Cellular senescence impact on immune cell fate and function

Rita Vicente, Anne-Laure Mausset-Bonnefont, Christian Jorgensen, Pascale Louis-Plence, Jean-Marc Brondello, Rita Vicente, Anne-Laure Mausset-Bonnefont, Christian Jorgensen, Pascale Louis-Plence, Jean-Marc Brondello

Abstract

Cellular senescence occurs not only in cultured fibroblasts, but also in undifferentiated and specialized cells from various tissues of all ages, in vitro and in vivo. Here, we review recent findings on the role of cellular senescence in immune cell fate decisions in macrophage polarization, natural killer cell phenotype, and following T-lymphocyte activation. We also introduce the involvement of the onset of cellular senescence in some immune responses including T-helper lymphocyte-dependent tissue homeostatic functions and T-regulatory cell-dependent suppressive mechanisms. Altogether, these data propose that cellular senescence plays a wide-reaching role as a homeostatic orchestrator.

Keywords: cellular senescence; chronic and autoimmune diseases; immune cells; tissue homeostasis.

© 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

References

    1. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990.
    1. Akbar AN, Henson SM (2011) Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol. 11, 289–295.
    1. Appay V, Sauce D (2008) Immune activation and inflammation in HIV‐1 infection: causes and consequences. J. Pathol. 214, 231–241.
    1. Appay V, Almeida JR, Sauce D, Autran B, Papagno L (2007) Accelerated immune senescence and HIV‐1 infection. Exp. Gerontol. 42, 432–437.
    1. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM, Rudensky AY (2015) A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089.
    1. Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Tang Y, DeFrances J, Stover E, Weissleder R, Rowitch DH, Louis DN, DePinho RA (2002) Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269–277.
    1. Besancenot R, Chaligné R, Tonetti C, Pasquier F, Marty C, Lécluse Y, Vainchenker W, Constantinescu SN, Giraudier S (2010) A senescence‐like cell‐cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation. PLoS Biol. 8, pii: e1000476.
    1. Bignon A, Régent A, Klipfel L, Desnoyer A, de la Grange P, Martinez V, Lortholary O, Dalloul A, Mouthon L, Balabanian K (2015) DUSP4‐mediated accelerated T‐cell senescence in idiopathic CD4 lymphopenia. Blood 125, 2507–2518.
    1. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896.
    1. Braumüller H, Wieder T, Brenner E, Aßmann S, Hahn M, Alkhaled M, Schilbach K, Essmann F, Kneilling M, Griessinger C, Ranta F, Ullrich S, Mocikat R, Braungart K, Mehra T, Fehrenbacher B, Berdel J, Niessner H, Meier F, van den Broek M, Häring HU, Handgretinger R, Quintanilla‐Martinez L, Fend F, Pesic M, Bauer J, Zender L, Schaller M, Schulze‐Osthoff K, Röcken M (2013) T‐helper‐1‐cell cytokines drive(9) cancer into senescence. Nature 494, 361–365.
    1. Bryl E, Vallejo AN, Matteson EL, Witkowski JM, Weyand CM, Goronzy JJ (2005) Modulation of CD28 expression with anti‐tumor necrosis factor alpha therapy in rheumatoid arthritis. Arthritis Rheum. 52, 2996–3003.
    1. Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, Bardeesy N, Castrillon DH, Beach DH, Sharpless NE (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)‐luciferase model. Cell 152, 340–351.
    1. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295.
    1. Campisi J, Robert L (2014) Cell senescence: role in aging and age‐related diseases. Interdiscip. Top. Gerontol. 39, 45–61.
    1. Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, Lederman S, Colonna M, Cortesini R, Dalla‐Favera R, Suciu‐Foca N (2002) Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 3, 237–243.
    1. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW (2011) Control of the senescence‐associated secretory phenotype by NF‐{kappa}B promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125–2136.
    1. Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr. Pharm. Des. 19, 1680–1698.
    1. Cortesini R, LeMaoult J, Ciubotariu R, Cortesini NS (2001) CD8+CD28‐ T suppressor cells and the induction of antigen‐specific, antigen‐presenting cell‐mediated suppression of Th reactivity. Immunol. Rev. 182, 201–206.
    1. Crespo J, Sun H, Welling TH, Tian Z, Zou W (2013) T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25, 214–221.
