Curcumin and inflammatory bowel disease: potential and limits of innovative treatments

Liza Vecchi Brumatti, Annalisa Marcuzzi, Paola Maura Tricarico, Valentina Zanin, Martina Girardelli, Anna Monica Bianco, Liza Vecchi Brumatti, Annalisa Marcuzzi, Paola Maura Tricarico, Valentina Zanin, Martina Girardelli, Anna Monica Bianco

Abstract

Curcumin belongs to the family of natural compounds collectively called curcuminoids and it possesses remarkable beneficial anti-oxidant, anti-inflammatory, anti-cancer, and neuroprotective properties. Moreover it is commonly assumed that curcumin has also been suggested as a remedy for digestive diseases such as inflammatory bowel diseases (IBD), a chronic immune disorder affecting the gastrointestinal tract and that can be divided in two major subgroups: Crohn's disease (CD) and Ulcerative Colitis (UC), depending mainly on the intestine tract affected by the inflammatory events. The chronic and intermittent nature of IBD imposes, where applicable, long-term treatments conducted in most of the cases combining different types of drugs. In more severe cases and where there has been no good response to the drugs, a surgery therapy is carried out. Currently, IBD-pharmacological treatments are generally not curative and often present serious side effects; for this reason, being known the relationship between nutrition and IBD, it is worthy of interesting the study and the development of new dietary strategy. The curcumin principal mechanism is the suppression of IBD inflammatory compounds (NF-κB) modulating immune response. This review summarizes literature data of curcumin as anti-inflammatory and anti-oxidant in IBD, trying to understand the different effects in CD e UC.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The curcumin activity in mucosal.

References

    1. Gupta S.C., Kismali G., Aggarwal B.B. Curcumin, a component of turmeric: From farm to pharmacy. Biofactors. 2013;39:2–13. doi: 10.1002/biof.1079.
    1. Kumar A., Ahuja A., Ali J., Baboota S. Conundrum and therapeutic potential of curcumin in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 2010;27:279–312. doi: 10.1615/CritRevTherDrugCarrierSyst.v27.i4.10.
    1. Ammon H.P., Wahl M.A. Pharmacology of Curcuma longa. Planta Med. 1991;57:1–7. doi: 10.1055/s-2006-960004.
    1. Lev-Ari S., Strier L., Kazanov D., Elkayam O., Lichtenberg D., Caspi D., Arber N. Curcumin synergistically potentiates the growth-inhibitory and pro-apoptotic effects of celecoxib in osteoarthritis synovial adherent cells. Rheumatology. 2006;45:171–177. doi: 10.1093/rheumatology/kei132.
    1. Neerati P., Devde R., Gangi A.K. Evaluation of the effect of curcumin capsules on glyburide therapy in patients with Type-2 Diabetes Mellitus. Phytother. Res. 2014 doi: 10.1002/ptr.5201.
    1. Kim Y.S., Young M.R., Bobe G., Colburn N.H., Milner J.A. Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prev. Res. (Phila) 2009;2:200–208. doi: 10.1158/1940-6207.CAPR-08-0141.
    1. Kim J., Lee H.J., Lee K.W. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J. Neurochem. 2010;112:1415–1430. doi: 10.1111/j.1471-4159.2009.06562.x.
    1. Abraham C., Cho J.H. Inflammatory bowel disease. N. Engl. J. Med. 2009;19:2066–2078. doi: 10.1056/NEJMra0804647.
    1. De Bie C.I., Paerregaard A., Kolacek S., Ruemmele F.M., Koletzko S., Fell J.M., Escher J.C., EUROKIDS Porto IBD Working Group of ESPGHAN Disease phenotype at diagnosis in pediatric Crohn’s disease: 5-Year analyses of the EUROKIDS Registry. Inflamm. Bowel Dis. 2013;19:378–385. doi: 10.1002/ibd.23008.
    1. Maccioni F., Ansari N.A., Mazzamurro F., Civitelli F., Viola F., Cucchiara S., Catalano C. Detection of Crohn Disease Lesions of the Small and Large Bowel in Pediatric Patients: Diagnostic Value of MR Enterography Versus Reference Examinations. Am. J. Roentgenol. 2014;203:W533–W542. doi: 10.2214/AJR.13.11792.
    1. Aloi M., Lionetti P., Barabino A., Guariso G., Costa S., Fontana M., Romano C., Lombardi G., Miele E., Alvisi P., et al. Phenotype and disease course of early-onset pediatric inflammatory bowel disease. Inflamm. Bowel Dis. 2014;20:597–605. doi: 10.1097/01.MIB.0000442921.77945.09.
    1. Levine A., Griffiths A., Markowitz J., Wilson D.C., Turner D., Russell R.K., Fell J., Ruemmele F.M., Walters T., Sherlock M., et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm. Bowel Dis. 2011;17:1314–1321. doi: 10.1002/ibd.21493.
    1. Ponder A., Long M.D. A clinical review of recent findings in the epidemiology of inflammatory bowel disease. Clin. Epidemiol. 2013;5:237–247.
    1. Molodecky N.A., Soon I.S., Rabi D.M., Ghali W.A., Ferris M., Chernoff G., Benchimol E.I., Panaccione R., Ghosh S., Barkema H.W., et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54. doi: 10.1053/j.gastro.2011.10.001.
    1. Ng S.C., Bernstein C.N., Vatn M.H., Lakatos P.L., Loftus E.V., Jr., Tysk C., O’Morain C., Moum B., Colombel J.F., Epidemiology and Natural History Task Force of the International Organization of Inflammatory Bowel Disease (IOIBD) Geographical variability and environmental risk factors in inflammatory bowel disease. Gut. 2013;62:630–649. doi: 10.1136/gutjnl-2012-303661.
    1. Molodecky N.A., Kaplan G.G. Environmental risk factors for inflammatory bowel disease. Gastroenterol. Hepatol. (N. Y.) 2010;6:339–346.
