Safety, Tolerability, and Pharmacokinetics of MEDI4893, an Investigational, Extended-Half-Life, Anti-Staphylococcus aureus Alpha-Toxin Human Monoclonal Antibody, in Healthy Adults

Xiang-Qing Yu, Gabriel J Robbie, Yuling Wu, Mark T Esser, Kathryn Jensen, Howard I Schwartz, Terramika Bellamy, Martha Hernandez-Illas, Hasan S Jafri, Xiang-Qing Yu, Gabriel J Robbie, Yuling Wu, Mark T Esser, Kathryn Jensen, Howard I Schwartz, Terramika Bellamy, Martha Hernandez-Illas, Hasan S Jafri

Abstract

MEDI4893 is an investigational immunoglobulin G1(κ) monoclonal antibody that specifically binds to and neutralizes alpha-toxin, a key Staphylococcus aureus virulence factor. A triple-amino-acid substitution, M252Y/S254T/T256E, was engineered into the MEDI4893 Fc region to extend its serum half-life. A phase 1, double-blind, dose escalation study was designed to evaluate the safety, tolerability, pharmacokinetics, anti-alpha-toxin-neutralizing activity, and antidrug antibody (ADA) response of MEDI4893 following a single intravenous infusion in healthy adults 18 to 65 years of age. Thirty-three subjects were randomly assigned to receive MEDI4893 at 225 mg (n = 3), 750 mg (n = 3), 2,250 mg (n = 8), or 5,000 mg (n = 12) or placebo (n = 7) and were followed for 360 days. Adverse events were mild or moderate in severity; none were serious. The MEDI4893 peak serum concentration increased dose proportionally from 77.2 μg/ml (225-mg dose) to 1,784 μg/ml (5,000-mg dose). The area under the concentration-time curve from 0 to 360 days also increased dose proportionally, from 4,840 μg · day/ml (225-mg dose) to 91,493 μg · day/ml (5,000-mg dose), indicating linear pharmacokinetics. MEDI4893's terminal half-life was estimated to be 80 to 112 days, which is approximately 4-fold longer than the half-lives of other human immunoglobulin G antibodies. The alpha-toxin-neutralizing activity in serum correlated highly with the MEDI4893 concentrations in serum. Three adults transiently tested positive for ADA on day 151, but this did not have an impact on MEDI4893 serum concentrations or the MEDI4893 safety profile; no subjects exhibited serum ADA at the study end. These data support the continued development of MEDI4893 for the prevention of S. aureus-mediated pneumonia. (This study has been registered at ClinicalTrials.gov under identifier NCT02296320.).

Keywords: MEDI4893; alpha-toxin; anti-infective monoclonal antibodies; antimicrobial safety; clinical pharmacokinetics; efficacy; nosocomial pneumonia.

Copyright © 2016 Yu et al.

Figures

FIG 1
FIG 1
MEDI4893 pharmacokinetics in healthy adult volunteers. Dashed line, the target concentration of 211 μg/ml, which is the EC90 from a S. aureus murine pneumonia model.
FIG 2
FIG 2
(A) Baseline serum anti-alpha-toxin-neutralizing antibody concentration. (B) Correlation between serum MEDI4893 concentrations and anti-alpha-toxin-neutralizing concentration. AT, alpha-toxin.

