Pharmacokinetics comparison of two pegylated interferon alfa formulations in healthy volunteers

Marisa Boff Costa, Paulo Dornelles Picon, Guilherme Becker Sander, Hugo Nodarse Cuni, Carmen Valenzuela Silva, Rolando Páez Meireles, Ana Carolina Magalhães Andrade Góes, Nadia Maria Batoreu, Maria de Lourdes de Sousa Maia, Elizabeth Maciel Albuquerque, Denise Cristina de Souza Matos, Pedro Lopez Saura, Marisa Boff Costa, Paulo Dornelles Picon, Guilherme Becker Sander, Hugo Nodarse Cuni, Carmen Valenzuela Silva, Rolando Páez Meireles, Ana Carolina Magalhães Andrade Góes, Nadia Maria Batoreu, Maria de Lourdes de Sousa Maia, Elizabeth Maciel Albuquerque, Denise Cristina de Souza Matos, Pedro Lopez Saura

Abstract

Background: Several countries have used pegylation technology to improve the pharmacokinetic properties of essential drugs. Recently, a novel interferon alfa-2b protein conjugated to four-branched 12 kDa polyethylene glycol molecules was developed jointly between Cuba and Brazil. The aim of this study was to compare the pharmacokinetic properties of BIP48 (pegylated interferon alfa-2b from Bio-Manguinhos/Fiocruz, Brazil) to those of PEGASYS® (commercially available pegylated interferon alfa-2a from Roche Pharmaceutical).

Methods: This phase I, single-centre, randomized, double-blind crossover trial enrolled 31 healthy male volunteers aged 19 to 35 who were allocated to two stages, either side of a 5-week wash-out period, with each arm lasting 14 consecutive days after subcutaneous administration of 180 μg of one formulation or the other (study or comparator). The main outcome variable was serum pegylated interferon concentrations in 15 samples collected during the course of the study and tested using an enzyme immunoassay.

Results: There were no differences between formulations in terms of magnitude or absorption parameters. Analysis of time parameters revealed that BIP48 remained in the body significantly longer than PEGASYS® (Tmax: 73 vs. 54 h [p = 0.0010]; MRT: 133 vs. 115 h [p = 0.0324]; ke: 0.011 vs. 0.013 h(-1) [p = 0.0153]; t1/2: 192 vs. 108 h [p = 0.0218]).

Conclusion: BIP48 showed the expected pharmacokinetic profile for a pegylated product with a branched molecular structure. Compared to PEGASYS®, the magnitude absorption was similar, but time parameters were consistent with slower elimination. Further studies should be conducted to evaluate the clinical implications of these findings. A phase II-III repeated-dose clinical trial is ongoing to study these findings in patients with chronic hepatitis C virus infection.

Trial registration: This study is registered on the ClinicalTrials.gov platform (accession number NCT01889849 ). This trial was retrospectively registered in June 2013.

Keywords: Pegylated interferon-alfa; Pharmacokinetics; Phase I.

Conflict of interest statement

Ethics approval and consent to participate

All applicable international, national, and/or institutional guidelines were followed. The protocol was approved by the Ethic Committee of Hospital de Clínicas de Porto Alegre – Universidade Federal do Rio Grande do Sul by the number 09.581. All subjects were informed in oral and written form that they could withdraw from the trial any time for any reason. Consent was obtained in written form before any trial-related activities, and the investigator retained the consent forms.

Consent for publication

Not applicable.

Competing interests

RPM, HNC, PLS and CV are employees of the Clinical Trials Division, Center for Biological Research, which is part of the Center for Genetic Engineering and Biotechnology (CGEB), Havana network, where IFN alfa-2b 48 kDa was developed. ACG, NMB, MLM, EMA, and DSM are employed by Bio-Manguinhos/Fiocruz, where IFN alfa-2b 48 kDa was produced. The other authors have no competing interests. CGEB and BioManguinhos/Fiocruz hold patents on BIP48. Both are nonprofit government institutions in the service of the Ministries of Health of Cuba and Brazil respectively.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Mean serum concentration (pg/ml) X time (hours) curves for formulations A (PEGASYS®) and B (BIP48)
Fig. 2
Fig. 2
Mean logarithmic serum concentration (pg/ml) X time (hours) curves for formulations A (PEGASYS®) and B (BIP48)