    1. Castiglione F., Diaferia M., Morace F., Labianca O., Meucci C., Cuomo A., Panarese A., Romano M., Sorrentini I., D’Onofrio C., et al. Risk factors for inflammatory bowel diseases according to the “hygiene hypothesis”: A case-control, multi-centre, prospective study in Southern Italy. J. Crohn’s Colitis. 2012;6:324–329. doi: 10.1016/j.crohns.2011.09.003.
    1. Baron S., Turck D., Leplat C., Merle V., Gower-Rousseau C., Marti R., Yzet T., Lerebours E., Dupas J.L., Debeugny S., et al. Environmental risk factors in paediatric inflammatory bowel diseases: A population based case control study. Gut. 2005;54:357–363. doi: 10.1136/gut.2004.054353.
    1. Klement E., Cohen R.V., Boxman J., Joseph A., Reif S. Breastfeeding and risk of inflammatory bowel disease: A systematic review with meta-analysis. Am. J. Clin. Nutr. 2004;80:1342–1352.
    1. Barclay A.R., Russell R.K., Wilson M.L., Gilmour W.H., Satsangi J., Wilson D.C. Systematic review: The role of breastfeeding in the development of pediatric inflammatory bowel disease. J. Pediatr. 2009;155:421–426. doi: 10.1016/j.jpeds.2009.03.017.
    1. Khalili H., Ananthakrishnan A.N., Higuchi L.M., Richter J.M., Fuchs C.S., Chan A.T. Early life factors and risk of inflammatory bowel disease in adulthood. Inflamm. Bowel Dis. 2013;19:542–547. doi: 10.1097/MIB.0b013e31828132f8.
    1. Kronman M.P., Zaoutis T.E., Haynes K., Feng R., Coffin S.E. Antibiotic exposure and IBD development among children: A population-based cohort study. Pediatrics. 2012;130:794–803. doi: 10.1542/peds.2011-3886.
    1. Shaw S.Y., Blanchard J.F., Bernstein C.N. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am. J. Gastroenterol. 2010;105:2687–2692. doi: 10.1038/ajg.2010.398.
    1. Shaw S.Y., Blanchard J.F., Bernstein C.N. Association between the use of antibiotics and new diagnoses of Crohn’s disease and ulcerative colitis. Am. J. Gastroenterol. 2011;106:2133–2142. doi: 10.1038/ajg.2011.304.
    1. Soon I.S., Molodecky N.A., Rabi D.M., Ghali W.A., Barkema H.W., Kaplan G.G. The relationship between urban environment and the inflammatory bowel diseases: A systematic review and meta-analysis. BMC Gastroenterol. 2012;12:51. doi: 10.1186/1471-230X-12-51.
    1. Kaplan G.G., Hubbard J., Korzenik J., Sands B.E., Panaccione R., Ghosh S., Wheeler A.J., Villeneuve P.J. The inflammatory bowel diseases and ambient air pollution: A novel association. Am. J. Gastroenterol. 2010;105:2412–2419. doi: 10.1038/ajg.2010.252.
    1. D’Souza S., Levy E., Mack D., Israel D., Lambrette P., Ghadirian P., Deslandres C., Morgan K., Seidman E.G., Amre D.K. Dietary patterns and risk for Crohn’s disease in children. Inflamm. Bowel Dis. 2008;14:367–373. doi: 10.1002/ibd.20333.
    1. Chapman-Kiddell C.A., Davies P.S., Gillen L., Radford-Smith G.L. Role of diet in the development of inflammatory bowel disease. Inflamm. Bowel Dis. 2010;16:137–151. doi: 10.1002/ibd.20968.
    1. Podolsky D.K. Inflammatory bowel disease. N. Engl. J. Med. 2002;347:417–429. doi: 10.1056/NEJMra020831.
    1. Heyman M.B., Kirschner B.S., Gold B.D., Ferry G., Baldassano R., Cohen S.A., Winter H.S., Fain P., King C., Smith T., et al. Children with early-onset inflammatory bowel disease (IBD): analysis of a pediatric IBD consortium registry. J. Pediatr. 2005;146:35–40. doi: 10.1016/j.jpeds.2004.08.043.
    1. Bianco A.M., Zanin V., Girardelli M., Magnolato A., Martelossi S., Tommasini A., Marcuzzi A., Crovella S. A common genetic background could explain early-onset Crohn’s disease. Med. Hypotheses. 2012;78:520–522. doi: 10.1016/j.mehy.2012.01.023.
    1. Cannioto Z., Berti I., Martelossi S., Bruno I., Giurici N., Crovella S., Ventura A. IBD and IBD mimicking enterocolitis in children younger than 2 years of age. Eur. J. Pediatr. 2009;168:149–155. doi: 10.1007/s00431-008-0721-2.
    1. Jostins L., Ripke S., Weersma R.K., Duerr R.H., McGovern D.P., Hui K.Y., Lee J.C., Schumm L.P., Sharma Y., Anderson C.A., et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–124. doi: 10.1038/nature11582.
    1. Uhlig H.H. Monogenic diseases associated with intestinal inflammation: Implications for the understanding of inflammatory bowel disease. Gut. 2013;62:1795–1805. doi: 10.1136/gutjnl-2012-303956.
    1. Bianco A.M., Girardelli M., Vozzi D., Crovella S., Kleiner G., Marcuzzi A. Mevalonate kinase deficiency and IBD: Shared genetic background. Gut. 2014;63:1367–1368. doi: 10.1136/gutjnl-2013-306555.
    1. Uhlig H.H., Schwerd T., Koletzko S. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology. 2014;147:990–1007. doi: 10.1053/j.gastro.2014.07.023.
    1. Pastorelli L., Garg R.R., Hoang S.B., Spina L., Mattioli B., Scarpa M., Fiocchi C., Vecchi M., Pizarro T.T. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc. Natl. Acad. Sci. USA. 2010;107:8017–8022. doi: 10.1073/pnas.0912678107.
    1. Cominelli F. Cytokine-based therapies for Crohn’s disease-new paradigms. N. Engl. J. Med. 2004;351:2045–2048. doi: 10.1056/NEJMp048253.
    1. Bamias G., Martin C., Mishina M., Ross W.G., Rivera-Nieves J., Marini M., Cominelli F. Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation. Gastroenterology. 2005;128:654–666. doi: 10.1053/j.gastro.2004.11.053.
