An Exploratory Study of Spectroscopic Glutamatergic Correlates of Cortical Excitability in Depressed Adolescents

Charles P Lewis, John D Port, Mark A Frye, Jennifer L Vande Voort, Stephanie H Ameis, Mustafa M Husain, Zafiris J Daskalakis, Paul E Croarkin, Charles P Lewis, John D Port, Mark A Frye, Jennifer L Vande Voort, Stephanie H Ameis, Mustafa M Husain, Zafiris J Daskalakis, Paul E Croarkin

Abstract

Introduction: Transcranial magnetic stimulation (TMS) research has suggested dysfunction in cortical glutamatergic systems in adolescent depression, while proton magnetic resonance spectroscopy (1H-MRS) studies have demonstrated deficits in concentrations of glutamatergic metabolites in depressed individuals in several cortical regions, including the anterior cingulate cortex (ACC). However, few studies have combined TMS and MRS methods to examine relationships between glutamatergic neurochemistry and excitatory and inhibitory neural functions, and none have utilized TMS-MRS methodology in clinical populations or in youth. This exploratory study aimed to examine relationships between TMS measures of cortical excitability and inhibition and concentrations of glutamatergic metabolites as measured by 1H-MRS in depressed adolescents. Methods: Twenty-four adolescents (aged 11-18 years) with depressive symptoms underwent TMS testing, which included measures of the resting motor threshold (RMT), cortical silent period (CSP), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF). Fourteen participants from the same sample also completed 1H-MRS in a 3 T MRI scanner after TMS testing. Glutamate + glutamine (Glx) concentrations were measured in medial ACC and left primary motor cortex voxels with a TE-optimized PRESS sequence. Metabolite concentrations were corrected for cerebrospinal fluid (CSF) after tissue segmentation. Pearson product-moment and Spearman rank-order correlations were calculated to assess relationships between TMS measures and [Glx]. Results: In the left primary motor cortex voxel, [Glx] had a significant positive correlation with the RMT. In the medial ACC voxel, [Glx] had significant positive correlations with ICF at the 10-ms and 20-ms interstimulus intervals (ISIs). Conclusion: These preliminary data implicate glutamate in cortical excitatory processes measured by TMS. Limitations included small sample size, lack of healthy control comparators, possible age- and sex-related effects, and observational nature of the study. Further research aimed at examining the relationship between glutamatergic metabolite concentrations measured through MRS and the excitatory and inhibitory physiology measured through TMS is warranted. Combined TMS-MRS methods show promise for future investigations of the pathophysiology of depression in adults as well as in children and adolescents.

Keywords: child and adolescent; cortical excitability; depression; glutamate; proton magnetic resonance spectroscopy; transcranial magnetic stimulation.

Figures

Figure 1
Figure 1
Proton magnetic resonance spectrum from the anterior cingulate cortex (ACC). Spectroscopic data were acquired via a TE-optimized PRESS sequence (TE 80 ms) at 3 T. Quantitative analysis was performed by LCModel (Provencher, 1993). Note the dominant glutamate (Glu) peak at 2.34 ppm. Also shown are signal peaks of choline (Cho), creatine (Cr) and n-acetylaspartate (NAA).
Figure 2
Figure 2
Electromyography (EMG) of unconditioned, inhibited and facilitated motor evoked potentials (MEPs). (A) Following a single transcranial magnetic stimulation (TMS) pulse (at time = 0) to the primary motor cortex at an intensity above the resting motor threshold (RMT), an MEP is detected by EMG in the corresponding muscle. (B) In the short-interval intracortical inhibition (SICI) paradigm, a subthreshold conditioning stimulus (at time = 0) is administered to the primary motor cortex. After a 2-ms or 4-ms interstimulus interval (4-ms shown), a second, suprathreshold test stimulus is delivered. The resulting MEP is diminished in amplitude, i.e., inhibited. (C) In the intracortical facilitation (ICF) paradigm, a subthreshold conditioning stimulus (at time = 0) and a subsequent suprathreshold test stimulus are administered to the primary motor cortex, separated by a 10-ms, 15-ms, or 20-ms interstimulus interval (15-ms shown). This results in an MEP that is facilitated, or increased in amplitude.
