Reduced Muscle Strength Is Associated With Insulin Resistance in Type 2 Diabetes Patients With Osteoarthritis

Oana Patricia Zaharia, Dominik Hans Pesta, Pavel Bobrov, Yuliya Kupriyanova, Christian Herder, Yanislava Karusheva, Kálmán Bódis, Gidon Josia Bönhof, Johannes Knitza, David Simon, Arnd Kleyer, Jong-Hee Hwang, Karsten Müssig, Dan Ziegler, Volker Burkart, Georg Schett, Michael Roden, Julia Szendroedi, Oana Patricia Zaharia, Dominik Hans Pesta, Pavel Bobrov, Yuliya Kupriyanova, Christian Herder, Yanislava Karusheva, Kálmán Bódis, Gidon Josia Bönhof, Johannes Knitza, David Simon, Arnd Kleyer, Jong-Hee Hwang, Karsten Müssig, Dan Ziegler, Volker Burkart, Georg Schett, Michael Roden, Julia Szendroedi

Abstract

Context: Type 2 diabetes is associated with a greater risk for musculoskeletal disorders, yet its impact on joint function remains unclear.

Objective: We hypothesized that patients with type 2 diabetes and osteoarthritis would exhibit musculoskeletal impairment, which would associate with insulin resistance and distinct microRNA profiles.

Methods: Participants of the German Diabetes Study with type 2 diabetes (T2D, n = 39) or normal glucose tolerance (CON, n = 27), both with (+OA) or without osteoarthritis (-OA) underwent intravenous glucose tolerance and hyperinsulinemic-euglycemic clamp tests. Musculoskeletal function was assessed by isometric knee extension strength (KES), grip strength, range of motion (ROM), and balance skills, while neural function was measured by nerve conductance velocity (NCV). Arthritis-related symptoms were quantified using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire, serum arthritis-related microRNA using quantitative polymerase chain reaction.

Results: Insulin sensitivity was lower in T2D+OA vs T2D-OA (4.4 ± 2.0 vs 5.7 ± 3.0 mg* kg-1*min-1) and in CON+OA vs CON-OA (8.1 ± 2.0 vs 12.0 ± 2.6 mg*kg-1,*min-1, both P < .05). In T2D+OA, KES and ROM were 60% and 22% lower than in CON+OA, respectively (both P < .05). Insulin sensitivity correlated positively with KES (r = 0.41, P < .05) among T2D, and negatively with symptom severity in CON and T2D (r = -0.60 and r = -0.46, respectively, P < .05). CON+OA and T2D+OA had inferior balance skills than CON-OA, whereas NCV was comparable in T2D+OA and T2D-OA. Expression of arthritis-related microRNAs was upregulated in T2D compared to CON, but downregulated in CON+OA compared to CON-OA (P < .05), and did not differ between T2D+OA and T2D-OA.

Conclusion: Musculoskeletal impairment and osteoarthritis-related symptoms are associated with insulin resistance. Type 2 diabetes can mask changes in arthritis-related microRNA profiles.

Trial registration: ClinicalTrials.gov NCT01055093.

Keywords: insulin secretion; insulin sensitivity; muscle strength; osteoarthritis; type 2 diabetes.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Endocrine Society.