    1. Wallace K.L., Zheng L.B., Kanazawa Y., Shih D.Q. Immunopathology of inflammatory bowel disease. World J. Gastroenterol. 2014;20:6–21. doi: 10.3748/wjg.v20.i1.6.
    1. Seidelin J.B., Coskun M., Kvist P.H., Holm T.L., Holgersen K., Nielsen O.H. IL-33 promotes GATA-3 polarization of gut-derived T cells in experimental and ulcerative colitis. J. Gastroenterol. 2014 doi: 10.1007/s00535-014-0982-7.
    1. Karatzas P.S., Gazouli M., Safioleas M., Mantzaris G.J. DNA methylation changes in inflammatory bowel disease. Ann. Gastroenterol. 2014;27:125–132.
    1. Orel R., Kamhi Trop T. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World J. Gastroenterol. 2014;20:11505–11524. doi: 10.3748/wjg.v20.i33.11505.
    1. Faubion W.A., Jr., Loftus E.V., Jr., Harmsen W.S., Zinsmeister A.R., Sandborn W.J. The natural history of corticosteroid therapy for inflammatory bowel disease: A population-based study. Gastroenterology. 2001;121:255–260. doi: 10.1053/gast.2001.26279.
    1. Present D.H., Meltzer S.J., Krumholz M.P., Wolke A., Korelitz B.I. 6-Mercaptopurine in the management of inflammatory bowel disease: short- and long-term toxicity. Ann. Intern. Med. 1989;111:641–649. doi: 10.7326/0003-4819-111-8-641.
    1. Ardizzone S., Bianchi Porro G. Biologic therapy for inflammatory bowel disease. Drugs. 2005;65:2253–2286. doi: 10.2165/00003495-200565160-00002.
    1. Lazzerini M., Martelossi S., Magazzù G., Pellegrino S., Lucanto M.C., Barabino A., Calvi A., Arrigo S., Lionetti P., Lorusso M., et al. Effect of thalidomide on clinical remission in children and adolescents with refractory Crohn disease: A randomized clinical trial. JAMA. 2013;27:2164–2173. doi: 10.1001/jama.2013.280777.
    1. Renna S., Cottone M., Orlando A. Optimization of the treatment with immunosuppressants and biologics in inflammatory bowel disease. World J. Gastroenterol. 2014;20:9675–9690. doi: 10.3748/wjg.v20.i29.9675.
    1. Feagan B.G., Rochon J., Fedorak R.N., Irvine E.J., Wild G., Sutherland L., Steinhart A.H., Greenberg G.R., Gillies R., Hopkins M. Methotrexate for the treatment of Crohn’s disease. The North American Crohn’s Study Group Investigators. N. Engl. J. Med. 1995;332:292–297. doi: 10.1056/NEJM199502023320503.
    1. Felipez L.M., Gokhale R., Tierney M.P., Kirschner B.S. Thalidomide use and outcomes in pediatric patients with Crohn disease refractory to infliximab and adalimumab. J. Pediatr. Gastroenterol. Nutr. 2012;54:28–33.
    1. Denadaia R., Vieira Teixeiraa F., Steinwurzb F., Romitic R., Saad-Hossnea R. Induction or exacerbation of psoriatic lesions during anti-TNF-α therapy for inflammatory bowel disease: A systematic literature review based on 222 cases. J. Crohn’s Colitis. 2013;7:517–524. doi: 10.1016/j.crohns.2012.08.007.
    1. Uyanikoglu A., Ermis F., Akyuz F., Pinarbasi B., Baran B., Aydogan T., Demir K., Besisik F., Kaymakoglu S. Infliximab in inflammatory bowel disease: Attention to adverse events. Eur. Rev. Med. Pharmacol. Sci. 2014;18:2337–2342.
    1. Lakatos P.L., Miheller P. Is there an increased risk of lymphoma and malignancies under anti-TNF therapy in IBD? Curr. Drug Targets. 2010;11:179–186. doi: 10.2174/138945010790309867.
    1. Stallmach A., Hagel S., Bruns T. Adverse effects of biologics used for treating IBD. Best Pract. Res. Clin. Gastroenterol. 2010;24:167–182. doi: 10.1016/j.bpg.2010.01.002.
    1. Van Assche G., D’haens G., Noman M., Vermeire S., Hiele M., Asnong K., Arts J., D’hoore A., Penninckx F., Rutgeerts P. Randomized, double-blind comparison of 4 mg/kg versus 2 mg/kg intravenous cyclosporine in severe ulcerative colitis. Gastroenterology. 2003;125:1025–1031. doi: 10.1016/S0016-5085(03)01214-9.
    1. Rabizadeh S., Dubinsky M. Update in pediatric inflammatory bowel disease. Rheum. Dis. Clin. North Am. 2013;39:789–799. doi: 10.1016/j.rdc.2013.03.010.
    1. Goel A., Kunnumakkara A.B., Aggarwal B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008;75:787–809. doi: 10.1016/j.bcp.2007.08.016.
    1. Esatbeyoglu T., Huebbe P., Ernst I.M.A., Chin D., Wagner A.E., Rimbach G. Curcumin-from molecule to biological function. Angew. Chem. Int. Ed. 2012;51:5308–5332. doi: 10.1002/anie.201107724.
    1. Rahmani A.H., al Zohairy M.A., Aly S.M., Khan M.A. Curcumin: A potential candidate in prevention of cancer via modulation of molecular pathways. Biomed. Res. Int. 2014;2014:761608. doi: 10.1155/2014/761608.
    1. Balogun E., Hoque M., Gong P., Killeen E., Green C.J., Foresti R., Alam J., Motterlini R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 2003;371:887–895. doi: 10.1042/BJ20021619.
    1. Schrader C., Schiborr C., Frank J., Rimbach G. Curcumin induces paraoxonase 1 in cultured hepatocytes in vitro but not in mouse liver in vivo. Br. J. Nutr. 2011;105:167–170. doi: 10.1017/S0007114510004356.
    1. Rahman I. Antioxidant therapeutic advances in COPD. Ther. Adv. Respir. Dis. 2008;2:351–374. doi: 10.1177/1753465808098224.