Figure 3
Figure 3
EMG of the cortical silent period (CSP). In a muscle exhibiting tonic motor activity (A), a single TMS pulse at 140% of the RMT (B) is delivered to the corresponding area of the primary motor cortex. This is followed by the CSP (C), a quiescent interval that ends with resumption of motor activity (D).
Figure 4
Figure 4
Location of proton magnetic resonance spectroscopy (1H-MRS) voxels. (A) Axial localizer slice indicating the location of the midline anterior cingulate voxel. This voxel encompasses the pregenual ACC of both cerebral hemispheres. (B) Coronal localizer slice indicating the location of the left primary motor cortex voxel. The arrowhead indicates the vitamin E capsule which was placed directly over the abductor pollicis brevis (APB) point as determined by TMS. (C) Axial oblique localizer slice showing another view of the left primary motor cortex voxel. The center of the voxel is located immediately beneath the vitamin E capsule, encompassing the hand knob area of the primary motor cortex.

References

    1. Auer D. P., Pütz B., Kraft E., Lipinski B., Schill J., Holsboer F. (2000). Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol. Psychiatry 47, 305–313.
    1. Bajbouj M., Lisanby S. H., Lang U. E., Danker-Hopfe H., Heuser I., Neu P. (2006). Evidence for impaired cortical inhibition in patients with unipolar major depression. Biol. Psychiatry 59, 395–400.
    1. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Methodol. 57, 289–300.
    1. Bernstein I. H., Rush A. J., Trivedi M. H., Hughes C. W., Macleod L., Witte B. P., et al. . (2010). Psychometric properties of the Quick Inventory of Depressive Symptomatology in adolescents. Int. J. Methods Psychiatr. Res. 19, 185–194.
    1. Bestmann S., Feredoes E. (2013). Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present and future. Ann. N Y Acad. Sci. 1296, 11–30.
    1. Block W., Träber F., von Widdern O., Metten M., Schild H., Maier W., et al. . (2009). Proton MR spectroscopy of the hippocampus at 3 T in patients with unipolar major depressive disorder: correlates and predictors of treatment response. Int. J. Neuropsychopharmacol. 12, 415–422.
    1. Cantello R., Gianelli M., Civardi C., Mutani R. (1992). Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology 42, 1951–1959.
    1. Chugani D. C., Muzik O., Juhász C., Janisse J. J., Ager J., Chugani H. T. (2001). Postnatal maturation of human GABAA receptors measured with positron emission tomography. Ann. Neurol. 49, 618–626.
    1. Croarkin P. E., Levinson A. J., Daskalakis Z. J. (2011). Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci. Biobehav. Rev. 35, 818–825.
    1. Croarkin P. E., Nakonezny P. A., Husain M. M., Melton T., Buyukdura J. S., Kennard B. D., et al. . (2013). Evidence for increased glutamatergic cortical facilitation in children and adolescents with major depressive disorder. JAMA Psychiatry 70, 291–299.
    1. Croarkin P. E., Nakonezny P. A., Lewis C. P., Zaccariello M. J., Huxsahl J. E., Husain M. M., et al. . (2014). Developmental aspects of cortical excitability and inhibition in depressed and healthy youth: an exploratory study. Front. Hum. Neurosci. 8:669.
    1. Croarkin P. E., Nakonezny P. A., Wall C. A., Murphy L. L., Sampson S. M., Frye M. A., et al. . (2016). Transcranial magnetic stimulation potentiates glutamatergic neurotransmission in depressed adolescents. Psychiatry Res. Neuroim. 247, 25–33.
    1. Day B. L., Marsden C. D., Rothwell J. C., Thompson P. D., Ugawa Y. (1989a). An investigation of the EMG silent period following stimulation of the brain in normal man. J. Physiol. 414:14P.
