Is It Time We Better Understood the Tests We are Using for Return to Sport Decision Making Following ACL Reconstruction? A Critical Review of the Hop Tests

William T Davies, Gregory D Myer, Paul J Read, William T Davies, Gregory D Myer, Paul J Read

Abstract

There has been a move towards a criterion-based return to play in recent years, with 4 single-leg hop tests commonly used to assess functional performance. Despite their widespread integration, research indicates that relationships between 'passing' 'hop test criteria and successful outcomes following rehabilitation are equivocal, and, therefore, require further investigation. This critical review includes key information to examine the evolution of these tests, their reliability, relationships with other constructs, and sensitivity to change over time. Recommendations for how measurement and administration of the tests can be improved are also discussed. The evidence presented in this review shows that hop tests display good reliability and are sensitive to change over time. However, the use of more than 2 hop tests does not appear to be necessary due to high collinearity and no greater sensitivity to detect abnormality. The inclusion of other hop tests in different planes may give greater information about the current function of the knee, particularly when measured over time using both relative and absolute measures of performance. It is recommended that the contralateral limb be tested prior to surgery for a more relevant benchmark for performance, and clinicians are strongly advised to measure movement quality, as hop distance alone appears to overestimate the recovery of the knee.

Conflict of interest statement

Will Davies, Gregory Myer, and Paul Read declare that they have no conflicts of interest relevant to the content of this review.

Figures

Fig. 1
Fig. 1
Criteria most used as part of the return to sport decision (data extracted from Burgi et al. [8]). SHD single hop for distance, THD triple hop for distance, CHD cross-over hop for distance, 6TH 6 m timed hop
Fig. 2
Fig. 2
Depiction of the 4 single leg hop tests commonly used in return to sport protocols: a single hop for distance, b triple hop for distance, c cross-over hop for distance, d 6-m timed hop
Fig. 3
Fig. 3
Changing limb symmetry index as a percentage over time from surgery. To avoid rehabiltation protocol bias, only studies that measured all 4 hops longitudinally were selected. Pre-op [66], 12 weeks [38, 63], 26 weeks [38, 63, 66], and 52 weeks [63, 66] (Reid et al. [38] data were taken at 16 and 22 weeks, and have been included as part of the analysis at 12 and 26 weeks, respectively). SHD single hop for distance, THD triple hop for distance, CHD cross-over hop for distance, TH6 6 m timed hop, LSI limb symmetry index