References

    1. Lowy FD. 1998. Staphylococcus aureus infections. N Engl J Med 339:1–9. doi:10.1056/NEJM199808203390806.
    1. Jones RN. 2010. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 51(Suppl 1):S81–S87. doi:10.1086/653053.
    1. Kyaw MH, Kern DM, Zhou S, Tunceli O, Jafri HS, Falloon J. 2015. Healthcare utilization and costs associated with S. aureus and P. aeruginosa pneumonia in the intensive care unit: a retrospective observational cohort study in a US claims database. BMC Health Serv Res 15:241. doi:10.1186/s12913-015-0917-x.
    1. File TM., Jr 2010. Recommendations for treatment of hospital-acquired and ventilator-associated pneumonia: review of recent international guidelines. Clin Infect Dis 51(Suppl 1):S42–S47. doi:10.1086/653048.
    1. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM Jr, Musher DM, Niederman MS, Torres A, Whitney CG. 2007. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44(Suppl 2):S27–S72. doi:10.1086/511159.
    1. Hampton T. 2013. Report reveals scope of US antibiotic resistance threat. JAMA 310:1661–1663. doi:10.1001/jama.2013.280695.
    1. DiGiandomenico A, Sellman BR. 2015. Antibacterial monoclonal antibodies: the next generation? Curr Opin Microbiol 27:78–85. doi:10.1016/j.mib.2015.07.014.
    1. Hua L, Hilliard JJ, Shi Y, Tkaczyk C, Cheng LI, Yu X, Datta V, Ren S, Feng H, Zinsou R, Keller A, O'Day T, Du Q, Cheng L, Damschroder M, Robbie G, Suzich J, Stover CK, Sellman BR. 2014. Assessment of an anti-alpha-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. Antimicrob Agents Chemother 58:1108–1117. doi:10.1128/AAC.02190-13.
    1. Lorenz U, Lorenz B, Schmitter T, Streker K, Erck C, Wehland J, Nickel J, Zimmermann B, Ohlsen K. 2011. Functional antibodies targeting IsaA of Staphylococcus aureus augment host immune response and open new perspectives for antibacterial therapy. Antimicrob Agents Chemother 55:165–173. doi:10.1128/AAC.01144-10.
    1. Oleksiewicz MB, Nagy G, Nagy E. 2012. Anti-bacterial monoclonal antibodies: back to the future? Arch Biochem Biophys 526:124–131. doi:10.1016/j.abb.2012.06.001.
    1. Ragle BE, Bubeck Wardenburg J. 2009. Anti-alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect Immun 77:2712–2718. doi:10.1128/IAI.00115-09.
    1. Tkaczyk C, Hua L, Varkey R, Shi Y, Dettinger L, Woods R, Barnes A, MacGill RS, Wilson S, Chowdhury P, Stover CK, Sellman BR. 2012. Identification of anti-alpha toxin monoclonal antibodies that reduce the severity of Staphylococcus aureus dermonecrosis and exhibit a correlation between affinity and potency. Clin Vaccine Immunol 19:377–385. doi:10.1128/CVI.05589-11.
    1. Berube BJ, Bubeck Wardenburg J. 2013. Staphylococcus aureus alpha-toxin: nearly a century of intrigue. Toxins (Basel) 5:1140–1166. doi:10.3390/toxins5061140.
    1. Prince LR, Graham KJ, Connolly J, Anwar S, Ridley R, Sabroe I, Foster SJ, Whyte MK. 2012. Staphylococcus aureus induces eosinophil cell death mediated by alpha-hemolysin. PLoS One 7:e31506. doi:10.1371/journal.pone.0031506.
    1. Menzies BE, Kourteva I. 2000. Staphylococcus aureus alpha-toxin induces apoptosis in endothelial cells. FEMS Immunol Med Microbiol 29:39–45. doi:10.1111/j.1574-695X.2000.tb01503.x.
    1. Nygaard TK, Pallister KB, DuMont AL, DeWald M, Watkins RL, Pallister EQ, Malone C, Griffith S, Horswill AR, Torres VJ, Voyich JM. 2012. Alpha-toxin induces programmed cell death of human T cells, B cells, and monocytes during USA300 infection. PLoS One 7:e36532. doi:10.1371/journal.pone.0036532.