    1. Cudejko C, Wouters K, Fuentes L, Hannou SA, Paquet C, Bantubungi K, Bouchaert E, Vanhoutte J, Fleury S, Remy P, Tailleux A, Chinetti‐Gbaguidi G, Dombrowicz D, Staels B, Paumelle R (2011) p16INK4a deficiency promotes IL‐4‐induced polarization and inhibits proinflammatory signaling in macrophages. Blood 118, 2556–2566.
    1. Czesnikiewicz‐Guzik M, Lee WW, Cui D, Hiruma Y, Lamar DL, Yang ZZ, Ouslander JG, Weyand CM, Goronzy JJ (2008) T cell subset‐specific susceptibility to aging. Clin. Immunol. 127, 107–118.
    1. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue‐resident macrophages. Nat. Immunol. 14, 986–995.
    1. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dollé ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF‐AA. Dev. Cell 31, 722–733.
    1. Di Mitri D, Azevedo RI, Henson SM, Libri V, Riddell NE, Macaulay R, Kipling D, Soares MV, Battistini L, Akbar AN (2011) Reversible senescence in human CD4+CD45RA+CD27‐ memory T cells. J. Immunol. 187, 2093–2100.
    1. Dvergsten JA, Mueller RG, Griffin P, Abedin S, Pishko A, Michel JJ, Rosenkranz ME, Reed AM, Kietz DA, Vallejo AN (2013) Premature cell senescence and T cell receptor‐independent activation of CD8+ T cells in juvenile idiopathic arthritis. Arthritis Rheum. 65, 2201–2210.
    1. Effros RB (2011) Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress. Exp. Gerontol. 46, 135–140.
    1. Effros RB, Dagarag M, Valenzuela HF (2003) In vitro senescence of immune cells. Exp. Gerontol. 38, 1243–1249.
    1. Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, Alvarez S, Diolaiti ME, Ugarte F, Forsberg EC, Le Beau MM, Stohr BA, Méndez J, Morrison CG, Passegué E (2014) Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512, 198–202.
    1. Fletcher JM, Vukmanovic‐Stejic M, Dunne PJ, Birch KE, Cook JE, Jackson SE, Salmon M, Rustin MH, Akbar AN (2005) Cytomegalovirus‐specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J. Immunol. 175, 8218–8225.
    1. Freedman MS, Ruijs TC, Blain M, Antel JP (1991) Phenotypic and functional characteristics of activated CD8+ cells: a CD11b‐CD28‐ subset mediates noncytolytic functional suppression. Clin. Immunol. Immunopathol. 60, 254–267.
    1. Fu B, Li X, Sun R, Tong X, Ling B, Tian Z, Wei H (2013) Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal‐fetal interface. Proc. Natl Acad. Sci. USA 110, E231–E240.
    1. Fuentes L, Wouters K, Hannou SA, Cudejko C, Rigamonti E, Mayi TH, Derudas B, Pattou F, Chinetti‐Gbaguidi G, Staels B, Paumelle R (2011) Downregulation of the tumour suppressor p16INK4A contributes to the polarisation of human macrophages toward an adipose tissue macrophage (ATM)‐like phenotype. Diabetologia 54, 3150–3156.
    1. Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389.
    1. Gil J, Peters G (2006) Regulation of the INK4b‐ARF‐INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol. 7, 667–677.
    1. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604.
    1. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964.
    1. Goronzy JJ, Henel G, Sawai H, Singh K, Lee EB, Pryshchep S, Weyand CM (2005) Costimulatory pathways in rheumatoid synovitis and T‐cell senescence. Ann. N. Y. Acad. Sci. 1062, 182–194.
    1. Goronzy JJ, Lee WW, Weyand CM (2007) Aging and T‐cell diversity. Exp. Gerontol. 42, 400–406.
    1. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.
    1. Hazeldine J, Lord JM (2013) The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res. Rev. 12, 1069–1078.
    1. Henson SM, Franzese O, Macaulay R, Libri V, Azevedo RI, Kiani‐Alikhan S, Plunkett FJ, Masters JE, Jackson S, Griffiths SJ, Pircher HP, Soares MV, Akbar AN (2009) KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood 113, 6619–6628.
    1. Hoenicke L, Zender L (2012) Immune surveillance of senescent cells – biological significance in cancer‐ and non‐cancer pathologies. Carcinogenesis 33, 1123–1126.
    1. Hu BT, Lee SC, Marin E, Ryan DH, Insel RA (1997) Telomerase is up‐regulated in human germinal center B cells in vivo and can be re‐expressed in memory B cells activated in vitro . J. Immunol. 159, 1068–1071.
    1. Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH (2013) p53‐dependent chemokine production by senescent tumor cells supports NKG2D‐dependent tumor elimination by natural killer cells. J. Exp. Med. 210, 2057–2069.