    1. Day B. L., Rothwell J. C., Thompson P. D., Maertens de Noordhout A., Nakashima K., Shannon K., et al. . (1989b). Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man. Evidence for the storage of motor programs in the brain. Brain 112, 649–663.
    1. Devinsky O., Morrell M. J., Vogt B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain 118, 279–306.
    1. Di Lazzaro V., Oliviero A., Meglio M., Cioni B., Tamburrini G., Tonali P., et al. . (2000). Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin. Neurophysiol. 111, 794–799.
    1. Di Lazzaro V., Oliviero A., Profice P., Pennisi M. A., Pilato F., Zito G., et al. . (2003). Ketamine increases human motor cortex excitability to transcranial magnetic stimulation. J. Physiol. 547, 485–496.
    1. Di Lazzaro V., Oliviero A., Saturno E., Dileone M., Pilato F., Nardone R., et al. . (2005). Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. J. Physiol. 564, 661–668.
    1. Di Lazzaro V., Pilato F., Dileone M., Profice P., Ranieri F., Ricci V., et al. . (2007). Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: a TMS study. Clin. Neurophysiol. 118, 2207–2214.
    1. Di Lazzaro V., Pilato F., Oliviero A., Dileone M., Saturno E., Mazzone P., et al. . (2006). Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans. J. Neurophysiol. 96, 1765–1771.
    1. Di Lazzaro V., Restuccia D., Oliviero A., Profice P., Ferrara L., Insola A., et al. . (1998). Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp. Brain Res. 119, 265–268.
    1. Dubin M. J., Mao X., Banerjee S., Goodman Z., Lapidus K. A., Kang G., et al. . (2016). Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. J. Psychiatry Neurosci. 41, E37–E45.
    1. Duncan C. E., Webster M. J., Rothmond D. A., Bahn S., Elashoff M., Shannon Weickert C. (2010). Prefrontal GABAA receptor α-subunit expression in normal postnatal human development and schizophrenia. J. Psychiatr. Res. 44, 673–681.
    1. Epperson C. N., Haga K., Mason G. F., Sellers E., Gueorguieva R., Zhang W., et al. . (2002). Cortical γ-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch. Gen. Psychiatry 59, 851–858.
    1. Epperson C. N., O’Malley S., Czarkowski K. A., Gueorguieva R., Jatlow P., Sanacora G., et al. . (2005). Sex, GABA, and nicotine: the impact of smoking on cortical GABA levels across the menstrual cycle as measured with proton magnetic resonance spectroscopy. Biol. Psychiatry 57, 44–48.
    1. Fisher R. J., Nakamura Y., Bestmann S., Rothwell J. C., Bostock H. (2002). Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp. Brain Res. 143, 240–248.
    1. Frye M. A., Watzl J., Banakar S., O’Neill J., Mintz J., Davanzo P., et al. . (2007). Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology 32, 2490–2499.
    1. Fuhr P., Agostino R., Hallett M. (1991). Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr. Clin. Neurophysiol. 81, 257–262.
    1. Gabbay V., Hess D. A., Liu S., Babb J. S., Klein R. G., Gonen O. (2007). Lateralized caudate metabolic abnormalities in adolescent major depressive disorder: a proton MR spectroscopy study. Am. J. Psychiatry 164, 1881–1889.
    1. Garvey M. A., Ziemann U., Bartko J. J., Denckla M. B., Barker C. A., Wassermann E. M. (2003). Cortical correlates of neuromotor development in healthy children. Clin. Neurophysiol. 114, 1662–1670.
    1. Gilbert D. L., Bansal A. S., Sethuraman G., Sallee F. R., Zhang J., Lipps T., et al. . (2004). Association of cortical disinhibition with tic, ADHD, and OCD severity in Tourette syndrome. Mov. Disord. 19, 416–425.