Figures

Figure 1.
Figure 1.
Musculoskeletal function. Parameters of musculoskeletal function in individuals with normal glucose tolerance and no osteoarthritis (CON-OA, circles), with osteoarthritis (CON+OA, squares), patients with type 2 diabetes without osteoarthritis (T2D-OA, triangles), and with osteoarthritis (T2D+OA, inverted triangles) showing osteoarthritis-related symptoms quantified by the A, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score; B, sensorimotor abilities; C, stability; D, knee extension strength; E, grip strength; and F, knee range of motion. Data shown as individual values and bars for mean and SD. P values refer to comparison of data adjusted for age, sex, and body mass index. Data were ln-transformed where applicable. *P less than or equal to .05.
Figure 2.
Figure 2.
Parameters of nerve function and bone mineral density. Parameters of nerve and bone function in individuals with normal glucose tolerance and no osteoarthritis (CON-OA, circles), with osteoarthritis (CON+OA, squares), patients with type 2 diabetes without osteoarthritis (T2D-OA, triangles), and with osteoarthritis (T2D+OA, inverted triangles) showing nerve conduction velocity in the A, peroneus nerve, and the B, median nerve; C, bone mineral density in the lumbar spine; and D, the femoral neck. Dotted red lines correspond to the World Health Organization criteria for osteoporosis (T-score  −1 SD). *P less than or equal to .05.
Figure 3.
Figure 3.
Biomarkers of adipose tissue function and inflammation. A, Adiponectin; B, tumor necrosis factor α (TNF)α; C, interleukin (IL)-6; D, IL-1 receptor antagonist (ra); and E, leptin levels in individuals with normal glucose tolerance and no osteoarthritis (CON-OA, circles), with osteoarthritis (CON+OA, squares), patients with type 2 diabetes without osteoarthritis (T2D-OA, triangles), and with osteoarthritis (T2D+OA, inverted triangles). Correlation analyses (Spearman correlation coefficient r and respective P value) between biomarkers of inflammation (leptin and IL-1ra) and F, glycemic control (glycated hemoglobin [HbA1c]); G, muscle strength; as well as H, symptom severity (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC] score). *P less than or equal to .05 adjusted for age, sex, and body mass index.
Figure 4.
Figure 4.
microRNA expression levels. Differences in microRNA expression levels between individuals with normal glucose tolerance (CON) and patients with type 2 diabetes (T2D) are depicted as a volcano plot with statistically significant different microRNAs marked as A, green circles showing a tendency for upregulation in patients with type 2 diabetes. Further stratification of the top 15 statistically different microRNAs is presented in a heat map for individuals with normal glucose tolerance without osteoarthritis (CON-OA), with osteoarthritis (CON+OA), patients with type 2 diabetes without osteoarthritis (T2D-OA), and with osteoarthritis (T2D+OA). Differences in microRNA expression levels between individuals with osteoarthritis (+OA) and patients without osteoarthritis (-OA) are depicted as volcano plot with statistically significant different microRNAs marked as B, green circles showing a tendency for downregulation in individuals with normal glucose tolerance without osteoarthritis. Further stratification of the top 15 statistically different microRNAs is presented in a heat map for individuals with normal glucose tolerance without osteoarthritis (CON-OA), with osteoarthritis (CON+OA), patients with type 2 diabetes without osteoarthritis (T2D-OA), and with osteoarthritis (T2D+OA). Green shades depict upregulation, whereas yellow shades depict downregulation.