References

    1. Ardern CL. Anterior cruciate ligament reconstruction-not exactly a one way ticket back to pre-injury level: a review of contextual factors affecting return to sport after surgery. Sports Health. 2015;7:224–230.
    1. Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48:1543–1552.
    1. Toole AR, Ithurburn MP, Rauh MJ, Hewett TE, Paterno MV, Schmitt LC. Young athletes cleared for sports participation after anterior cruciate ligament reconstruction: How many actually meet recommended return-to-sport criterion cut offs? J Orthop Sports Phys Ther. 2017;47(11):825–833.
    1. Walden M, Hagglund M, Magnusson M, Ekstrand J. ACL injuries in men’s professional football: a 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture. Br J Sports Med. 2016;50:744–750.
    1. Walden M, Hagglund M, Ekstrand J. High risk of new knee injury in elite footballers with previous anterior cruciate ligament injury. Br J Sports Med. 2006;40(2):158–162.
    1. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–1876.
    1. Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players 12 years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50(10):3145–3152.
    1. Lai CCH, Feller JA, Webster KE. Fifteen-year audit of anterior ligament reconstructions in the Australian football league from 1999 to 2013: return to play and subsequent re injury. Am J Sports Med. 2018;46(14):3353–3360.
    1. Arden C, Glasgow P, Schneiders A, Witvrouw E, Clarsen B, Cools A, et al. 2016 Consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. Br J Sports Med. 2016;50:853–864.
    1. Burgi CR, Peters S, Ardern CL, Magill JR, Gomez CD, Sylvain J, et al. Which criteria are used to clear patients to return to sport after primary ACL reconstruction? A scoping review. Br J Sports Med. 2019 doi: 10.1136/bjsports-2018-099982.
    1. Rambaud AJM, Ardern CL, Thoreux P, Regnaux J-P, Edouard P. Criteria for return for running after anterior cruciate ligament reconstruction: a scoping review. Br J Sports Med. 2018 doi: 10.1136/bjsports-2017-098602.
    1. Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(12):1697–1705.
    1. Roi GS, Creta D, Nanni G, Marcacci M, Zaffagnini S, Snyder-Mackler L. Return to official Italian first division games within 90 days after anterior cruciate ligament reconstruction: a case report. J Orthop Sports Phys Ther. 2006;25(2):52–67.
    1. Beynnon BD, Johnson RJ, Naud S, Fleming BC, Abate JA, Brattbakk B, et al. Accelerated versus nonaccelerated rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double blind investigation evaluating knee joint laxity using roentgen stereophotogrammetric analysis. Am J Sports Med. 2011;39(12):2536–2548.
    1. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules reduce injury risk after anterior cruciate ligament reconstruction: the Delaware–Olso cohort study. Br J Sports Med. 2016;50(13):804–808.
    1. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):1567–1573.
    1. Nagelli CV, Hewett TE. Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports Med. 2017;47:221–232.
    1. Myer GD, Martin L, Ford KR, Paterno MV, Schmitt LC, Heidt RS, et al. No associations of time from surgery with functional deficits in athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2012;40(10):2256–2263.
    1. Menzer H, Slater LV, Diduch D, Miller M, Norte G, Goetschius J, et al. The utility of objective strength and functional performance to predict subjective outcomes after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2017 doi: 10.1177/2325967117744758.
    1. Losciale JM, Zdeb RM, Ledbetter L, Reiman MP, Sell TC. The association between passing return-to-sport criteria and second anterior cruciate ligament injury risk: a systematic review with meta-analysis. J Orthop Sports Phys Ther. 2019;49(2):43–54.
    1. Webster KE, Hewett TE. What is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstructive surgery? A systematic review and meta-analysis. Sports Med. 2019 doi: 10.1007/s40279-019-01093-x.
    1. Kyritsis P, Bahr R, Landreau P, Miladi R, Witvouw E. Liklihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50(15):946–951.
    1. Sousa PI, Krych AJ, Cates RA, Levy BA, Stuart MJ, Dahm DL. Return to sport: does excellent 6-month strength and function following ACL reconstruction predict midterm outcomes? Knee Surg Sports Traumatol Arthrosc. 2017;25:1356–1363.
    1. Capin JJ, Snyder-Mackler L, Risberg MA, Grindem H. Keep calm and carry on testing: a substantive reanalysis and critique of ‘what is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. Br J Sports Med. 2019 doi: 10.1136/bjsports-2019-100906.