    1. Gilbert D. L., Isaacs K. M., Augusta M., MacNeil L. K., Mostofsky S. H. (2011). Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology 76, 615–621.
    1. Gussew A., Rzanny R., Erdtel M., Scholle H. C., Kaiser W. A., Mentzel H. J., et al. . (2010). Time-resolved functional 1H MR spectroscopic detection of glutamate concentration changes in the brain during acute heat pain stimulation. Neuroimage 49, 1895–1902.
    1. Hanajima R., Furubayashi T., Iwata N. K., Shiio Y., Okabe S., Kanazawa I., et al. . (2003). Further evidence to support different mechanisms underlying intracortical inhibition of the motor cortex. Exp. Brain Res. 151, 427–434.
    1. Hanajima R., Ugawa Y. (2008). “Paired-pulse measures,” in The Oxford Handbook of Transcranial Stimulation, eds. Wassermann E. M., Epstein C. M., Ziemann U., Walsh V., Paus T., Lisanby S. H. (Oxford: Oxford University Press; ), 103–118.
    1. Hanajima R., Ugawa Y., Terao Y., Sakai K., Furubayashi T., Machii K., et al. . (1998). Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J. Physiol. 509, 607–618.
    1. Harada M., Kubo H., Nose A., Nishitani H., Matsuda T. (2011). Measurement of variation in the human cerebral GABA level by in vivo MEGA-editing proton MR spectroscopy using a clinical 3 T instrument and its dependence on brain region and the female menstrual cycle. Hum. Brain Mapp. 32, 828–833.
    1. Hasler G., Neumeister A., van der Veen J. W., Tumonis T., Bain E. E., Shen J., et al. . (2005). Normal prefrontal gamma-aminobutyric acid levels in remitted depressed subjects determined by proton magnetic resonance spectroscopy. Biol. Psychiatry 58, 969–973.
    1. Hasler G., van der Veen J. W., Tumonis T., Meyers N., Shen J., Drevets W. C. (2007). Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry 64, 193–200.
    1. Heinen F., Glocker F.-X., Fietzek U., Meyer B.-U., Lücking C.-H., Korinthenberg R. (1998). Absence of transcallosal inhibition following focal magnetic stimulation in preschool children. Ann. Neurol. 43, 608–612.
    1. Horn D. I., Yu C., Steiner J., Buchmann J., Kaufmann J., Osoba A., et al. . (2010). Glutamatergic and resting-state functional connectivity correlates of severity in major depression–the role of pregenual anterior cingulate cortex and anterior insula. Front. Syst. Neurosci. 4:33.
    1. Ilić T. V., Meintzschel F., Cleff U., Ruge D., Kessler K. R., Ziemann U. (2002). Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J. Physiol. 545, 153–167.
    1. Keel J. C., Smith M. J., Wassermann E. M. (2001). A safety screening questionnaire for transcranial magnetic stimulation. Clin. Neurophysiol. 112:720.
    1. Kondo D. G., Hellem T. L., Sung Y. H., Kim N., Jeong E.-K., DelMastro K. K., et al. . (2011). Review: magnetic resonance spectroscopy studies of pediatric major depressive disorder. Depress. Res. Treat. 2011:650450.
    1. Kreis R. (2016). The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn. Reson. Med. 75, 15–18.
    1. Krystal J. H., Sanacora G., Blumberg H., Anand A., Charney D. S., Marek G., et al. . (2002). Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol. Psychiatry 7, S71–S80.
    1. Kujirai T., Caramia M. D., Rothwell J. C., Day B. L., Thompson P. D., Ferbert A., et al. . (1993). Corticocortical inhibition in human motor cortex. J. Physiol. 471, 501–519.
    1. Lefaucheur J. P., Lucas B., Andraud F., Hogrel J. Y., Bellivier F., Del Cul A., et al. . (2008). Inter-hemispheric asymmetry of motor corticospinal excitability in major depression studied by transcranial magnetic stimulation. J. Psychiatr. Res. 42, 389–398.