References

    1. Zhuo Q, Yang W, Chen J, Wang Y. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol. 2012;8(12):729-737.
    1. Courties A, Sellam J. Osteoarthritis and type 2 diabetes mellitus: what are the links? Diabetes Res Clin Pract. 2016;122:198-206.
    1. Schett G, Kleyer A, Perricone C, et al. . Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care. 2013;36(2):403-409.
    1. Rosa SC, Gonçalves J, Judas F, Mobasheri A, Lopes C, Mendes AF. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage. Arthritis Res Ther. 2009;11(3):R80.
    1. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576(7785):51-60.
    1. Ribeiro M, López de Figueroa P, Blanco FJ, Mendes AF, Caramés B. Insulin decreases autophagy and leads to cartilage degradation. Osteoarthritis Cartilage. 2016;24(4): 731-739.
    1. Claassen H, Schicht M, Paulsen F. Impact of sex hormones, insulin, growth factors and peptides on cartilage health and disease. Prog Histochem Cytochem. 2011;45(4):239-293.
    1. Hart DJ, Doyle DV, Spector TD. Association between metabolic factors and knee osteoarthritis in women: the Chingford Study. J Rheumatol. 1995;22(6):1118-1123.
    1. Pesta D, Roden M. The Janus head of oxidative stress in metabolic diseases and during physical exercise. Curr Diab Rep. 2017;17(6):41.
    1. Nicolau J, Lequerré T, Bacquet H, Vittecoq O. Rheumatoid arthritis, insulin resistance, and diabetes. Joint Bone Spine. 2017;84(4):411-416.
    1. Stürmer T, Brenner H, Brenner RE, Günther KP. Non-insulin dependent diabetes mellitus (NIDDM) and patterns of osteoarthritis. The Ulm osteoarthritis study. Scand J Rheumatol. 2001;30(3):169-171.
    1. Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases—complex signatures for multifactorial diseases? Mol Cell Endocrinol. 2016;432:83-95.
    1. Szendroedi J, Saxena A, Weber KS, et al. ; GDS Group . Cohort profile: the German Diabetes Study (GDS). Cardiovasc Diabetol. 2016;15:59.
    1. Altman R, Asch E, Bloch D, et al. . Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986;29(8):1039-1049.
    1. American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care. 2017;40(Suppl 1):S11-S24.
    1. Kahl S, Nowotny B, Piepel S, et al. . Estimates of insulin sensitivity from the intravenous-glucose-modified-clamp test depend on suppression of lipolysis in type 2 diabetes: a randomised controlled trial. Diabetologia. 2014;57(10):2094-2102.
    1. Weber KS, Nowotny B, Strassburger K, et al. ; GDS Group . The role of markers of low-grade inflammation for the early time course of glycemic control, glucose disappearance rate, and β-cell function in recently diagnosed type 1 and type 2 diabetes. Diabetes Care. 2015;38(9):1758-1767.
    1. Greenbaum CJ, Mandrup-Poulsen T, McGee PF, et al. ; Type 1 Diabetes Trial Net Research Group; European C-Peptide Trial Study Group . Mixed-meal tolerance test versus glucagon stimulation test for the assessment of β-cell function in therapeutic trials in type 1 diabetes. Diabetes Care. 2008;31(10):1966-1971.
    1. Herder C, Bongaerts BW, Rathmann W, et al. . Association of subclinical inflammation with polyneuropathy in the older population: KORA F4 study. Diabetes Care. 2013;36(11):3663-3670.
    1. Teichert T, Vossoughi M, Vierkötter A, et al. . Association between traffic-related air pollution, subclinical inflammation and impaired glucose metabolism: results from the SALIA study. PloS One. 2013;8(12):e83042.
    1. Pagana KD, Pagana TJ.. Mosby’s Manual of Diagnostic and Laboratory Tests-E-Book. 6th Edition. Missouri, USA: Elsevier Health; Sciences; 2018.
    1. Bustin SA, Benes V, Garson JA, et al. . The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611-622.
    1. Heilmeier U, Hackl M, Skalicky S, et al. . Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. J Bone Miner Res. 2016;31(12):2173-2192.
    1. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988;15(12):1833-1840.
    1. Wagner P, Singer R. Ein Fragebogen zur Erfassung der habituellen körperlichen Aktivität verschiedener Bevölkerungsgruppen. Sportwissenschaft. 2003;33(4):383-397.
    1. Babić Z, Deskin M, Muacević-Katanec D, Erdeljić V, Misigoj-Duraković M, Metelko Z. Estimation of physical activity by different questionnaires in overweight subjects and patients with type 2 diabetes mellitus: relationship with anthropometric and metabolic variables. Diabetes Nutr Metab. 2004;17(5):280-289.
    1. Mørup-Petersen A, Holm PM, Holm CE, et al. . Knee osteoarthritis patients can provide useful estimates of passive knee range of motion: development and validation of the Copenhagen Knee ROM scale. J Arthroplasty. 2018;33(9):2875-2883.e3.
    1. Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res Notes. 2011;4:127.
    1. Merker J, Hartmann M, Kreuzpointner F, Schwirtz A, Haas JP. Excellent balance skills despite active and inactive juvenile idiopathic arthritis—unexpected results of a cross-sectional study. Clin Exp Rheumatol. 2017;35(1):161-168.