    1. Yang J.Y., Zhong X., Yum H.W., Lee H.J., Kundu J.K., Na H.K., Surh Y.J. Curcumin Inhibits STAT3 Signaling in the Colon of Dextran Sulfate Sodium-treated Mice. J. Cancer Prev. 2013;18:186–191. doi: 10.15430/JCP.2013.18.2.186.
    1. Hong J., Bose M., Ju J., Ryu J.H., Chen X., Sang S., Lee M.J., Yang C.S. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: Effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis. 2004;25:1671–1679. doi: 10.1093/carcin/bgh165.
    1. Singh S., Aggarwal B.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected] J. Biol. Chem. 1995;270:24995–5000. doi: 10.1074/jbc.270.42.24995.
    1. Plummer S.M., Holloway K.A., Manson M.M., Munks R.J., Kaptein A., Farrow S., Howells L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene. 1999;18:6013–6020. doi: 10.1038/sj.onc.1202980.
    1. Bharti A.C., Donato N., Singh S., Aggarwal B.B. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 2003;101:1053–1062. doi: 10.1182/blood-2002-05-1320.
    1. Lin J.K. Suppression of protein kinase C and nuclear oncogene expression as possible action mechanisms of cancer chemoprevention by Curcumin. Arch. Pharm. Res. 2004;27:683–692. doi: 10.1007/BF02980135.
    1. Shishodia S., Amin H.M., Lai R., Aggarwal B.B. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol. 2005;70:700–713. doi: 10.1016/j.bcp.2005.04.043.
    1. Aggarwal S., Ichikawa H., Takada Y., Sandur S.K., Shishodia S., Aggarwal B.B. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol. Pharmacol. 2006;69:195–206.
    1. Mackenzie G.G., Queisser N., Wolfson M.L., Fraga C.G., Adamo A.M., Oteiza P.I. Curcumin induces cell-arrest and apoptosis in association with the inhibition of constitutively active NF-kappaB and STAT3 pathways in Hodgkin’s lymphoma cells. Int. J. Cancer. 2008;123:56–65. doi: 10.1002/ijc.23477.
    1. Aggarwal B.B., Shishodia S., Takada Y., Banerjee S., Newman R.A., Bueso-Ramos C.E., Price J.E. Curcumin suppresses the paclitaxel-induced nuclear factor NF-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res. 2005;11:7490–7498. doi: 10.1158/1078-0432.CCR-05-1192.
    1. Wang H.M., Zhao Y.X., Zhang S., Liu G.D., Kang W.Y., Tang H.D., Ding J.Q., Chen S.D. PPAR gamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes. J. Alzheimer Dis. 2010;20:1189–1199.
    1. Jin C.Y., Lee J.D., Park C., Choi Y.H., Kim G.Y. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacol. Sin. 2007;28:645–651.
    1. Goel A., Boland C.R., Chauhan D.P. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett. 2001;172:111–118. doi: 10.1016/S0304-3835(01)00655-3.
    1. Aggarwal B.B., Kumar A., Bharti A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003;23:363–398.
    1. Woo M.S., Jung S.H., Kim S.Y., Hyun J.W., Ko K.H., Kim W.K., Kim H.S. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem. Biophys. Res. Commun. 2005;335:1017–1025. doi: 10.1016/j.bbrc.2005.07.174.
    1. Hassan Z.K., Daghestani M.H. Curcumin effect onMMPs and TIMPs genes in a breast cancer cell line. Asian Pac. J. Cancer Prev. 2012;13:3259–3264. doi: 10.7314/APJCP.2012.13.7.3259.
    1. Lee K.W., Kim J.H., Lee H.J., Surh Y.J. Curcumin inhibits phorbol ester-induced up-regulation of cyclooxygenase-2 and matrix metalloproteinase-9 by blocking ERK1/2 phosphorylation and NF-kappaB transcriptional activity in MCF10A human breast epithelial cells. Antioxid. Redox Signal. 2005;7:1612–1620. doi: 10.1089/ars.2005.7.1612.
    1. Reuter S., Gupta S.C., Park B., Goel A., Aggarwal B.B. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr. 2011;6:93–108. doi: 10.1007/s12263-011-0222-1.
    1. Bora-Tatar G., Dayangaç-Erden D., Demir A.S., Dalkara S., Yelekçi K., Erdem-Yurter H. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. Bioorg. Med. Chem. 2009;17:5219–5228. doi: 10.1016/j.bmc.2009.05.042.
    1. Liu H.L., Chen Y., Cui G.H., Zhou J.F. Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation. Acta Pharmacol. Sin. 2005;26:603–609. doi: 10.1111/j.1745-7254.2005.00081.x.
    1. Chen Y., Shu W., Chen W., Wu Q., Liu H., Cui G. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin. Pharmacol. Toxicol. 2007;101:427–433. doi: 10.1111/j.1742-7843.2007.00142.x.
    1. Lee S.J., Krauthauser C., Maduskuie V., Fawcett P.T., Olson J.M., Rajasekaran S.A. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer. 2011;11:144. doi: 10.1186/1471-2407-11-144.
    1. Marcu M.G., Jung Y.J., Lee S., Chung E.J., Lee M.J., Trepel J., Neckers L. Curcumin is an inhibitor of p300 histone acetylatransferase. Med. Chem. 2006;2:169–174. doi: 10.2174/157340606776056133.
    1. Kang J., Chen J., Shi Y., Jia J., Zhang Y. Curcumin-induced histone hypoacetylation: The role of reactive oxygen species. Biochem. Pharmacol. 2005;69:1205–1213. doi: 10.1016/j.bcp.2005.01.014.
    1. Balasubramanyam K., Varier R.A., Altaf M., Swaminathan V., Siddappa N.B., Ranga U., Kundu T.K. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 2004;279:51163–51171. doi: 10.1074/jbc.M409024200.
    1. Morimoto T., Sunagawa Y., Kawamura T., Takaya T., Wada H., Nagasawa A., Komeda M., Fujita M., Shimatsu A., Kita T., et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Investig. 2008;118:868–878.
