Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial

Rocco Salvatore Calabrò, Antonino Naro, Margherita Russo, Placido Bramanti, Luigi Carioti, Tina Balletta, Antonio Buda, Alfredo Manuli, Serena Filoni, Alessia Bramanti, Rocco Salvatore Calabrò, Antonino Naro, Margherita Russo, Placido Bramanti, Luigi Carioti, Tina Balletta, Antonio Buda, Alfredo Manuli, Serena Filoni, Alessia Bramanti

Abstract

Background: The use of neurorobotic devices may improve gait recovery by entraining specific brain plasticity mechanisms, which may be a key issue for successful rehabilitation using such approach. We assessed whether the wearable exoskeleton, Ekso™, could get higher gait performance than conventional overground gait training (OGT) in patients with hemiparesis due to stroke in a chronic phase, and foster the recovery of specific brain plasticity mechanisms.

Methods: We enrolled forty patients in a prospective, pre-post, randomized clinical study. Twenty patients underwent Ekso™ gait training (EGT) (45-min/session, five times/week), in addition to overground gait therapy, whilst 20 patients practiced an OGT of the same duration. All individuals were evaluated about gait performance (10 m walking test), gait cycle, muscle activation pattern (by recording surface electromyography from lower limb muscles), frontoparietal effective connectivity (FPEC) by using EEG, cortico-spinal excitability (CSE), and sensory-motor integration (SMI) from both primary motor areas by using Transcranial Magnetic Stimulation paradigm before and after the gait training.

Results: A significant effect size was found in the EGT-induced improvement in the 10 m walking test (d = 0.9, p < 0.001), CSE in the affected side (d = 0.7, p = 0.001), SMI in the affected side (d = 0.5, p = 0.03), overall gait quality (d = 0.8, p = 0.001), hip and knee muscle activation (d = 0.8, p = 0.001), and FPEC (d = 0.8, p = 0.001). The strengthening of FPEC (r = 0.601, p < 0.001), the increase of SMI in the affected side (r = 0.554, p < 0.001), and the decrease of SMI in the unaffected side (r = - 0.540, p < 0.001) were the most important factors correlated with the clinical improvement.

Conclusions: Ekso™ gait training seems promising in gait rehabilitation for post-stroke patients, besides OGT. Our study proposes a putative neurophysiological basis supporting Ekso™ after-effects. This knowledge may be useful to plan highly patient-tailored gait rehabilitation protocols.

Trial registration: ClinicalTrials.gov , NCT03162263 .

Keywords: Effective connectivity; Ekso™; Plasticity; Stroke recovery; Wearable exoskeleton.

Conflict of interest statement

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Our Local Ethic Committee approved the study. All the patients gave their written informed consent to study participation.