    1. Raschner C, Lembert S, Platzer HP, Patterson C, Hilden T, Lutz M. S3-Check–evaluation and generation of normal values of a test for balance ability and postural stability [article in German]. Sportverletz Sportschaden. 2008;22(2):100-105.
    1. American Thoracic Society; American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211-277.
    1. Østergaard M, Peterfy CG, Bird P, et al. . The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system: updated recommendations by the OMERACT MRI in Arthritis Working Group. J Rheumatol. 2017;44(11):1706-1712.
    1. Haavardsholm EA, Østergaard M, Ejbjerg BJ, Kvan NP, Kvien TK. Introduction of a novel magnetic resonance imaging tenosynovitis score for rheumatoid arthritis: reliability in a multireader longitudinal study. Ann Rheum Dis. 2007;66(9):1216-1220.
    1. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359(9321):1929-1936.
    1. Centers for Disease Control and Prevention (CDC). Arthritis as a potential barrier to physical activity among adults with diabetes—United States, 2005 and 2007. MMWR Morb Mortal Wkly Rep. 2008;57(18):486-489.
    1. Louati K, Vidal C, Berenbaum F, Sellam J. Association between diabetes mellitus and osteoarthritis: systematic literature review and meta-analysis. RMD Open. 2015;1(1):e000077.
    1. Hamada D, Maynard R, Schott E, et al. . Suppressive effects of insulin on tumor necrosis factor-dependent early osteoarthritic changes associated with obesity and type 2 diabetes mellitus. Arthritis Rheumatol. 2016;68(6):1392-1402.
    1. Karvonen-Gutierrez CA, Sowers MR, Heeringa SG. Sex dimorphism in the association of cardiometabolic characteristics and osteophytes-defined radiographic knee osteoarthritis among obese and non-obese adults: NHANES III. Osteoarthritis Cartilage. 2012;20(7):614-621.
    1. Tchetina EV, Markova GA, Sharapova EP. Insulin resistance in osteoarthritis: similar mechanisms to type 2 diabetes mellitus. J Nutr Metab. 2020;2020:4143802.
    1. Tam CS, Xie W, Johnson WD, Cefalu WT, Redman LM, Ravussin E. Defining insulin resistance from hyperinsulinemic-euglycemic clamps. Diabetes Care. 2012;35(7):1605-1610.
    1. Earthman CP, Beckman LM, Masodkar K, Sibley SD. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes (Lond). 2012;36(3):387-396.
    1. Joseph GB, McCulloch CE, Nevitt MC, et al. . Associations between vitamins C and D intake and cartilage composition and knee joint morphology over 4 years: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2020;72(9):1239-1247.
    1. Angellotti E, D’Alessio D, Dawson-Hughes B, et al. . Vitamin D supplementation in patients with type 2 diabetes: the Vitamin D for Established Type 2 Diabetes (DDM2) Study. J Endocr Soc. 2018;2(4):310-321.
    1. Park CY. Vitamin D in the prevention and treatment of osteoarthritis: from clinical interventions to cellular evidence. Nutrients. 2019;11(2):243.
    1. Scarvell JM, Van Twest MS, Stanton SF, Burski G, Smith PN. Prevalence of undisclosed osteoporosis in patients with minimal trauma fractures: a prospective cohort study. Phys Sportsmed. 2013;41(2):38-43.
    1. Mineoka Y, Ishii M, Tsuji A, et al. . Relationship between limited joint mobility of the hand and diabetic foot risk in patients with type 2 diabetes. J Diabetes. 2017;9(6):628-633.
    1. Donisan T, Bojincă VC, Dobrin MA, et al. . The relationship between disease activity, quality of life, and personality types in rheumatoid arthritis and ankylosing spondylitis patients. Clin Rheumatol. 2017;36(7):1511-1519.
    1. Stultz CM, Edelman ER. A structural model that explains the effects of hyperglycemia on collagenolysis. Biophys J. 2003;85(4):2198-2204.
    1. Srivastava S, Saksena AK, Khattri S, Kumar S, Dagur RS. Status of oxidative stress biomarkers in osteoarthritis patients in North Indian population. Osteoarthritis Cartilage. 2015;23(Suppl 2):A84-A85.
    1. Dumond H, Presle N, Terlain B, et al. . Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48(11):3118-3129.
    1. Kroon FPB, Veenbrink AI, de Mutsert R, et al. . The role of leptin and adiponectin as mediators in the relationship between adiposity and hand and knee osteoarthritis. Osteoarthritis Cartilage. 2019;27(12):1761-1767.
    1. Attur M, Statnikov A, Samuels J, et al. . Plasma levels of interleukin-1 receptor antagonist (IL1Ra) predict radiographic progression of symptomatic knee osteoarthritis. Osteoarthritis Cartilage. 2015;23(11):1915-1924.
    1. Weilner S, Skalicky S, Salzer B, et al. . Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone. 2015;79:43-51.
    1. Kocijan R, Muschitz C, Geiger E, et al. . Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab. 2016;101(11):4125-4134.
    1. Ntoumou E, Tzetis M, Braoudaki M, et al. . Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes. Clin Epigenetics. 2017;9:127.

Source: PubMed

3
購読する