    1. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A, Iken M, Vucur M, Weiss S, Heikenwalder M, Khan S, Gil J, Bruder D, Manns M, Schirmacher P, Tacke F, Ott M, Luedde T, Longerich T, Kubicka S, Zender L (2011) Senescence surveillance of pre‐malignant hepatocytes limits liver cancer development. Nature 479, 547–551.
    1. Kawashima H, Takatori H, Suzuki K, Iwata A, Yokota M, Suto A, Minamino T, Hirose K, Nakajima H (2013) Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells. J. Immunol. 191, 3614–3623.
    1. Kelsoe G (1996) Life and death in germinal centers (redux). Immunity 4, 107–111.
    1. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al‐Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307.
    1. Krizhanovsky V, Xue W, Zender L, Yon M, Hernando E, Lowe SW (2008a) Implications of cellular senescence in tissue damage response, tumor suppression, and stem cell biology. Cold Spring Harb. Symp. Quant. Biol. 73, 513–522.
    1. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008b) Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667.
    1. Lanna A, Coutavas E, Levati L, Seidel J, Rustin MH, Henson SM, Akbar AN, Franzese O (2013) IFN‐α inhibits telomerase in human CD8⁺ T cells by both hTERT downregulation and induction of p38 MAPK signaling. J. Immunol. 191, 3744–3752.
    1. Lanna A, Henson SM, Escors D, Akbar AN (2014) The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB 1 drives the senescence of human T cells. Nat. Immunol. 15, 965–972.
    1. Le Roux I, Konge J, Le Cam L, Flamant P, Tajbakhsh S (2015) Numb is required to prevent p53‐dependent senescence following skeletal muscle injury. Nat. Commun. 6, 8528.
    1. Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, Lowe SW (2013) Non‐cell‐autonomous tumor suppression by p53. Cell 153, 449–460.
    1. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185.
    1. Mondal AM, Horikawa I, Pine SR, Fujita K, Morgan KM, Vera E, Mazur SJ, Appella E, Vojtesek B, Blasco MA, Lane DP, Harris CC (2013) p53 isoforms regulate aging‐ and tumor‐associated replicative senescence in T lymphocytes. J. Clin. Invest. 123, 5247–5257.
    1. Montes CL, Chapoval AI, Nelson J, Orhue V, Zhang X, Schulze DH, Strome SE, Gastman BR (2008) Tumor‐induced senescent T cells with suppressor function: a potential form of tumor immune evasion. Cancer Res. 68, 870–879.
    1. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969.
    1. Muñoz‐Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496.
    1. Murakami Y, Mizoguchi F, Saito T, Miyasaka N, Kohsaka H (2012) p16(INK4a) exerts an anti‐inflammatory effect through accelerated IRAK1 degradation in macrophages. J. Immunol. 189, 5066–5072.
    1. Norrback KF, Dahlenborg K, Carlsson R, Roos G (1996) Telomerase activation in normal B lymphocytes and non‐Hodgkin's lymphomas. Blood 88, 222–229.
    1. Pajcini KV, Corbel SY, Sage J, Pomerantz JH, Blau HM (2010) Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 7, 198–213.
    1. Paramio JM, Segrelles C, Ruiz S, Martin‐Caballero J, Page A, Martinez J, Serrano M, Jorcano JL (2001) The ink4a/arf tumor suppressors cooperate with p21cip1/waf in the processes of mouse epidermal differentiation, senescence, and carcinogenesis. J. Biol. Chem. 276, 44203–44211.
    1. Parish ST, Wu JE, Effros RB (2010) Sustained CD28 expression delays multiple features of replicative senescence in human CD8 T lymphocytes. J. Clin. Immunol. 30, 798–805.
    1. Philipot D, Guérit D, Platano D, Chuchana P, Olivotto E, Espinoza F, Dorandeu A, Pers YM, Piette J, Borzi RM, Jorgensen C, Noel D, Brondello JM (2014) p16INK4a and its regulator miR‐24 link senescence and chondrocyte terminal differentiation‐associated matrix remodelling in osteoarthritis. Arthritis. Res. Ther. 16, R58.
    1. Pita‐Lopez ML, Gayoso I, DelaRosa O, Casado JG, Alonso C, Muñoz‐Gomariz E, Tarazona R, Solana R (2009) Effect of ageing on CMV‐specific CD8 T cells from CMV seropositive healthy donors. Immun. Ageing 6, 11.
    1. Rajagopalan S, Long EO (2012) Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc. Natl Acad. Sci. USA 109, 20596–20601.
    1. Rajagopalan S, Lee EC, DuPrie ML, Long EO (2014) TNFR‐associated factor 6 and TGF‐β‐activated kinase 1 control signals for a senescence response by an endosomal NK cell receptor. J. Immunol. 192, 714–721.