    1. Saini S., Arora S., Majid S., Shahryari V., Chen Y., Deng G., Yamamura S., Ueno K., Dahiya R. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev. Res. (Phila) 2011;4:1698–1709. doi: 10.1158/1940-6207.CAPR-11-0267.
    1. Sun M., Estrov Z., Ji Y., Coombes K.R., Harris D.H., Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol. Cancer Ther. 2008;7:464–473. doi: 10.1158/1535-7163.MCT-07-2272.
    1. Zhang J., Zhang T., Ti X., Shi J., Wu C., Ren X., Yin H. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem. Biophys. Res. Commun. 2010;399:1–6. doi: 10.1016/j.bbrc.2010.07.013.
    1. Jiang A.J., Jiang G., Li L.T., Zheng J.N. Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells. Mol. Biol. Rep. 2014 doi: 10.1007/s11033-014-3769-2.
    1. Ravindran J., Prasad S., Aggarwal B.B. Curcumin and cancer cells: How many ways can curry kill tumor cells selectively? AAPS J. 2009;11:495–510. doi: 10.1208/s12248-009-9128-x.
    1. Mezzanotte L., An N., Mol I.M., Löwik C.W., Kaijzel E.L. A new multicolor bioluminescence imaging platform to investigate NF-κB activity and apoptosis in human breast cancer cells. PLoS One. 2014;9:e85550. doi: 10.1371/journal.pone.0085550.
    1. Sa G., Das T. Anticancer effects of curcumin: Cycle of life and death. Cell Div. 2008;3:14. doi: 10.1186/1747-1028-3-14.
    1. Park M.J., Kim E.H., Park I.C., Lee H.C., Woo S.H., Lee J.Y., Hong Y.J., Rhee C.H., Choi S.H., Shim B.S., et al. Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int. J. Oncol. 2002;21:379–383.
    1. Weinberg R.A. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–330. doi: 10.1016/0092-8674(95)90385-2.
    1. Srivastava R.K., Chen Q., Siddiqui I., Sarva K., Shankar S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21/WAF1/CIP1. Cell Cycle. 2007;6:2953–2961. doi: 10.4161/cc.6.23.4951.
    1. Mukhopadhyay A., Banerjee S., Stafford L.J., Xia C., Liu M., Aggarwal B.B. Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene. 2002;21:8852–8861. doi: 10.1038/sj.onc.1206048.
    1. Shankar S., Srivastava R.K. Involvement of Bcl-2 family members, phosphatidylinositol 3'-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int. J. Oncol. 2007;30:905–918.
    1. Tourkina E., Gooz P., Oates J.C., Ludwicka-Bradley A., Silver R.M., Hoffman S. Curcumin-induced apoptosis in scleroderma lung fibroblasts: Role of protein kinase cepsilon. Am. J. Respir. Cell Mol. Biol. 2004;31:28–35. doi: 10.1165/rcmb.2003-0354OC.
    1. Yu J., Zhou X., He X., Dai M., Zhang Q. Curcumin induces apoptosis involving bax/bcl-2 in human hepatoma SMMC-7721 cells. Asian Pac. J. Cancer Prev. 2011;12:1925–1929.
    1. Choudhuri T., Pal S., Agwarwal M.L., Das T., Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512:334–340. doi: 10.1016/S0014-5793(02)02292-5.
    1. Elamin M.H., Shinwari Z., Hendrayani S.F., Al-Hindi H., Al-Shail E., Khafaga Y., Al-Kofide A., Aboussekhra A. Curcumin inhibits the sonic hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol. Carcinog. 2010;49:302–314.
    1. Limtrakul P., Anuchapreeda S., Lipigorngoson S., Dunn F.W. Inhibition of carcinogen induced c-Ha-ras and cfos proto-oncogenes expression by dietary curcumin. BMC Cancer. 2001;1:1. doi: 10.1186/1471-2407-1-1.
    1. Seol D.W., Chen Q., Zarnegar R. Transcriptional activation of the hepatocyte growth factor receptor (c-met) gene by its ligand (hepatocyte growth factor) is mediated through AP-1. Oncogene. 2000;19:1132–1137. doi: 10.1038/sj.onc.1203404.
    1. Bangaru M.L.Y., Chen S., Woodliff J., Kansra S. Curcumin (diferuloylmethane) induces apoptosis and blocks migration of humanmedulloblastoma cells. Anticancer Res. 2010;30:499–504.
    1. Chen A., Xu J., Johnson A.C. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene. 2006;25:278–287.
    1. Korutla L., Cheung J.Y., Mendelsohn J., Kumar R. Inhibition of ligand-induced activation of epidermal growth factor receptor tyrosine phosphorylation by curcumin. Carcinogenesis. 1995;16:1741–1745. doi: 10.1093/carcin/16.8.1741.
    1. Dorai T., Gehani N., Katz A. Therapeutic potential of curcumin in human prostate cancer. II. Curcumin inhibits tyrosine kinase activity of epidermal growth factor receptor and depletes the protein. Mol. Urol. 2000;4:1–6.
    1. Hong R.L., Spohn W.H., Hung M.C. Curcumin inhibits tyrosine kinase activity of p185neu and also depletes p185neu. Clin. Cancer Res. 1999;5:1884–1891.
    1. Camacho-Barquero L., Villegas I., Sáànchez-Calvo J.M., Talero E., Sánchez-Fidalgo S., Motilva V., Alarcón de la Lastra C. Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int. Immunopharmacol. 2007;7:333–342. doi: 10.1016/j.intimp.2006.11.006.
    1. Catz S.D., Johnson J.L. Transcriptional regulation of bcl-2 by nuclear factor kappaB and its significance in prostate cancer. Oncogene. 2001;20:7342–7351. doi: 10.1038/sj.onc.1204926.
    1. Herrmann J.L., Briones F., Jr., Brisbay S., Logothetis C.J., McDonnell T.J. Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functionalBcl-2 and p53. Oncogene. 1998;17:2889–2899. doi: 10.1038/sj.onc.1202221.
    1. Kunnumakkara A.B., Guha S., Krishnan S., Diagaradjane P., Gelovani J., Aggarwal B.B. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res. 2007;67:3853–3861. doi: 10.1158/0008-5472.CAN-06-4257.