    1. Edwards PK, Ebert JR, Joss B, Ackland T, Annear P, Buelow J-U, et al. Patient characteristics and predictors of return to sport at 12 months after anterior cruciate ligament reconstruction: the importance of patient age and postoperative rehabilitation. Orthop J Sports Med. 2018 doi: 10.1177/2325967118797575.
    1. Gokeler A, Welling W, Benjamese A, Lemmink K, Seil R, Zaffagnini S. A critical analysis of limb symmetry indices of hop tests in athletes after anterior cruciate ligament reconstruction: a case control study. Orthop Traumatol Surg Res. 2017;103:947–951.
    1. Davies GJ. Individualizing the return to sports after anterior cruciate ligament reconstruction. Oper Tech Orthop. 2017;27:70–78.
    1. Fitzgerald GK, Axe MJ, Snyder-Mackler L. A decision-making for returning patients to high-level activity with non-operative treatment after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc. 2000;8:76–82.
    1. Munro AG, Herrington LC. Between session reliability of four hop tests and the agility t test. J Strength Cond Res. 2011;25(5):1470–1477.
    1. Nawasreh Z, Logerstedt D, Cummer K, Axe M, Risberg MA, Snyder-Mackler L. Functional performance 6 months after ACL reconstruction can predict return to participation in same preinjury activity level 12 and 24 months after surgery. Br J Sports Med. 2018;52:375–383.
    1. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to the preinjury level of competition after anterior cruciate ligament reconstruction surgery: two thirds of patients have not returned by 12 months after surgery. Am J Sports Med. 2011;39:538.
    1. Muller U, Kruger-Franke M, Schmidt M, Rosemeyer B. Predictive parameters for return to pre-injury level of sport 6 months following anterior cruciate ligament reconstruction surgery. Knee Surg Sports Traumatol Arthrosc. 2015;23:3623–3631.
    1. Paterno MV, Huang B, Thomas S, Hewett TE, Schmitt LC. Clinical factors that predict a second ACL reconstruction and return to sport. Preliminary development of a clinical decision algorithm. Orthop J Sports Med. 2017 doi: 10.1177/2325967117745279.
    1. Jang SH, Kim JG, Ha JK, Wang BG, Yang SJ. Functional performance tests as indicators of returning to sports after anterior cruciate ligament reconstruction. Knee. 2014;21:95–101.
    1. Daniel DM, Malcom L, Stone ML, Perth H, Morgan J, Riehl B. Quantification of knee stability and function. Contemp Orthop. 1982;5:83–91.
    1. Tegner Y, Lysholm J, Lysholm M, Gillquist J. A performance test to monitor rehabilitation and evaluate anterior cruciate ligament injuries. Am J Sports Med. 1986;14(2):136–139.
    1. Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartmen W. Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res. 1990;255:204–214.
    1. Noyes FR, Barber SD, Mangine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med. 1991;19:513–518.
    1. Petschnig R, Baron R, Albrecht M. The relationship between isokinetic quadriceps strength test and hop tests for distance and one-legged vertical jump test following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 1998;28(1):23–31.
    1. Bolgla LA, Keskul DR. Reliability of lower extremity functional performance tests. J Orthop Sports Phys Ther. 1997;26(3):138–142.
    1. Reid A, Birmingham TB, Stratford PW, Alcock GK, Giffin R. Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther. 2007;87(3):337–349.
    1. Hetzler RK, Stickley CD, Lundquist KM, Kimura IF. Reliability and accuracy of handheld stopwatches compared with electronic timing in measuring sprint performance. J Strength Cond Res. 2008;22(6):1969–1976.
    1. Mann JB, Ivey PJ, Brechue WF, Mayhew JL. Validity and reliability of hand and electronic timing for 40-yd sprint in college football players. J Strength Cond Res. 2015;29(6):1509–1514.
    1. Mayhew JL, Houser JJ, Briney BB, Williams TB, Piper FC, Brechue WF. Comparison between hand and electronic timing of 40-yd dash performance in college football players. J Strength Cond Res. 2010;24(2):447–451.
    1. Kim M, Won CW. Combinations of gait speed testing protocols (automatic vs manual timer, dynamic vs static start) can significantly influence the prevalence of slowness: results from the Korean frailty and aging cohort study. Arch Gerontol Geriatr. 2019;81:215–221.
