Patterns of non-administration of ordered doses of venous thromboembolism prophylaxis: implications for novel intervention strategies

Kenneth M Shermock, Brandyn D Lau, Elliott R Haut, Deborah B Hobson, Valerie S Ganetsky, Peggy S Kraus, Leigh E Efird, Christoph U Lehmann, Brian L Pinto, Patricia A Ross, Michael B Streiff, Kenneth M Shermock, Brandyn D Lau, Elliott R Haut, Deborah B Hobson, Valerie S Ganetsky, Peggy S Kraus, Leigh E Efird, Christoph U Lehmann, Brian L Pinto, Patricia A Ross, Michael B Streiff

Abstract

Background: Recent studies have documented high rates of non-administration of ordered venous thromboembolism (VTE) prophylaxis doses. Intervention strategies that target all patients have been effective, but prohibitively resource-intensive. We aimed to identify efficient intervention strategies based on patterns of non-administration of ordered VTE prophylaxis.

Methods and findings: In this retrospective review of electronic medication administration records, we included adult hospitalized patients who were ordered pharmacologic VTE prophylaxis with unfractionated heparin or enoxaparin over a seven-month period. The primary measure was the proportion of ordered doses of VTE prophylaxis not administered, assessed at the patient, floor, and floor type levels. Differences in non-administration rates between groups were assessed using generalized estimating equations. A total of 103,160 ordered VTE prophylaxis doses during 10,516 patient visits on twenty-nine patient floors were analyzed. Overall, 11.9% of ordered doses were not administered. Approximately 19% of patients missed at least one quarter and 8% of patients missed over one half of ordered doses. There was marked heterogeneity in non-administration rate at the floor level (range: 5-27%). Patients on medicine floors missed a significantly larger proportion (18%) of ordered doses compared to patients on other floor types (8%, Odds Ratio: 2.4, p<0.0001). However, more than half of patients received at least 86% of their ordered doses, even on the lowest performing floor. The 20% of patients who missed at least two ordered doses accounted for 80% of all missed doses.

Conclusions: A substantial proportion of ordered doses of VTE prophylaxis were not administered. The heterogeneity in non-administration rate between patients, floors, and floor types can be used to target interventions. The small proportion of patients that missed multiple ordered doses accounted for a large majority of non-administered doses. This recognition of the Pareto principle provides opportunity to efficiently target a relatively small group of patients for intervention.

Conflict of interest statement

Competing Interests: Dr. MBS has received research funding from Sanofi-Aventis and Bristol Myers Squibb, honoraria for CME lectures from Sanofi-Aventis and Ortho-McNeil, consulted for Sanofi-Aventis, Eisai, Daiichi-Sankyo, and Janssen HealthCare and has given expert witness testimony in various medical malpractice cases. Dr. ERH is the Primary Investigator of a Mentored Clinician Scientist Development Award K08 1K08HS017952-01 from the Agency for Healthcare Research and Quality entitled “Does Screening Variability Make DVT an Unreliable Quality Measure of Trauma Care?” Dr. ERH receives royalties from Lippincott, Williams, & Wilkins for the book “Avoiding Common ICU Errors” and has given expert witness testimony in various medical malpractice cases. Dr. CUL receives royalties from Springer for the book “Pediatric Informatics” and serves on the board of the American Medical Informatics Association. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Proportion of ordered VTE prophylaxis…
Figure 1. Proportion of ordered VTE prophylaxis doses not administered by floor, with floor type indicated, (M = medicine, S = surgery, N = neurology, I = ICU).
Figure 2. Percentile plot of the percent…
Figure 2. Percentile plot of the percent of ordered doses that were administered for each patient on the patient floor with the highest overall administration rate (black) and the patient floor with the lowest overall administration rate (orange).