Consent for publication

All the patients gave their written informed consent for publication of any individual person’s data in any form.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Experimental study flow diagram
Fig. 2
Fig. 2
Ekso™ device
Fig. 3
Fig. 3
Primary outcome measures (10MWT 10 m walk test, RMI Rivermead Mobility Index, TUG timed up and go test) assessed at TPRE and TPOST in the two groups (EGT and OGT). Minimally Clinically Important Difference (MCID) and Minimal Detectable Change (MDC) are reported as well. * refer to post-hoc p-values of within-group analysis (significant whether p < 0.016), whereas # refer to p-values of between-group analysis for TPOST-TPRE difference (p < 0.05). Vertical error bars refer to SD
Fig. 4
Fig. 4
Mean gait parameters of the affected and unaffected lower limbs at baseline (TPRE) and after gait training (TPOST) in Ekso™ (EGT) and overground gait training (OGT). Normative values are reported as well (black horizontal lines). * refer to p-values of within-group analysis (significant whether p < 0.008), whereas # refer to p-values of between-group analysis for TPOST-TPRE difference (p < 0.05). Vertical error bars refer to SD
Fig. 5
Fig. 5
Mean muscle activity of the paretic (aff) and non-paretic (unaff) muscles (TA tibialis anterior; S soleus; RF rectus femoris; BF biceps femoris) during gait at baseline (TPRE) and after gait training (TPOST) in EGT and OGT. Normative values are reported as well (black horizontal lines). Vertical error bars refer to SD
Fig. 6
Fig. 6
rTMS outcome measures assessed at TPRE and TPOST in the two groups (EGT and OGT). Left and right columns illustrate the rTMS findings (MEP -motor evoked potential- and SMI -sensory-motor integration- in the affected -aff- and unaffected -unaff- hemispheres) before and after gait training, respectively. * refer to post-hoc p-values of within-group analysis (significant whether p < 0.008), whereas # refer to p-values of between-group analysis for TPOST-TPRE difference (p < 0.05). Vertical error bars refer to SD
Fig. 7
Fig. 7
Shows that the difference in sensory-motor integration (SMI) between the two groups at baseline was not correlated with rTMS-induced SMI aftereffects
Fig. 8
Fig. 8
Illustrates the connectivity paths at baseline and following gait training (EGT and OGT). Red color indicates a path-coefficient increase (significant whether p < 0.0001), while blue color a decrease at TPOST as compared to TPRE. Line thickness indicates whether the TPOST-TPRE changes were detectable only following EGT –thick-, greater following EGT than OGT –medium- or equally significant in both groups –thin. Legend: l left hemisphere; O occipital areas; CP centroparietal areas; PF prefrontal areas; r right hemisphere; SMA supplementary motor area
Fig. 9
Fig. 9
Scatterplot and univariate regression line of electrophysiological outcomes on composite outcome measure (primary) in patients undergoing EGT and OGT