    1. Lepley LK, Palmieri-Smith RM. Quadriceps strength, muscle activation failure, and patient-reported function at the time of return to activity in patients following anterior cruciate ligament reconstruction: a cross sectional study. J Orthop Sports Phys Ther. 2015;45(12):1017–1025.
    1. Schmitt LC, Paterno MV, Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):750–759.
    1. Palmieri-Smith RM, Lepley LK. Quadriceps strength asymmetry following ACL reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med. 2015;43(7):1662–1669.
    1. Hurd WJ, Axe MJ, Snyder-Mackler L. A 10-year prospective trial of a patient management algorithm and screening examination for highly active individuals with ACL injury. Part II: determinants of dynamic knee stability. Am J Sports Med. 2008;36(1):48–56.
    1. Orishimo KF, Kremenic IJ, Mullany MJ, McHugh MP, Nicholas SJ. Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction. Knee Surg Traumatol Arthrosc. 2010;18:1587–1593.
    1. Hamilton RT, Shultz SJ, Schmitz RJ, Perrin DH. Triple-hop distance as a valid predictor of strength and power. J Athl Train. 2008;43(2):144–151.
    1. Greenberger HB, Paterno MV. Relationship of knee extensor strength and hopping test performance in the assessment of lower extremity function. J Orthop Sports Phys Ther. 1995;22(5):202–206.
    1. Fitzgerald GK, Lephart SM, Hwang JH, Wainner MJS. Hop tests as predictors of dynamic knee stability. J Orthop Sports Phys Ther. 2001;31(10):588–597.
    1. Birchmeier T, Lisee C, Geers B, Kuenze C. Reactive strength index and knee extension strength characteristics are predictive of single leg hop performance after anterior cruciate ligament reconstruction. J Strength Cond Res. 2019;33(5):1201–1207.
    1. Pua Y-H, Mentiplay BF, Clark RA, Ho J-Y. Associations among quadriceps strength and rate of torque development 6 weeks post anterior cruciate ligament reconstruction and future hop and vertical jump performance: a prospective cohort study. J Orthop Sports Phys Ther. 2017;47(11):845–852.
    1. Baltaci G, Yilmaz G, Atay AO. The outcomes of anterior cruciate ligament reconstructed and rehabilitated knees: a functional comparison. Acta Orthop Traumatol Turc. 2012;46(3):186–195.
    1. Knezevic OM, Mirkov DM, Kadija M, Nedeljkovic A, Jaric S. Asymmetries in explosive strength following anterior cruciate ligament reconstruction. Knee. 2015;21:1039–1045.
    1. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–1978.
    1. Kline PW, Burnham J, Yonz M, Johnson D, Ireland ML, Noehren B. Hip external rotation strength predicts hop performance after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2018;26:1137–1144.
    1. Wilk KE, Romaniello WT, Soscia SM, Arrigo CA, Andrews JR. The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. J Orthop Sports Phys Ther. 1994;20(2):60–73.
    1. Logerstedt D, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, et al. Single-legged hop tests as predictors of self-reported knee function after anterior cruciate ligament reconstruction: the Delaware–Oslo cohort study. Am J Sports Med. 2012;40(10):2348–2356.
    1. McLean SG, Huang X, Su A, van den Bogert AJ. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech. 2004;19:828–838.
    1. Levine JW, Kiapour AM, Quatman CE, Wordeman SC, Goel VK, Hewett TE, et al. Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am J Sports Med. 2013;41(2):385–395.
    1. Reinke EK, Spindler KP, Lorring D, Jones MH, Schmitz L, Flanigan DC, et al. Hop tests correlate with IKDC and KOOS at minimum of 2 years after primary ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19:1806–1816.
    1. Grindem H, Logerstedt D, Eitzen I, Moksnes H, Axe MJ, Snyder-Mackler L, et al. Single-legged hop tests as predictors of self reported knee function in non-operatively treated individuals with ACL injury. Am J Sports Med. 2011;39(11):2347–2354.
    1. Hartigan EH, Axe MJ, Snyder-Mackler L. Time line for noncopers to pass return-to-sports criteria after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2010;40(3):141–154.
    1. Moksnes H, Risberg MA. Performance-based functional evaluation of non-operative and operative treatment after anterior cruciate ligament injury. Scand J Med Sci Sports. 2009;19(3):345–355.
    1. Myer GD, Schmitt LC, Brent JL, Ford KR, Barber-Foss KD, Scherer BJ, et al. Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther. 2011;41(6):377–387.
    1. Logerstedt D, Lynch A, Axe MJ, Snyder-Mackler L. Symmetry restoration and functional recovery before and after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):859–868.