References

    1. Qi Y, Chilkoti A. Protein-polymer conjugation-moving beyond PEGylation. Curr Opin Chem Biol. 2015 Oct; 28:181-193. PubMed PMID: 26356631. eng.
    1. Zhang X, Wang H, Ma Z, Wu B. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert Opin Drug Metab Toxicol. 2014 Dec; 10(12): 1691-1702. PubMed PMID: 25270687. eng.
    1. Lindsay KL, Trepo C, Heintges T, Shiffman ML, Gordon SC, Hoefs JC. et al. A randomized, double-blind trial comparing pegylated interferon alfa-2b to interferon alfa-2b as initial treatment for chronic hepatitis C. Hepatology. 2001 Aug; 34(2): 395-403. PubMed PMID: 11481625. eng.
    1. Reddy KR, Wright TL, Pockros PJ, Shiffman M, Everson G, Reindollar R. et al. Efficacy and safety of pegylated (40-kd) interferon alpha-2a compared with interferon alpha-2a in noncirrhotic patients with chronic hepatitis C. Hepatology. 2001 Feb; 33(2):433-438. PubMed PMID: 11172346. eng.
    1. Castanheira LG, Barbano DB, Rech N. Current development in regulation of similar biotherapeutic products in Brazil. Biologicals. 2011 Sep; 39(5): 308-311. PubMed PMID: 21868247. eng.
    1. Ramon J, Saez V, Baez R, Aldana R, Hardy E. PEGylated interferon-alpha2b: a branched 40K polyethylene glycol derivative. Pharm res. 2005 Aug; 22(8): 1374-1386. PubMed PMID: 16078148. eng.
    1. Páez-Meireles R, Castro-Odio FR, Hernández JR, Torres D, Cosme C, Nodarse H, et al. Increased bioavailability of IFN a 2b modificed by chemical conjugation to a two-branched polyethyleneglycol molecule. Biotecnol Apl, jul-sep. 2015;32(3):3521–3523.
    1. García-García I, González-Delgado CA, Valenzuela-Silva CM, Díaz-Machado A, Cruz-Díaz M, Nodarse-Cuní H, et al. Pharmacokinetic and pharmacodynamic comparison of two “pegylated” interferon alpha-2 formulations in healthy male volunteers: a randomized, crossover, double-blind study. BMC Pharmacol. 2010;10:15. PubMed PMID: 21092287. eng.
    1. Fan J, de Lannoy IA. Pharmacokinetics. Biochem Pharmacol. 2014 Jan 1; 87(1):93-120. PubMed PMID: 24055064. eng.
    1. Gabrielsson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. 4. Stockholm: Swedish Pharmaceutical Press; 2006.
    1. Asahina Y, Izumi N, Umeda N, Hosokawa T, Ueda K, Doi F, Tsuchiya K. et al. Pharmacokinetics and enhanced PKR response in patients with chronic hepatitis C treated with pegylated interferon alpha-2b and ribavirin. J Viral Hepat. 2007 Jun; 14(6): 396-403. PubMed PMID: 17501760. eng.
    1. Reddy KR. Development and pharmacokinetics and pharmacodynamics of pegylated interferon alfa-2a (40 kD). Semin Liver Dis. 2004; 24 Suppl 2:33-38. PubMed PMID: 15346244. eng.
    1. Bruno R, Sacchi P, Cima S, Maiocchi L, Novati S, Filice G, et al. Comparison of peginterferon pharmacokinetic and pharmacodynamic profiles. J Viral Hepat. 2012 Jan; 19 Suppl 1:33-36. PubMed PMID: 22233411 eng.
    1. Foster G. Pegylated Interferons for the treatment of chronic hepatitis C. Pharmacological and clinical differences between Peginterferon-a-2a and Peginterferon-a-2b. Drugs. 2010; 70(2):147-165. PubMed PMID: 20108989. eng.
    1. Richter WF, Jacobsen B. Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metab Dispos. 2014 Nov; 42(11): 1881-1889. PubMed PMID: 25100673. eng.
    1. Vinogradova SV, Zhudenkov KV, Benson N, Van Der Graaf PH, Demin OV, Karelina TA. Prediction of long-term treatment outcome in HCV following 24 day PEG-IFN alpha-2b therapy using population pharmacokinetic-pharmacodynamic mixture modeling and classification analysis. J Theor Biol. 2015 Oct 7; 382:91-98. PubMed PMID: 26163367. eng.
    1. Khakoo S, Glue P, Grellier L, Wells B, Bell A, Dash C. et al. Ribavirin and interferon alfa-2b in chronic hepatitis C: assessment of possible pharmacokinetic and pharmacodynamic interactions. Br J Clin Pharmacol. 1998 Dec; 46(6): 563-570. PubMed PMID: 9862245. eng.
    1. Scavone C, Sportiello L, Rafaniello C, Mascolo A, Sessa M, Rossi F. et al. New era in treatment options of chronic hepatitis C: focus on safety of new direct-acting antivirals (DAAs). Expert Opin Drug Saf. 2016 Dec; 15(sup2): 85-100. PubMed PMID: 27875916. eng.
    1. Pan American Health Organization, Data from: Reporting on Strategic Information on Viral Hepatitis B and C Survey 2015–16, Washington DC, PAHO, 2016.
    1. Langhans B, Nischalke HD, Krämer B, Hausen A, Dold L, van Heteren P. et al. Increased peripheral CD4<sup>+</sup> regulatory T cells persist after successful direct-acting antiviral treatment of chronic hepatitis C. J Hepatol. 2016 Dec 29. [Epub ahead of print]. PubMed PMID: 28040549. eng.
    1. Eigentler TK, Gutzmer R, Hauschild A, Heinzerling L, Schadendorf D, Nashan D. et al. Adjuvant treatment with pegylated interferon α-2a versus low-dose interferon α-2a in patients with high-risk melanoma: a randomized phase III DeCOG trial. Ann Oncol. 2016 Aug; 27(8): 1625-1632. PubMed PMID: 27287206. eng.
    1. Koskenvesa P, Kreutzman A, Rohon P, Pihlman M, Vakkila E, Räsänen A. et al. Imatinib and pegylated IFN-α2b discontinuation in first-line chronic myeloid leukemia patients following a major molecular response. Eur J Haematol. 2014; 92(5): 413-420. PubMed PMID: 24372965. eng.
    1. Moriya F, Ogasawara S, Basaki Y, Akiba J, Kojiro S, Fukahori S. et al. Growth inhibitory effects of pegylated IFN-alpha2b and 5-fluorouracil in combination on renal cell carcinoma cell lines in vitro and in vivo. Int J Oncol. 2008 Oct; 33(4): 647-655. PubMed PMID: 18813777. eng.

Source: PubMed

3
購読する