    1. Tabor DE, Yu L, Mok H, Tkaczyk C, Sellman BR, Wu Y, Oganesyan V, Slidel T, Jafri H, McCarthy M, Bradford P, Esser MT. 2016. Staphylococcus aureus alpha-toxin is conserved amongst diverse hospital respiratory isolates collected from a global surveillance study and is neutralized by monoclonal antibody MEDI4893. Antimicrob Agents Chemother 60:5312–5321. doi:10.1128/AAC.00357-16/AAC.00357-16.
    1. DeLeo FR, Kennedy AD, Chen L, Bubeck Wardenburg J, Kobayashi SD, Mathema B, Braughton KR, Whitney AR, Villaruz AE, Martens CA, Porcella SF, McGavin MJ, Otto M, Musser JM, Kreiswirth BN. 2011. Molecular differentiation of historic phage-type 80/81 and contemporary epidemic Staphylococcus aureus. Proc Natl Acad Sci U S A 108:18091–18096. doi:10.1073/pnas.1111084108.
    1. Oganesyan V, Peng L, Damschroder MM, Cheng L, Sadowska A, Tkaczyk C, Sellman BR, Wu H, Dall'Acqua WF. 2014. Mechanisms of neutralization of a human anti-alpha-toxin antibody. J Biol Chem 289:29874–29880. doi:10.1074/jbc.M114.601328.
    1. Sharma-Kuinkel BK, Wu Y, Tabor DE, Mok H, Sellman BR, Jenkins A, Yu L, Jafri HS, Rude TH, Ruffin F, Schell WA, Park LP, Yan Q, Thaden JT, Messina JA, Fowler VG Jr, Esser MT. 2015. Characterization of alpha-toxin hla gene variants, alpha-toxin expression levels, and levels of antibody to alpha-toxin in hemodialysis and postsurgical patients with Staphylococcus aureus bacteremia. J Clin Microbiol 53:227–236. doi:10.1128/JCM.02023-14.
    1. Dall'Acqua WF, Kiener PA, Wu H. 2006. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 281:23514–23524. doi:10.1074/jbc.M604292200.
    1. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. 2005. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Rockville, MD. .
    1. Deng R, Iyer S, Theil FP, Mortensen DL, Fielder PJ, Prabhu S. 2011. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs 3:61–66. doi:10.4161/mabs.3.1.13799.
    1. Ruotsalainen E, Kardén-Lilja M, Kuusela P, Vuopio-Varkila J, Virolainen-Julkunen A, Sarna S, Valtonen V, Järvinen A. 2008. Methicillin-sensitive Staphylococcus aureus bacteraemia and endocarditis among injection drug users and nonaddicts: host factors, microbiological and serological characteristics. J Infect 56:249–256. doi:10.1016/j.jinf.2008.01.009.
    1. Deng R, Jin F, Prabhu S, Iyer S. 2012. Monoclonal antibodies: what are the pharmacokinetic and pharmacodynamic considerations for drug development? Expert Opin Drug Metab Toxicol 8:141–160. doi:10.1517/17425255.2012.643868.
    1. Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, Bullock C, Keller S, Tang MT, Tso JY, Vasquez M, Tsurushita N. 2004. Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 279:6213–6216.
    1. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N. 2006. An engineered human IgG1 antibody with longer serum half-life. J Immunol 176:346–356. doi:10.4049/jimmunol.176.1.346.
    1. Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, Starovasnik MA, Lowman HB. 2009. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol 182:7663–7671. doi:10.4049/jimmunol.0804182.
    1. Robbie GJ, Criste R, Dall'acqua WF, Jensen K, Patel NK, Losonsky GA, Griffin MP. 2013. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob Agents Chemother 57:6147–6153. doi:10.1128/AAC.01285-13.
    1. Yu X, Iciek L, Criste R, Sellman B, Strover C, Jafri H, Esser M, Roskos L, Robbie G. 2013. Modeling of pharmacokinetics (PK) of a YTE-monoclonal antibody targeting Staphylococcus aureus alpha toxin in cynomolgus monkeys: human PK prediction, abstr T2123. Abstr Am Assoc Pharm Sci Natl Biotechnol Conf, San Diego, CA.
    1. National Institute for Biological Standards and Control. 2010. The 3rd international standard for Staphylococcus alpha antitoxin, equine. World Health Organization International Laboratory for Biological Standards, Potters Bar, Hertfordshire, United Kingdom: .

Source: PubMed

3
購読する