    1. Ramello MC, Boari JT, Canale FP, Mena HA, Negrotto S, Gastman B, Gruppi A, Rodríguez EV, Montes CL (2014) Tumor‐induced senescent T cells promote the secretion of pro‐inflammatory cytokines and angiogenic factors by human monocytes/macrophages through a mechanism that involves Tim‐3 and CD40L. Cell Death Dis. 5, e1507.
    1. Roth A, Yssel H, Pene J, Chavez EA, Schertzer M, Lansdorp PM, Spits H, Luiten RM (2003) Telomerase levels control the lifespan of human T lymphocytes. Blood 102, 849–857.
    1. Sagiv A, Krizhanovsky V (2013) Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology 14, 617–628.
    1. Sagiv A, Biran A, Yon M, Simon J, Lowe SW, Krizhanovsky V (2013) Granule exocytosis mediates immune surveillance of senescent cells. Oncogene 32, 1971–1977.
    1. Sakaguchi S (2005) Naturally arising Foxp3‐expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non‐self. Nat. Immunol. 6, 345–352.
    1. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133, 775–787.
    1. Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev. 28, 99–114.
    1. Schönland SO, Lopez C, Widmann T, Zimmer J, Bryl E, Goronzy JJ, Weyand CM (2003) Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc. Natl Acad. Sci. USA 100, 13471–13476.
    1. Sedelies KA, Ciccone A, Clarke CJ, Oliaro J, Sutton VR, Scott FL, Silke J, Susanto O, Green DR, Johnstone RW, Bird PI, Trapani JA, Waterhouse NJ (2008) Blocking granule‐mediated death by primary human NK cells requires both protection of mitochondria and inhibition of caspase activity. Cell Death Differ. 15, 708–717.
    1. Signer RA, Montecino‐Rodriguez E, Witte ON, Dorshkind K (2008) Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev. 22, 3115–3120.
    1. Sojka DK, Huang YH, Fowell DJ (2008) Mechanisms of regulatory T‐cell suppression – a diverse arsenal for a moving target. Immunology 124, 13–22.
    1. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, Cippitelli M, Fionda C, Petrucci MT, Guarini A, Foà R, Santoni A (2009) ATM‐ATR‐dependent up‐regulation of DNAM‐1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK‐cell susceptibility and is associated with a senescent phenotype. Blood 113, 3503–3511.
    1. Suciu‐Foca N, Cortesini R (2007) Central role of ILT3 in the T suppressor cell cascade. Cell. Immunol. 248, 59–67.
    1. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972.
    1. Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A, Hildner K, Guachalla L, Gompf A, Hartmann D, Schambach A, Wuestefeld T, Dauch D, Schrezenmeier H, Hofmann W‐K, Nakauchi H, Ju Z, Kestler H, Zender L, Rudolph K (2012) A differentiation checkpoint limits hematopoietic stem cell self‐renewal in response to DNA damage. Cell 148, 1001–1015.
    1. Weinberger B, Lazuardi L, Weiskirchner I, Keller M, Neuner C, Fischer KH, Neuman B, Würzner R, Grubeck‐Loebenstein B (2007) Healthy aging and latent infection with CMV lead to distinct changes in CD8+ and CD4+ T‐cell subsets in the elderly. Hum. Immunol. 68, 86–90.
    1. Weng NP, Hathcock KS, Hodes RJ (1998) Regulation of telomere length and telomerase in T and B cells: a mechanism for maintaining replicative potential. Immunity 9, 151–157.
    1. Weng NP, Akbar AN, Goronzy J (2009) CD28(‐) T cells: their role in the age‐associated decline of immune function. Trends Immunol. 30, 306–312.
    1. Wherry EJ (2011) T cell exhaustion. Nat. Immunol. 12, 492–499.
    1. Williams RT, Sherr CJ (2007) The ARF tumor suppressor in acute leukemias: insights from mouse models of Bcr‐Abl‐induced acute lymphoblastic leukemia. Adv. Exp. Med. Biol. 604, 107–114.
    1. Wing JB, Sakaguchi S (2012) Multiple treg suppressive modules and their adaptability. Front Immunol. 3, 178.
    1. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496, 445–455.
    1. Xiao Y, Wang J, Song H, Zou P, Zhou D, Liu L (2013) CD34+ cells from patients with myelodysplastic syndrome present different p21 dependent premature senescence. Leuk. Res. 37, 333–340.
    1. Yahata T, Takanashi T, Muguruma Y, Ibrahim AA, Matsuzawa H, Uno T, Sheng Y, Onizuka M, Ito M, Kato S, Ando K (2011) Accumulation of oxidative DNA damage restricts the self‐renewal capacity of human hematopoietic stem cells. Blood 118, 2941–2950.
    1. Ye J, Huang X, Hsueh EC, Zhang Q, Ma C, Zhang Y, Varvares MA, Hoft DF, Peng G (2012) Human regulatory T cells induce T‐lymphocyte senescence. Blood 120, 2021–2031.

Source: PubMed

3
購読する