    1. Chua C.C., Hamdy R.C., Chua B.H.L. Mechanism of transforming growth factor-beta1-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells. Biochim. Biophys. Acta. 2000;1497:69–76. doi: 10.1016/S0167-4889(00)00040-9.
    1. Chadalapaka G., Jutooru I., Chintharlapalli S., Papineni S., Smith R., 3rd, Li X., Safe S. Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res. 2008;68:5345–5354. doi: 10.1158/0008-5472.CAN-07-6805.
    1. Yu S., Shen G., Khor T.O., Kim J.H., Kong A.N.T. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol. Cancer Ther. 2008;7:2609–2620. doi: 10.1158/1535-7163.MCT-07-2400.
    1. Thapliyal R., Maru G.B. Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food Chem. Toxicol. 2001;39:541–547. doi: 10.1016/S0278-6915(00)00165-4.
    1. Firozi P.F., Aboobaker V.S., Bhattacharya R.K. Action of curcumin on the cytochrome P450-system catalyzing the activation of aflatoxin B1. Chem. Biol. Interact. 1996;100:41–51. doi: 10.1016/0009-2797(95)03684-9.
    1. Ciolino H.P., Daschner P.J., Wang T.T.Y., Yeh G.C. Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 inMCF-7 human breast carcinoma cells. Biochem. Pharmacol. 1998;56:197–206.
    1. Singh S.V., Hu X., Srivastava S.K., Singh M., Xia H., Orchard J.L., Zaren H.A. Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis. 1998;19:1357–1360. doi: 10.1093/carcin/19.8.1357.
    1. Thapliyal R., Deshpande S.S., Maru G.B. Mechanism(s) of turmeric-mediated protective effects against benzo(a)pyrenederived DNA adducts. Cancer Lett. 2002;175:79–88. doi: 10.1016/S0304-3835(01)00675-9.
    1. Sharma R.A., Ireson C.R., Verschoyle R.D., Hill K.A., Williams M.L., Leuratti C., Manson M.M., Marnett L.J., Steward W.P., et al. Effects of dietary curcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: Relationship with drug levels. Clin. Cancer Res. 2001;7:1452–1458.
    1. Nishinaka T., Ichijo Y., Ito M., Kimura M., Katsuyama M., Iwata K., Miura T., Terada T., Yabe-Nishimura C. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicol. Lett. 2007;170:238–247. doi: 10.1016/j.toxlet.2007.03.011.
    1. Piper J.T., Singhal S.S., Salameh M.S., Torman R.T., Awasthi Y.C., Awasthi S. Mechanisms of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in rat liver. Int. J. Biochem. Cell Biol. 1998;30:445–456. doi: 10.1016/S1357-2725(98)00015-6.
    1. Valentine S.P., le Nedelec M.J., Menzies A.R., Scandlyn M.J., Goodin M.G., Rosengren R.J. Curcumin modulates drug metabolizing enzymes in the female SwissWebster mouse. Life Sci. 2006;78:2391–2398. doi: 10.1016/j.lfs.2005.09.017.
    1. Garg R., Gupta S., Maru G.B. Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: Mechanism of its anti-initiating action. Carcinogenesis. 2008;29:1022–1032. doi: 10.1093/carcin/bgn064.
    1. Guo H., Xu Y.M., Ye Z.Q., Yu J.H., Hu X.Y. Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor. Pharmazie. 2013;68:431–434.
    1. Nakamura K., Yasunaga Y., Segawa T., Ko D., Moul J.W., Srivastava S., Rhim J.S. Curcumin downregulates AR gene expression and activation in prostate cancer cell lines. Int. J. Oncol. 2002;21:825–380.
    1. Tsui K.H., Feng T.H., Lin C.M., Chang P.L., Juang H.H. Curcumin blocks the activation of androgen and interlukin-6 on prostate-specific antigen expression in human prostatic carcinoma cells. J. Androl. 2008;29:661–668. doi: 10.2164/jandrol.108.004911.
    1. Braidy N., Grant R., Adams S., Guillemin G.J. Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J. 2010;277:368–382. doi: 10.1111/j.1742-4658.2009.07487.x.
    1. Matteucci A., Cammarota R., Paradisi S., Varano M., Balduzzi M., Leo L., Bellenchi G.C., de Nuccio C., Carnovale-Scalzo G., Scorcia G., et al. Curcumin protects against NMDA-induced toxicity: A possible role for NR2A subunit. Investig. Ophthalmol. Vis. Sci. 2011;52:1070–1077. doi: 10.1167/iovs.10-5966.
    1. Matteucci A., Frank C., Domenici M.R., Balduzzi M., Paradisi S., Carnovale-Scalzo G., Scorcia G., Malchiodi-Albedi F. Curcumin treatment protects rat retinal neurons against excitotoxicity: Effect on N-methyl-D: -aspartate-induced intracellular Ca(2+) increase. Exp. Brain Res. 2005;167:641–648. doi: 10.1007/s00221-005-0068-0.
    1. Wang R., Li Y.B., Li Y.H., Xu Y., Wu H.L., Li X.J. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res. 2008;1210:84–91. doi: 10.1016/j.brainres.2008.01.104.
    1. Yazawa K., Kihara T., Shen H., Shimmyo Y., Niidome T., Sugimoto H. Distinct mechanisms underlie distinct polyphenol-induced neuroprotection. FEBS Lett. 2006;580:6623–6628. doi: 10.1016/j.febslet.2006.11.011.
    1. Zhu Y.G., Chen X.C., Chen Z.Z., Zeng Y.Q., Shi G.B., Su Y.H., Peng X. Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol. Sin. 2004;25:1606–1612.
    1. Wang Q., Sun A.Y., Simonyi A., Jensen M.D., Shelat P.B., Rottinghaus G.E., MacDonald R.S., Miller D.K., Lubahn D.E., Weisman G.A., et al. Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J. Neurosci. Res. 2005;82:138–148. doi: 10.1002/jnr.20610.