    1. Levinson A. J., Fitzgerald P. B., Favalli G., Blumberger D. M., Daigle M., Daskalakis Z. J. (2010). Evidence of cortical inhibitory deficits in major depressive disorder. Biol. Psychiatry 67, 458–464.
    1. Lewis C. P., Nakonezny P. A., Ameis S. H., Vande Voort J. L., Husain M. M., Emslie G. J., et al. . (2016). Cortical inhibitory and excitatory correlates of depression severity in children and adolescents. J. Affect. Disord. 190, 566–575.
    1. Liepert J., Schwenkreis P., Tegenthoff M., Malin J.-P. (1997). The glutamate antagonist riluzole suppresses intracortical facilitation. J. Neural Transm. 104, 1207–1214.
    1. Maddock R. J., Buonocore M. H. (2012). MR spectroscopic studies of the brain in psychiatric disorders. Curr. Top. Behav. Neurosci. 11, 199–251.
    1. Maddock R. J., Casazza G. A., Buonocore M. H., Tanase C. (2011). Vigorous exercise increases brain lactate and Glx (glutamate+glutamine): a dynamic 1H-MRS study. Neuroimage 57, 1324–1330.
    1. Mall V., Berweck S., Fietzek U. M., Glocker F.-X., Oberhuber U., Walther M., et al. . (2004). Low level of intracortical inhibition in children shown by transcranial magnetic stimulation. Neuropediatrics 35, 120–125.
    1. Mangia S., Tkáč I., Gruetter R., Van de Moortele P.-F., Maraviglia B., Uğurbil K. (2007). Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J. Cereb. Blood Flow Metab. 27, 1055–1063.
    1. Marcoli M., Agnati L. F., Benedetti F., Genedani S., Guidolin D., Ferraro L., et al. . (2015). On the role of the extracellular space on the holistic behavior of the brain. Rev. Neurosci. 26, 489–506.
    1. Merkl A., Schubert F., Quante A., Luborzewski A., Brakemeier E.-L., Grimm S., et al. . (2011). Abnormal cingulate and prefrontal cortical neurochemistry in major depression after electroconvulsive therapy. Biol. Psychiatry 69, 772–779.
    1. Michael N., Erfurth A., Ohrmann P., Arolt V., Heindel W., Pfleiderer B. (2003a). Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol. Med. 33, 1277–1284.
    1. Michael N., Erfurth A., Ohrmann P., Arolt V., Heindel W., Pfleiderer B. (2003b). Neurotrophic effects of electroconvulsive therapy: a proton magnetic resonance study of the left amygdalar region in patients with treatment-resistant depression. Neuropsychopharmacology 28, 720–725.
    1. Mirza Y., O’Neill J., Smith E. A., Russell A., Smith J. M., Banerjee S. P., et al. . (2006). Increased medial thalamic creatine-phosphocreatine found by proton magnetic resonance spectroscopy in children with obsessive-compulsive disorder versus major depression and healthy controls. J. Child Neurol. 21, 106–111.
    1. Mirza Y., Tang J., Russell A., Banerjee S. P., Bhandari R., Ivey J., et al. . (2004). Reduced anterior cingulate cortex glutamatergic concentrations in childhood major depression. J. Am. Acad. Child Adolesc. Psychiatry 43, 341–348.
    1. Moll G. H., Heinrich H., Gevensleben H., Rothenberger A. (2006). Tic distribution and inhibitory processes in the sensorimotor circuit during adolescence: a cross-sectional TMS study. Neurosci. Lett. 403, 96–99.
    1. Moll G. H., Heinrich H., Wischer S., Tergau F., Paulus W., Rothenberger A. (1999). Motor system excitability in healthy children: developmental aspects from transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. Suppl. 51, 243–249.
    1. Mullins P. G., Rowland L. M., Jung R. E., Sibbitt W. L., Jr. (2005). A novel technique to study the brain’s response to pain: proton magnetic resonance spectroscopy. Neuroimage 26, 642–646.