References

    1. Den Otter AR, Geurts AC, Mulder T, Duysens J. Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait. Gait Posture. 2007;25:342–352. doi: 10.1016/j.gaitpost.2006.04.007.
    1. Belda-Lois J-M, Mena-del Horno S, Bermejo-Bosch I, et al. Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil. 2011;8:66. doi: 10.1186/1743-0003-8-66.
    1. Moseley AM, Stark A, Cameron ID. Pollock a treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2005;4:CD002840.
    1. States RA, Pappas E, Salem Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database Syst Rev. 2009;3:CD006075.
    1. Mehrholz J, Thomas S. Elsner B treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2017;8:CD002840.
    1. Schwartz I, Meiner Z. Robotic-assisted gait training in neurological patients: who may benefit? Ann Biomed Eng. 2015;43(5):1260–1269. doi: 10.1007/s10439-015-1283-x.
    1. Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2013;48:387. doi: 10.1682/JRRD.2010.04.0055.
    1. Pennycott A, Wyss D, Vallery H, Klamroth-Marganska V, Riener R. Towards more effective robotic gait training for stroke rehabilitation: a review. J Neuroeng Rehabil. 2012;9:65. doi: 10.1186/1743-0003-9-65.
    1. Bing C, Hao M, Lai-Yin Q, Fei G, Kai-Ming C, Sheung-Wai L, Ling Q, Wei-Hsin L. Recent developments and challenges of lower extremity exoskeletons. J Orthop Translat. 2016;5:26–37. doi: 10.1016/j.jot.2015.09.007.
    1. Janice J, Pei FT. Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. Expert Rev Neurother. 2007;7:1417–1436. doi: 10.1586/14737175.7.10.1417.
    1. Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis. J Clin Neurosci. 2018;48:11–17. doi: 10.1016/j.jocn.2017.10.048.
    1. Molteni F, Gasperini G, Gaffuri M, Colombo M, Giovanzana C, Lorenzon C, et al. Wearable robotic exoskeleton for over-ground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results. Eur J Phys Rehabil Med. 2017;53:676–684.
    1. Calabrò RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, et al. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil. 2017;14:53. doi: 10.1186/s12984-017-0268-4.
    1. Calabrò RS, Cacciola A, Bertè F, Manuli A, Leo A, Bramanti A, Naro A, Milardi D, Bramanti P. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci. 2016;37:503–514. doi: 10.1007/s10072-016-2474-4.
    1. Takeuchi N, Izumi S. Rehabilitation with post-stroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat. 2013;2013:128641.
    1. Hara Y. Brain plasticity and rehabilitation in stroke patients. J Nippon Med Sch. 2015;82(1):4–13. doi: 10.1272/jnms.82.4.
    1. Turner DL, Ramos-Murguialday A, Birbaumer N, Hoffmann U, Luft A. Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations. Front Neurol. 2013;4:184. doi: 10.3389/fneur.2013.00184.
    1. Warraich Z, Kleim JA. Neural plasticity: the biological substrate for neurorehabilitation. PM&R. 2010;2(12 Suppl 2):S208–S219. doi: 10.1016/j.pmrj.2010.10.016.
    1. Schmidt RA, Lee TD. Motor control and learning: a behavioral emphasis. Champaign, IL: Human Kinetics Publishers; 2005.
    1. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–S239. doi: 10.1044/1092-4388(2008/018).
    1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–1702. doi: 10.1016/S0140-6736(11)60325-5.
    1. Hosp JA, Luft AR. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural Plast. 2011;2011:871296. doi: 10.1155/2011/871296.
    1. Feydy A, Carlier R, Roby-Brami A, et al. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke. 2002;33:1610–1617. doi: 10.1161/01.STR.0000017100.68294.52.
    1. Jørgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Støier M, Olsen TS. Outcome and time course of recovery in stroke. Part II: time course of recovery. The Copenhagen stroke study. Arch Phys Med Rehabil. 1995;76(5):406–412. doi: 10.1016/S0003-9993(95)80568-0.
    1. Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, Sankai Y. Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia. Buenos Aires: EMBC; 2010.
    1. Stein J, Bishop L, Stein DJ, Wong CK. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study. Am J Phys Med Rehabil. 2014;93:987–994. doi: 10.1097/PHM.0000000000000119.
    1. Federici S, Meloni F, Bracalenti M, De Filippis ML. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: a systematic review. NeuroRehabilitation. 2015;37(3):321–340. doi: 10.3233/NRE-151265.
    1. Nilsson A, Vreede KS, Häglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton – the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil. 2014;11:92. doi: 10.1186/1743-0003-11-92.