References

    1. Heit JA (2005) Venous thromboembolism: disease burden, outcomes and risk factors. Journal of Thrombosis and Haemostasis 3(8): 1611–1617.
    1. United States Department of Health and Human Services. The Surgeon General’s Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism - 2008. Available: . Accessed 13 May 2013.
    1. Geerts WH, Pineo GF, Heit JA, Bergqvist D, Lassen MR, et al.. (2004) Prevention of venous thromboembolism: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126(3 Suppl): 338S–400S.
    1. Sandler DA, Martin JF (1989) Autopsy proven pulmonary embolism in hospital patients: are we detecting enough deep vein thrombosis? J R Soc Med. 82(4): 203–205.
    1. Anderson AF, Wheeler HB, Goldberg RJ, Hosmer DW, Patwardhan NA, et al. (1991) A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism. The Worcester DVT Study. Arch Int Med 151(5): 933–938.
    1. Yu HT, Dylan ML, Lin J, Dubois RW (2007) Hospitals' compliance with prophylaxis guidelines for venous thromboembolism. Am J Health-Syst Pharm 64(1): 69–76.
    1. Amin AN, Lin J, Thompson S, Wiederkehr D (2011) Inpatient and outpatient occurrence of deep vein thrombosis and pulmonary embolism and thromboprophylaxis following selected at-risk surgeries. Ann Pharmacother 45(9): 1045–1052.
    1. Tapson VF, Decousus H, Pini M, Chong BH, Froehlich JB, et al. (2007) Venous thromboembolism prophylaxis in acutely ill hospitalized medical patients: findings from the International Medical Prevention Registry on Venous Thromboembolism. Chest 132(3): 936–945.
    1. Cohen AT, Tapson VF, Bergmann JF, Goldhaber SZ, Kakkar AK, et al. (2008) Venous thromboembolism risk and prophylaxis in the acute hospital care setting (ENDORSE study): a multinational cross-sectional study. Lancet 371(9610): 387–394.
    1. Spencer FA, Lessard D, Emery C, Reed G, Goldberg RJ (2007) Venous thromboembolism in the outpatient setting. Arch Int Med 167(14): 1471.
    1. Goldhaber SZ, Tapson VF (2004) Committee DFS (2004) A prospective registry of 5,451 patients with ultrasound-confirmed deep vein thrombosis. Am J Card 93(2): 259–262.
    1. Michota FA (2007) Bridging the gap between evidence and practice in venous thromboembolism prophylaxis: the quality improvement process. J Gen Int Med 22(12): 1762–1770.
    1. Maynard G, Stein J (2008) Preventing Hospital-Acquired Venous Thromboembolism: A Guide for Effective Quality Improvement. AHRQ Publication No. 08–0075: Agency for Healthcare Research and Quality, Rockville, MD. Available: . Accessed 13 May 2013.
    1. Shojania KG, Duncan BW, McDonald KM, Wachter RM (2001) Making Health Care Safer: A Critical Analysis of Patient Safety Practices. Agency for Healthcare Research and Quality, Rockville, MD. Available: . Accessed 13 May 2013.
    1. Streiff MB, Carolan H, Hobson DB, Kraus PS, Holzmueller C, et al. (2012) Lessons from the John Hopkins multi-disciplinary Venous Thromboembolism (VTE) Prevention Collaborative. BMJ 344: e3935.
    1. Haut ER, Lau BD, Kraenzlin FS, Hobson DB, Kraus PS, et al. (2012) Improved prophylaxis and decreased rates of preventable harm with the use of a mandatory computerized clinical decision support tool for prophylaxis for venous thromboembolism in trauma. Arch Surg 10: 901–7.
    1. Cornwell EE 3rd, Chang D, Velmahos G, Jindal A, Baker D, et al. (2002) Compliance with sequential compression device prophylaxis in at-risk trauma patients: a prospective analysis. Am Surg. 68(5): 470–473.
    1. Comerota AJ, Katz ML, White JV (1992) Why does prophylaxis with external pneumatic compression for deep vein thrombosis fail? Am J Surg 164(3): 265–268.
    1. Fanikos J, Stevens LA, Labreche M, Piazza G, Catapane E, et al. (2010) Adherence to pharmacological thromboprophylaxis orders in hospitalized patients. Am J Med 123(6): 536–541.
    1. Piazza G, Nguyen TN, Morrison R, Cios D, Hohlfelder B, et al. (2012) Patient education program for venous thromboembolism prevention in hospitalized patients. Am J Med 125(3): 258–264.

Source: PubMed

3
購読する