    1. Rastogi M., Ojha R.P., Rajamanickam G.V., Agrawal A., Aggarwal A., Dubey G.P. Curcuminoids modulates oxidative damage and mitochondrial dysfunction in diabetic rat brain. Free Radical Res. 2008;42:999–1005. doi: 10.1080/10715760802571988.
    1. Sood P.K., Nahar U., Nehru B. Curcumin attenuates aluminum-induced oxidative stress and mitochondrial dysfunction in rat brain. Neurotoxic. Res. 2011;20:351–361. doi: 10.1007/s12640-011-9249-8.
    1. Bhullar K.S., Jha A., Youssef D., Rupasinghe H.P. Curcumin and its carbocyclic analogs: Structure-activity in relation to antioxidant and selected biological properties. Molecules. 2013;18:5389–5404. doi: 10.3390/molecules18055389.
    1. Somchit M., Changtam C., Kimseng R., Utaipan T., Lertcanawanichakul M., Suksamrarn A., Chunglok W. Demethoxycurcumin from Curcuma longa rhizome suppresses iNOS induction in an in vitro inflamed human intestinal mucosa model. Asian Pac. J. Cancer Prev. 2014;15:1807–1810. doi: 10.7314/APJCP.2014.15.4.1807.
    1. Li Y.B., Gao J.L., Zhong Z.F., Hoi P.M., Lee S.M., Wang Y.T. Bisdemethoxycurcumin suppresses MCF-7 cells proliferation by inducing ROS accumulation and modulating senescence-related pathways. Pharmacol. Rep. 2013;65:700–709. doi: 10.1016/S1734-1140(13)71048-X.
    1. Gupta S.C., Patchva S., Aggarwal B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013;15:195–218. doi: 10.1208/s12248-012-9432-8.
    1. Zhou H., Beevers C.S., Huang S. The targets of curcumin. Curr. Drug Targets. 2011;12:332–347. doi: 10.2174/138945011794815356.
    1. Kurien B.T., Singh A., Matsumoto H., Scofield R.H. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev. Technol. 2007;5:567–576. doi: 10.1089/adt.2007.064.
    1. Chignell C.F., Bilski P., Reszka K.J., Motten A.G., Sik R.H., Dahl T.A. Spectral and photochemical properties of curcumin. Photochem. Photobiol. 1994;59:295–302. doi: 10.1111/j.1751-1097.1994.tb05037.x.
    1. Rajasekaran S.A. Therapeutic potential of curcumin in gastrointestinal diseases. World J. Gastrointest. Pathophysiol. 2011;15:1–14. doi: 10.4291/wjgp.v2.i1.1.
    1. Taylor R.A., Leonard M.C. Curcumin for inflammatory bowel disease: A review of human studies. Altern. Med. Re. 2011;16:152–156.
    1. Hanai H., Sugimoto K. Curcumin has bright prospects for the treatment of inflammatory bowel disease. Curr. Pharm. Des. 2009;15:2087–2094. doi: 10.2174/138161209788489177.
    1. Hanai H., Iida T., Takeuchi K., Watanabe F., Maruyama Y., Andoh A., Tsujikawa T., Fujiyama K., Mitsuyama K., Sata M., et al. Curcumin maintenance therapy for ulcertive colitis: Randomized, multicenter, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol. 2006;4:1502–1506. doi: 10.1016/j.cgh.2006.08.008.
    1. Billerey-Larmonier C., Uno J.K., Larmonier N., Midura A.J., Timmermann B., Ghishan F.K., Kiela P.R. Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent. Inflamm. Bowel Dis. 2008;14:780–793. doi: 10.1002/ibd.20348.
    1. Epstein J., Sanderson I.R., MacDonald T.T. Curcumin as a therapeutic agent: The evidence from in vitro animal and human studies. Br. J. Nutr. 2010;103:407–412.
    1. Epstein J., Docena G., MacDonald T.T., Sanderson I.R. Curcumin suppresses p38 mitogen-activated protein kinase activation, reduces IL-1B and matrix metalloproteinase-3 and anhances IL-10 in the mucosa of children and adults with inflammatory bowel disease. Br. J. Nutr. 2010;103:824–832. doi: 10.1017/S0007114509992510.
    1. Holt P.R., Katz S., Kirshoff R. Curcumin therapy in inflammatory bowel disease: A pilot study. Dig. Dis. Sci. 2005;50:2191–2193. doi: 10.1007/s10620-005-3032-8.
    1. Salh B., Assi K., Templeman V., Parhar K., Owen D., Gómez-Muñoz A., Jacobson K. Curcumin attenuates DNB-induced murine colitis. Am. J. Physiol. Gastrointest. Liver. Physiol. 2003;285:G235–G243.
    1. Ukil A., Maity S., Karmakar S., Datta N., Vedasiromoni J.R., Das P.K. Curcumin, the major component of food flavour turmetic, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br. J. Pharmacol. 2003;139:209–218. doi: 10.1038/sj.bjp.0705241.
    1. Nones K., Dommels Y.E., Martell S., Butts C., McNabb W.C., Park Z.A., Zhu S., Hedderley D., Barnett M.P., Roy N.C. The effects of dietary curcumin and rutin on colonic inflammation and gene expression in multidrug resistance gene-deficient (mdrla-/-) mice, a model of inflammatory bowel diseases. Br. J. Nutr. 2009;101:169–181. doi: 10.1017/S0007114508009847.
    1. Kang B.Y., Song Y.J., Kim K.M., Choe Y.K., Hwang S.Y., Kim T.S. Curcumin inhibits Th1 cytokine profile in CD4 T cells by suppressing interleukin-12 production in macrophages. Br. J. Pharmacol. 1999;128:380–384. doi: 10.1038/sj.bjp.0702803.
    1. Zhang M., Deng C.S., Zheng J.J., Xia J. Curcumin regulated shift from Th1 to Th2 in trinitrobenzene sulphonic acid-induced chronic colitis. Acta Pharmacol. Sin. 2006;27:1071–1077. doi: 10.1111/j.1745-7254.2006.00322.x.
    1. Suskind D.L., Wahbeh G., Burpee T., Cohen M., Christie D., Webwe W. Tolerability of curcumin in pediatric inflammatory bowel disease: A forced-dose titration study. J. Pediatr. Gastroneterol. Nutr. 2013;56:277–279. doi: 10.1097/MPG.0b013e318276977d.