    1. Watanabe H, Tanaka N, Inuta T, Saitou H, Yanagi H. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch Phys Med Rehabil. 2014;95:2006–2012. doi: 10.1016/j.apmr.2014.07.002.
    1. Sivaramakrishnan A, Tahara-Eckl L, Madhavan S. Spatial localization and distribution of the TMS-related 'hot spot' of the tibialis anterior muscle representation in the healthy and post-stroke motor cortex. Neurosci Lett. 2016;627:30–35. doi: 10.1016/j.neulet.2016.05.041.
    1. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2:145–156. doi: 10.1016/S1474-4422(03)00321-1.
    1. Bikmullina R, Bäumer T, Zittel S, Münchau A. Sensory afferent inhibition within and between limbs in humans. Clin Neurophysiol. 2009;120:610–618. doi: 10.1016/j.clinph.2008.12.003.
    1. Naghdi S, Ansari NN, Rastgoo M, Forogh B, Jalaie S, Olyaei G. A pilot study on the effects of low frequency repetitive transcranial magnetic stimulation on lower extremity spasticity and motor neuron excitability in patients after stroke. J Bodyw Mov Ther. 2015;19:616–623. doi: 10.1016/j.jbmt.2014.10.001.
    1. Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage. 2012;63:1203–1211. doi: 10.1016/j.neuroimage.2012.08.019.
    1. Basile LF, Yacubian J, Castro CC, Grattaz WF. Widespread electrical cortical dysfunction in schizophrenia. Schizophr Res. 2004;69:255–266. doi: 10.1016/j.schres.2003.09.018.
    1. Fuchs M, Drenckhahn R, Wischmann HA, Wagner M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng. 1998;45:980–997. doi: 10.1109/10.704867.
    1. Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS. A standardized boundary element method volume conductor model. Clin Neurophysiol. 2002;113:702–712. doi: 10.1016/S1388-2457(02)00030-5.
    1. Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18:49–65. doi: 10.1016/0167-8760(84)90014-X.
    1. Yao J, Dewald JP. Evaluation of different cortical source localization methods using simulated and experimental EEG data. NeuroImage. 2005;25:369–382. doi: 10.1016/j.neuroimage.2004.11.036.
    1. Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MCG, Hell D, Koukkou M. Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenics. Psychiatry Res. 1999;90(3):169–179. doi: 10.1016/S0925-4927(99)00013-X.
    1. Babiloni F, Cincotti F, Basilisco A, Maso E, Bufano M, Babiloni C, et al. Frontoparietal cortical networks revealed by structural equation modeling and high resolution EEG during a short term memory task. 2003.
    1. Friston W, Ungerleider LG, Jezzard P, Turner R. Characterizing modulatory interactions between V1 and V2 in human cortex with i34R.I. Hum Brain Map. 1995;2:211–224. doi: 10.1002/hbm.460020403.
    1. McIntosh AR, Gonzalez-Lima F. Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Map. 1994;2:2–22. doi: 10.1002/hbm.460020104.
    1. Craggs JG, Price DD, Verne GN, Perlstein WM, Robinson MM. Functional brain interactions that serve cognitive-affective processing during pain and placebo analgesia. NeuroImage. 2007;38(4):720–729. doi: 10.1016/j.neuroimage.2007.07.057.
    1. James GA, Lu ZL, VanMeter JW, Sathian K, Hu XP, Butler AJ. Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity post-stroke paresis. Top Stroke Rehabil. 2009;16(4):270–281. doi: 10.1310/tsr1604-270.
    1. Zhuang J, LaConte S, Peltier S, Zhang K, Hu X. Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination. Neurolmage. 2005;25(2):462–470. doi: 10.1016/j.neuroimage.2004.11.007.
    1. Shipley B. Cause and correlation in biology: a User's guide to path analysis, structural equations and causal inference: Cambridge University Press; 2000.
    1. Solodkin A, Hlustik P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. 2004;14(11):1246–1255. doi: 10.1093/cercor/bhh086.
    1. Jonsdottir J, Recalcati M, Rabuffetti M, Casiraghi A, Boccardi S, Ferrarin M. Functional resources to increase gait speed in people with stroke: strategies adopted compared to healthy controls. Gait Posture. 2009;29:355–359. doi: 10.1016/j.gaitpost.2009.01.008.
    1. Boe SG, Rice CL, Doherty TJ. Estimating contraction level using root mean square amplitude in control subjects and patients with neuromuscular disorders. Arch Phys Med Rehabil. 2008;89(4):711–718. doi: 10.1016/j.apmr.2007.09.047.
    1. Hollman JH, McDade EM, Petersen RC. Normative spatiotemporal gait parameters in older adults. Gait Posture. 2011;34(1):111–118. doi: 10.1016/j.gaitpost.2011.03.024.
    1. Oberg T, Karsznia A, Oberg K. Basic gait parameters: reference data for normal subjects, 10-79 years of age. J Rehabil Res Dev. 1993;30(2):210–223.
    1. Dickstein R. Rehabilitation of gait speed after stroke: a critical review of intervention approaches. Neurorehabil Neural Repair. 2008;22(6):649–660. doi: 10.1177/1545968308315997.