    1. Nezu A., Kimura S., Uehara S., Kobayashi T., Tanaka M., Saito K. (1997). Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application. Brain Dev. 19, 176–180.
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113.
    1. Paulus W., Classen J., Cohen L. G., Large C. H., Di Lazzaro V., Nitsche M., et al. . (2008). State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul. 1, 151–163.
    1. Paus T. (2001). Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2, 417–424.
    1. Pfleiderer B., Michael N., Erfurth A., Ohrmann P., Hohmann U., Wolgast M., et al. . (2003). Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res. 122, 185–192.
    1. Port J. D., Unal S. S., Mrazek D. A., Marcus S. M. (2008). Metabolic alterations in medication-free patients with bipolar disorder: a 3T CSF-corrected magnetic resonance spectroscopic imaging study. Psychiatry Res. 162, 113–121.
    1. Portella M. J., de Diego-Adeliño J., Gómez-Ansón B., Morgan-Ferrando R., Vives Y., Puigdemont D., et al. . (2011). Ventromedial prefrontal spectroscopic abnormalities over the course of depression: a comparison among first episode, remitted recurrent and chronic patients. J. Psychiatr. Res. 45, 427–434.
    1. Poznanski E. O., Grossman J. A., Buchsbaum Y., Banegas M., Freeman L., Gibbons R. (1984). Preliminary studies of the reliability and validity of the children’s depression rating scale. J. Am. Acad. Child Psychiatry 23, 191–197.
    1. Pratt L. A., Brody D. J. (2014). Depression in the U.S. Household Population, 2009–2012. NCHS Data Brief No. 172. (Hyattsville, MD: National Center for Health Statistics; ).
    1. Provencher S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679.
    1. Radhu N., de Jesus D. R., Ravindran L. N., Zanjani A., Fitzgerald P. B., Daskalakis Z. J. (2013). A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clin. Neurophysiol. 124, 1309–1320.
    1. Rakhade S. N., Jensen F. E. (2009). Epileptogenesis in the immature brain: emerging mechanisms. Nat. Rev. Neurol. 5, 380–391.
    1. Rosenberg D. R., MacMaster F. P., Mirza Y., Smith J. M., Easter P. C., Banerjee S. P., et al. . (2005). Reduced anterior cingulate glutamate in pediatric major depression: a magnetic resonance spectroscopy study. Biol. Psychiatry 58, 700–704.
    1. Rosenberg D. R., Mirza Y., Russell A., Tang J., Smith J. M., Banerjee S. P., et al. . (2004). Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls. J. Am. Acad. Child Adolesc. Psychiatry 43, 1146–1153.
    1. Rossini P. M., Burke D., Chen R., Cohen L. G., Daskalakis Z., Di Iorio R., et al. . (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 126, 1071–1107.
    1. Sanacora G., Gueorguieva R., Epperson C. N., Wu Y.-T., Appel M., Rothman D. L., et al. . (2004). Subtype-specific alterations of γ-aminobutyric acid and glutamate in patients with major depression. Arch. Gen. Psychiatry 61, 705–713.
    1. Sanacora G., Saricicek A. (2007). GABAergic contributions to the pathophysiology of depression and the mechanism of antidepressant action. CNS Neurol. Disord. Drug Targets 6, 127–140.
    1. Sandbrink F. (2008). “The MEP in clinical neurodiagnosis,” in The Oxford Handbook of Transcranial Stimulation, eds Wassermann E. M., Epstein C. M., Ziemann U., Walsh V., Paus T., Lisanby S. H. (Oxford: Oxford University Press; ), 237–283.
    1. Schwenkreis P., Liepert J., Witscher K., Fischer W., Weiller C., Malin J.-P., et al. . (2000). Riluzole suppresses motor cortex facilitation in correlation to its plasma level. A study using transcranial magnetic stimulation. Exp. Brain Res. 135, 293–299.