    1. Lahiff C., Moss A.C.M. Curcumin for clinical and endoscopic remission in ulcerative colitis. Inflamm. Bowel Dis. 2011;17:E66. doi: 10.1002/ibd.21710.
    1. Gasparini C., Celeghini C., Monasta L., Zauli G. NF-κB pathways in hematological malignancies. Cell. Mol. Life Sci. 2014;71:2083–2102. doi: 10.1007/s00018-013-1545-4.
    1. Ghosh S., Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109:S81–S96. doi: 10.1016/S0092-8674(02)00703-1.
    1. Kawai T., Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006.
    1. Lawrence T., Fong C. The resolution of inflammation: Anti-inflammatory roles for NF-kappaB. Int. J. Biochem. Cell Biol. 2010;42:519–523. doi: 10.1016/j.biocel.2009.12.016.
    1. Lawrence T., Gilroy D.W., Colville-Nash P.R., Willoughby D.A. Possible new role for NF-kappaB in the resolution of inflammation. Nat. Med. 2001;7:1291–1297. doi: 10.1038/nm1201-1291.
    1. Buhrmann C., Mobasheri A., Matis U., Shakibaei M. Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment. Arthritis Res. Ther. 2010;12:R127. doi: 10.1186/ar3065.
    1. Shakibaei M., John T., Schulze-Tanzil G., Lehmann I., Mobasheri A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem. Pharmacol. 2007;73:1434–1445. doi: 10.1016/j.bcp.2007.01.005.
    1. Buhrmann C., Mobasheri A., Busch F., Aldinger C., Stahlmann R., Montaseri A., Shakibaei M. Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: Role of the phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 2011;286:28556–28566. doi: 10.1074/jbc.M111.256180.
    1. Lee K.H. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J. Nat. Prod. 2010;73:500–516. doi: 10.1021/np900821e.
    1. Anand P., Kunnumakkara A.B., Newman R.A., Aggarwal B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007;4:807–818. doi: 10.1021/mp700113r.
    1. Zhongfa L., Chiu M., Wang J., Chen W., Yen W., Fan-Havard P., Yee LD., Chan K.K. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother. Pharmacol. 2012;69:679–689. doi: 10.1007/s00280-011-1749-y.
    1. Lopez-Lazaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol. Nutr. Food Res. 2008;52:S103–S127.
    1. Xia Y.Q., Wei X.Y., Li W.L., Kanchana K., Xu C.C., Chen D.H., Chou P.H., Jin R., Wu J.Z., Liang G. Curcumin Analogue A501 induces G2/M Arrest and Apoptosis in Non-small Cell Lung Cancer Cells. Asian Pac. J. Cancer Prev. 2014;15:6893–6898. doi: 10.7314/APJCP.2014.15.16.6893.
    1. Son Y., Lee J.H., Cheong Y.K., Chung H.T., Pae H.O. Antidiabetic potential of the heme oxygenase-1 inducer curcumin analogues. Biomed. Res. Int. 2013;2013:918039. doi: 10.1155/2013/918039.
    1. Yuan X., Li H., Bai H., Su Z., Xiang Q., Wang C., Zhao B., Zhang Y., Zhang Q., Chu Y., et al. Synthesis of novel curcumin analogues for inhibition of 11β-hydroxysteroid dehydrogenase type 1 with anti-diabetic properties. Eur. J. Med. Chem. 2014;77:223–230. doi: 10.1016/j.ejmech.2014.03.012.
    1. Anthwal A., Thakur B.K., Rawat M.S., Rawat D.S., Tyagi A.K., Aggarwal B.B. Synthesis, Characterization and in Vitro Anticancer Activity of C-5 Curcumin Analogues with Potential to Inhibit TNF-α-Induced NF-κB Activation. BioMed Res. Int. 2014;2014:524161. doi: 10.1155/2014/524161.
    1. Sardjiman S.S., Reksohadiprodjo M.S., Hakim L., van der Goot H., Timmerman H. 1,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship. Eur. J. Med. Chem. 1997;32:625–630.
    1. Di Bello M.G., Masini E., Ioannides C., Ndisang J.F., Raspanti S., Sacchi T.B., Mannaioni P.F. Histamine release from rat mast cells induced by the metabolic activation of drugs of abuse into free radicals. Inflamm. Res. 1998;47:122–130. doi: 10.1007/s000110050299.
    1. Mannaioni P.F., Bello M.G.D., Raspanti S., Mugnai L., Romano V., Masini E. Free radical mediated release of histamine from rat mast cells induced by drugs of abuse. Inflamm. Res. 1996;45:S25–S26. doi: 10.1007/BF03354072.
    1. Nugroho A.E., Ikawati Z., Sardjiman, Maeyama K. Effects of benzylidenecyclopentanone analogues of curcumin on histamine release from mast cells. Biol. Pharm. Bull. 2009;32:842–849. doi: 10.1248/bpb.32.842.
    1. Naksuriya O., Okonogi S., Schiffelers R.M., Hennink W.E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35:3365–3383. doi: 10.1016/j.biomaterials.2013.12.090.
    1. Ghalandarlaki N., Alizadeh A.M., Ashkani-Esfahani S. Nanotechnology-applied curcumin for different diseases therapy. BioMed Res. Int. 2014;2014:394264. doi: 10.1155/2014/394264.
    1. Beloqui A., Coco R., Memvanga P.B., Ucakar B., des Rieux A., Préat V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int. J. Pharm. 2014;473:203–212. doi: 10.1016/j.ijpharm.2014.07.009.
    1. Gugulothu D., Kulkarni A., Patravale V., Dandekar P. pH-sensitive nanoparticles of curcumin-celecoxib combination: Evaluating drug synergy in ulcerative colitis model. J. Pharm. Sci. 2014;103:687–696. doi: 10.1002/jps.23828.
    1. Yadav V.R., Suresh S., Devi K., Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 2009;10:752–762. doi: 10.1208/s12249-009-9264-8.

Source: PubMed

3
購読する