    1. Boudarham J, Hameau S, Pradon D, Bensmail D, Roche N, Zory R. Changes in electromyographic activity after botulinum toxin injection of the rectus femoris in patients with hemiparesis walking with a stiff-knee gait. J Electromyogr Kinesiol. 2013;23(5):1036–1043. doi: 10.1016/j.jelekin.2013.07.002.
    1. Jung H, Ko C, Kim JS, Lee B, Lim D. Alterations of relative muscle contribution induced by hemiplegia: straight and turning gaits. Int J Precis Eng Man. 2015;16(10):2219–2227. doi: 10.1007/s12541-015-0286-8.
    1. Louie Dennis R, Eng JJ. Powered robotic exoskeletons in poststroke rehabilitation of gait: a scoping review. J Neuroeng Rehabil. 2016;13:53. doi: 10.1186/s12984-016-0162-5.
    1. Buesing C, Fisch G, O’Donnell M, Shahidi I, Thomas L, Mummidisetty CK, et al. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J NeuroEng Rehabil. 2015;12:69. doi: 10.1186/s12984-015-0062-0.
    1. Kawamoto H, Kamibayashi K, Nakata Y, Yamawaki K, Ariyasu R, Sankai Y, et al. Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol. 2013;13:141. doi: 10.1186/1471-2377-13-141.
    1. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13. doi: 10.1177/1545968308326632.
    1. Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther. 2006;86:1466–1478. doi: 10.2522/ptj.20050266.
    1. Yoshimoto T, Shimizu I, Hiroi Y, Kawaki M, Sato D, Nagasawa M. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: non-randomized pilot study with concurrent control. Int J Rehabil Res. 2015;38:338–343. doi: 10.1097/MRR.0000000000000132.
    1. Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, et al. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J NeuroEng Rehabil. 2015;12:54. doi: 10.1186/s12984-015-0048-y.
    1. Byl NN. Mobility training using a bionic knee orthosis in patients in a post- stroke chronic state: a case series. J Med Case Rep. 2012;6:216. doi: 10.1186/1752-1947-6-216.
    1. Wong CK, Bishop L, Stein J. A wearable robotic knee orthosis for gait training: a case-series of hemiparetic stroke survivors. Prosthetics Orthot Int. 2012;36:113–120. doi: 10.1177/0309364611428235.
    1. Grefkes C, Eickhoff SB, Nowak DA, Dafotakis M, Fink GR. Dynamic intra and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. NeuroImage. 2008;41:1382–1394. doi: 10.1016/j.neuroimage.2008.03.048.
    1. Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H, Fink GR. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol. 2008;63:236–246. doi: 10.1002/ana.21228.
    1. Wang L, Yu C, Chen H, Qin W, He Y, Fan F, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain. 2010;133:1224–1238. doi: 10.1093/brain/awq043.
    1. Priori A, Hallett M, Rothwell JC. Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation. 2009;2:241–245. doi: 10.1016/j.brs.2009.02.004.
    1. Boyd LA, Hayward KS, Ward NS, et al. Biomarkers of stroke recovery: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int J Stroke. 2017;12(5):480–493. doi: 10.1177/1747493017714176.
    1. Debaere F, Swinnen SP, Beatse E, Sunaert S, Van HP, Duysens J. Brain areas involved in interlimb coordination: a distributed network. NeuroImage. 2001;14:947–958. doi: 10.1006/nimg.2001.0892.
    1. Solodkin A, Hlustik P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. 2004;14:1246–1255. doi: 10.1093/cercor/bhh086.
    1. Walsh RR, Small SL, Chen EE, Solodkin A. Network activation during bimanual movements in humans. NeuroImage. 2008;43:540–553. doi: 10.1016/j.neuroimage.2008.07.019.
    1. Xu Y, Hou Q, Russell SD, et al. Neuroplasticity in post-stroke gait recovery and noninvasive brain stimulation. Neural Regen Res. 2015;10(12):2072–2080. doi: 10.4103/1673-5374.172329.
    1. Buetefisch CM. Role of the Contralesional hemisphere in post-stroke recovery of upper extremity motor function. Front Neurol. 2015;6:214. doi: 10.3389/fneur.2015.00214.
    1. Bütefisch CM, Wessling M, Netz J, Seitz RJ, Hömberg V. Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabil Neural Repair. 2008;22:4–21. doi: 10.1177/1545968307301769.
    1. Li W, Li Y, Zhu W, Chen X. Changes in brain functional network connectivity after stroke. Neural Regen Res. 2014;9:51–60. doi: 10.4103/1673-5374.125330.
    1. Eng JJ. Strength training in individuals with stroke. Physiother Can. 2004;56:189–201. doi: 10.2310/6640.2004.00025.
    1. Morone G, Iosa M, Bragoni M, De Angelis D, Venturiero V, Coiro P, Riso R, Pratesi L, Paolucci S. Who may have durable benefit from robotic gait training?: a 2-year follow-up randomized controlled trial in patients with subacute stroke. Stroke. 2012;43(4):1140–1142. doi: 10.1161/STROKEAHA.111.638148.

Source: PubMed

3
購読する