, Otto B, Ristow M, Tschop M, Pfeiffer AFH. Euglycemic hyperinsulinemia, but not lipid infusion, decreases circulating ghrelin levels in humans. J Endocrinol Invest. 2002;25:RC36–8. doi: 10.1007/BF03344062.
    1. Spranger J, Ristow M, Otto B, Heldwein W, Tschop M, Pfeiffer AF, et al. Post-prandial decrease of human plasma ghrelin in the absence of insulin. J Endocrinol Invest. 2003;26:RC19–22. doi: 10.1007/BF03347349.
    1. Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR, et al. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr. 2005;82:41–8.
    1. Chan JL, Bullen J, Lee JH, Yiannakouris N, Mantzoros CS. Ghrelin levels are not regulated by recombinant leptin administration and/or three days of fasting in healthy subjects. J Clin Endocrinol Metab. 2004;89:335–43. doi: 10.1210/jc.2003-031412.
    1. Williams DL, Cummings DE. Regulation of ghrelin in physiologic and pathophysiologic states. J Nutr. 2005;135:1320–5.
    1. Ostlund RE, Jr, Yang JW, Klein S, Gingerich R. Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. J Clin Endocrinol Metab. 1996;81:3909–13.
    1. Grinspoon SK, Askari H, Landt ML, Nathan DM, Schoenfeld DA, Hayden DL, et al. Effects of fasting and glucose infusion on basal and overnight leptin concentrations in normal-weight women. Am J Clin Nutr. 1997;66:1352–6.
    1. Sinha MK, Ohannesian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest. 1996;97:1344–7. doi: 10.1172/JCI118551.
    1. Schoeller DA, Cella LK, Sinha MK, Caro JF. Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invest. 1997;100:1882–7. doi: 10.1172/JCI119717.
    1. Yildiz BO, Suchard MA, Wong ML, McCann SM, Licinio J. Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci U S A. 2004;101:10434–9. doi: 10.1073/pnas.0403465101.
    1. Schrauwen P, van Marken Lichtenbelt WD, Westerterp KR, Saris WH. Effect of diet composition on leptin concentration in lean subjects. Metabolism. 1997;46:420–4. doi: 10.1016/S0026-0495(97)90059-7.
    1. Havel PJ, Kasim-Karakas S, Mueller W, Johnson PR, Gingerich RL, Stern JS. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: Effects of dietary fat content and sustained weight loss. J Clin Endocrinol Metab. 1996;81:4406–13.
    1. Coleman RA, Herrmann TS. Nutritional regulation of leptin in humans. Diabetologia. 1999;42:639–46. doi: 10.1007/s001250051210.
    1. Boden G, Chen X, Mozzoli M, Ryan I. Effect of fasting on serum leptin in normal human subjects. J Clin Endocrinol Metab. 1996;81:3419–23.
    1. Weigle DS, Duell PB, Connor WE, Steiner RA, Soules MR, Kuijper JL. Effect of fasting, refeeding, and dietary fat restriction on plasma leptin levels. J Clin Endocrinol Metab. 1997;82:561–5.
    1. Jenkins AB, Markovic TP, Fleury A, Campbell LV. Carbohydrate intake and short-term regulation of leptin in humans. Diabetologia. 1997;40:348–51. doi: 10.1007/s001250050686.
    1. Herrmann TS, Bean ML, Black TM, Wang P, Coleman RA. High glycemic index carbohydrate diet alters the diurnal rhythm of leptin but not insulin concentrations. Exp Biol Med (Maywood) 2001;226:1037–44.

Source: PubMed

3
購読する