    1. Hopper DM, Strauss GR, Boyle JJ, Bell J. Functional recovery after anterior cruciate ligament reconstruction: a longitudinal perspective. Arch Phys Med Rehabil. 2008;89:1535–1541.
    1. Hohmann E, Tetsworth K, Bryant A. Physiotherapy-guided versus home-based, unsupervised rehabilitation in isolated anterior cruciate injuries following surgical reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19:1158–1167.
    1. Gustavsson A, Neeter C, Thomee P, Silbernagel KG, Augustsson J, Thomee R, et al. A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14:778–788.
    1. Maulder P, Cronin J. Horizontal and vertical jump assessment: reliability, symmetry, discriminative and predictive ability. Phys Ther Sport. 2005;6:74–82.
    1. Swearingham J, Lawrence E, Stevens J, Jackson C, Waggy C, Davis DS. Correlation of single leg vertical jump, single leg hop for distance, and single leg hop for time. Phys Ther Sport. 2011;12:194–198.
    1. Robertson DGE, Fleming D. Kinetics of standing broad and vertical jump. Can J Sport Sci. 1987;12(1):19–23.
    1. Meylan C, McMaster T, Cronin J, Mohammad NI, Rogers C, DeKlerk M. Single leg lateral, horizontal, and vertical jump assessment: reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J Strength Cond Res. 2009;23(4):1140–1147.
    1. Brosky JA, Nitz AJ, Malone TR, Caborn DNM, Rayens MK. Intrarater reliability of selected clinical outcome measures following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 1999;29(1):39–48.
    1. Lee DW, Yang SJ, Cho SI, Lee JH, Kim JG. Single-leg vertical jump test as a functional test after anterior cruciate ligament reconstruction. Knee. 2018;25:1016–1026.
    1. Thomee R, Neeter C, Gustavsson A, Thomee P, Augustsson J, Eriksson B, et al. Variability in leg muscle power and hop performance after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2012;20:1143–1151.
    1. Abrams GD, Harris JD, Gupta AK, McCormick FM, Bush-Joseph CA, Verma NN, et al. Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthop J Sports Med. 2014 doi: 10.1177/2325967113518305.
    1. King E, Richter C, Franklyn-Miller A, Daniels K, Wadey R, Moran R, et al. Whole body biomechanical differences between limbs exist 9 months after ACL reconstruction across jump/landing tasks. Scan J Med Sci Sports. 2018;28(12):2567–2578.
    1. Dingenen B, Truijen J, Bellemans J, Gokeler A. Test–retest and discriminative ability of forward, medial and rotational single-leg hop tests. Knee. 2019 doi: 10.1016/j.knee.2019.06.010.
    1. Wren TAL, Mueske NM, Brophy CH, Pace L, Katzel MJ, Edison BR, et al. Hop distance symmetry does not indicate normal landing biomechanics in adolescent athletes with recent anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2018;48(8):622–629.
    1. Chung KS, Ha JK, Yeom CH, Ra HJ, Lim JW, Kwon MS, et al. Are muscle strength and function of the uninjured lower limb weakened after anterior cruciate ligament reconstruction: 2-year follow-up after reconstruction. Am J Sports Med. 2015;43(12):3013–3021.
    1. Wellsandt E, Failla MJ, Snyder-Mackler L. Limb symmetry indexes can overestimate knee function after ACL injury. J Orthop Sports Phys Ther. 2017;47(5):334–338.
    1. Peebles AT, Renner KE, Miller TK, Moskal JT, Queen RM. Associations between distance and loading symmetry during return to sport hop testing. Med Sci Sports Exerc. 2018;51(4):624–629.
    1. Ortiz A, Olson S, Libby CL, Trudelle-Jackson E, Kwon Y-H, Etnyre B, et al. Landing mechanics between noninjured women and women with anterior cruciate ligament reconstruction during 2 jump tasks. Am J Sports Med. 2008;36(1):149–157.
    1. Xergia SA, Pappas E, Georgoulis AD. Association of the single-limb hop test with isokinetic, kinematic, and kinetic asymmetries in patients after anterior cruciate ligament reconstruction. Phys Ther. 2015;7(3):217–223.
    1. Welling W, Benjaminse A, Seil R, Lemmink K, Gokeler A. Altered movement during single leg hop test after ACL reconstruction: implications to incorporate 2-D video movement analysis for hop tests. Knee Surg Sports Traumatol Arthrosc. 2018;26(10):3012–3019.
    1. Pratt KA, Sigward SM. Inertial sensor angular velocities reflect dynamic knee loading during single limb loading in individuals following anterior cruciate ligament reconstruction. Sensors. 2018 doi: 10.3390/s18103460.
    1. Peebles AT, Maguire LA, Renner KE, Queen RM. Validity and repeatability of single-sensor loadsol insoles during landing. Sensors. 2018 doi: 10.3390/s18124082.

Source: PubMed

3
購読する