    1. Schwenkreis P., Witscher K., Janssen F., Addo A., Dertwinkel R., Zenz M., et al. . (1999). Influence of the N-methyl-D-aspartate antagonist memantine on human motor cortex excitability. Neurosci. Lett. 270, 137–140.
    1. Siebner H. R., Dressnandt J., Auer C., Conrad B. (1998). Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve 21, 1209–1212.
    1. Silverstein F. S., Jensen F. E. (2007). Neonatal seizures. Ann. Neurol. 62, 112–120.
    1. Smith M. J., Adams L. F., Schmidt P. J., Rubinow D. R., Wassermann E. M. (2003). Abnormal luteal phase excitability of the motor cortex in women with premenstrual syndrome. Biol. Psychiatry 54, 757–762.
    1. Smith M. J., Keel J. C., Greenberg B. D., Adams L. F., Schmidt P. J., Rubinow D. A., et al. . (1999). Menstrual cycle effects on cortical excitability. Neurology 53, 2069–2072.
    1. Stagg C. J., Bestmann S., Constantinescu A. O., Moreno Moreno L., Allman C., Mekle R., et al. . (2011). Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J. Physiol. 589, 5845–5855.
    1. Steele J. D., Glabus M. F., Shajahan P. M., Ebmeier K. P. (2000). Increased cortical inhibition in depression: a prolonged silent period with transcranial magnetic stimulation (TMS). Psychol. Med. 30, 565–570.
    1. Taylor M. J., Selvaraj S., Norbury R., Jezzard P., Cowen P. J. (2009). Normal glutamate but elevated myo-inositol in anterior cingulate cortex in recovered depressed patients. J. Affect. Disord. 119, 186–189.
    1. Tremblay S., Beaulé V., Proulx S., de Beaumont L., Marjańska M., Doyon J., et al. . (2013). Relationship between transcranial magnetic stimulation measures of intracortical inhibition and spectroscopy measures of GABA and glutamate+glutamine. J. Neurophysiol. 109, 1343–1349.
    1. Tremblay S., Beaulé V., Proulx S., Tremblay S., Marjańska M., Doyon J., et al. . (2014). Multimodal assessment of primary motor cortex integrity following sport concussion in asymptomatic athletes. Clin. Neurophysiol. 125, 1371–1379.
    1. Werhahn K. J., Kunesch E., Noachtar S., Benecke R., Classen J. (1999). Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J. Physiol. 517, 591–597.
    1. Wolters A., Ziemann U., Benecke R. (2008). “The cortical silent period,” in The Oxford Handbook of Transcranial Stimulation, eds Wassermann E. M., Epstein C. M., Ziemann U., Walsh V., Paus T., Lisanby S. H. (Oxford: Oxford University Press; ), 91–102.
    1. Yildiz-Yesiloglu A., Ankerst D. P. (2006). Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res. 147, 1–25.
    1. Yüksel C., Öngür D. (2010). Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol. Psychiatry 68, 785–794.
    1. Zalsman G., Oquendo M. A., Greenhill L., Goldberg P. H., Kamali M., Martin A., et al. . (2006). Neurobiology of depression in children and adolescents. Child Adolesc. Psychiatr. Clin. N Am. 15, 843–868, vii–viii.
    1. Ziemann U. (2004). TMS and drugs. Clin. Neurophysiol. 115, 1717–1729.
    1. Ziemann U., Chen R., Cohen L. G., Hallett M. (1998). Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51, 1320–1324.
    1. Ziemann U., Lönnecker S., Steinhoff B. J., Paulus W. (1996a). The effect of lorazepam on the motor cortical excitability in man. Exp. Brain Res. 109, 127–135.
    1. Ziemann U., Rothwell J. C., Ridding M. C. (1996b). Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. 496, 873–881.
    1. Ziemann U., Reis J., Schwenkreis P., Rosanova M., Strafella A., Badawy R., et al. . (2015). TMS and drugs revisited 2014. Clin. Neurophysiol. 126, 1847–1868.

Source: PubMed

3
購読する